| An ACM D/st/ngwshed D/ssertat/on
1987

‘—

Algor:thm Ammatlon
Marc H. Brown

I The MIT Press

290% 8966999

Algorithm Animation

Marc H. Brown

Il

M

E8960990

M0

The MIT Press
Cambridge, Massac husetts
London, England

Publisher’s Note

This format is intended to reduce the cost of publishing certain works in
book form and to shorten the gap between editorial preparation and final
publication. Detailed editing and composition have been avoided by
photographing the text of this book directly from the author’s prepared copy.

© 1988 The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

Printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Brown, Marc H.
Algorithm animation.

(ACM distinguished dissertations ; 1987)

Bibliograpy: p.

Includes index.

1. Electronic digital computers—Programming.
2. Algorithms. 3. Computer graphics. I. Title.
II. Series.

QAT76.6.B765 1988 006.6 88-10036
ISBN 0-262-02278-8

To FEllen:

My best-friend and lover,
mi dushi and wife.

NENT M 20 NN
7730 2YrEn R

And to our parents

Preface

An algorithm animation environment is a means for exploring the dynamic
behavior of algorithms that makes possible a fundamental improvement in
the way we understand and think about them. It presents multiple graphical
views of an algorithm in action, exposing properties that might otherwise
be difficult to understand or even remain unnoticed. All views are updated
simultaneously in real time as the algorithm executes, and each view is dis-
played in a separate window on the screen, whose location, size, and level of
detail is interactively set by the end-user. A specialized interpreter controls
execution in units that are specific to the algorithm, and allows multiple
algorithms to be run simultaneously for comparisons. Programmers can im-
plement new algorithms, graphical displays, and input generators and run
them with existing libraries of such components.

An important aspect of an algorithm animation environment, and one we
believe is useful in any interactive environment, is the concept of a script:
a record of an end-user’s session that can be replayed. Scripts can be used
both passively, as virtual videotapes, and actively, as an innovative com-
munication medium: the viewer of a script can customize the videotape
interactively, and can readily switch between passively viewing it and ac-
tively exploring its contents. Scripts are typically used as high-level macros,
system tutors, and electronic textbooks and research notes. End-users can
create scripts easily by instructing the system to “watch what I do;” scripts
are stored as readable and editable PASCAL programs.

The potential of such algorithm animation environments is great, but can
be fully realized only if they are sufficiently easy and enjoyable to use. This
dissertation is step towards achieving these goals. In it, we develop a model
for creating real-time animations, as well as a framework for interacting with
these animations. We also describe a prototype system, BALSA-II, and its
feasibility study system, BALSA-I, that realize the conceptual model.

Acknowledgements

I’ve looked forward to writing this page for quite some time, having spent
over a decade at Brown—as an undergraduate, TA, RA, staff member, and
most recently, at the bottom of the totem pole, as a graduate student. My
mentors merit more than the “thanks” that an acknowledgement page pro-
vides. Yet what does one say?

Bob Sedgewick has gone beyond a mere thesis advisor, professor or col-
league. He has provided lodging and repasts—from Marly-le-Roi to Quono-
chontaug—7am squash matches, incisive interpretations of intra and inter-
departmental matters, and a plethora of stimulating intellectual challenges.
Sedge sets high standards for himself and those around him, and, more than
anyone I know, appreciates one’s obsessions for detail and perfection.

My competence as a programmer can be attributed, in part, to fundamen-
tal concepts drilled in Andy van Dam’s freshman introductory programming
course. Throughout the years, Andy’s indefatigability, acumen, and vigorous
leadership have inspired me and many other students to set high personal
goals and to go after them. Computer science needs more people with Andy’s
genuine love for teaching and undaunted confidence in undergraduates.

The third member of my thesis committee, Paris Kanellakis, epitomizes
the word “mensch.” His encouragement, keen insight into technical matters,
and careful reading of the final draft have been invaluable.

Many thanks to the people who read parts of this thesis for their percep-
tive comments. In particular, the prose has been greatly improved by two
meticulous passes by Trina Avery, and by Cynthia Hibbard’s patience and
perseverance in explaining to me many intricacies of the English language.
Special thanks to DAW for reacquainting me with (63] and for many inspired
harangues and motivating discussions. Rob Rubin provided an exceptional
sounding board, and frequently painted the global picture for me when I
became myopic.

This thesis is an outgrowth of the Electronic Classroom project at Brown,
initiated by Bob Sedgewick. The project realizes his vision of bringing “inter-
active movies” into computer science education and the study of algorithm.
Bob, along with Andy van Dam and Tom Doeppner, procured the project’s
initial funding from NSF’s CAUSE program in June, 1980. The Exxon Ed-
ucation Foundation and Apollo Computer provided additional funding.

Literally thousands of computer science students at Brown have taken
courses in the Electronic Classroom using the BALSA-I environment. Many
people, too numerous to mention here, have contributed to that software en-
deavor. In particular, Steve Reiss, with some help from Joe Pato and myself,
developed the Brown Workstation Environment and tailored it to BALSA—
I's requirements. Perry Busalacchi, Ham Lord, Karen Smith, Kate Smith,
and Liz Waymire wrote many of the initial BALSA-I animations at a time
when the system was unstable, under development, and without documen-
tation. Mike Strickman implemented much of the BALSA-I kernel, Dave
Nanian implemented its tools for broadcasting, and Eric Wolf implemented
its code view. The hardware and system software was adeptly managed by
Dave Durfee, Jeff Coady, and Dorinda Moulton. Their professionalism kept
me (and others) in check during many hectic times.

Special credit is due to Bob Sedgewick for his many contributions to this
thesis. While I can take full credit for the BALSA-I and BALSA-II systems
design and implementation (subject to the acknowledgements cited above),
neither system would have reached fruition without Bob’s support and feed-
back. Jointly, we created the first sophisticated set of views and scripts using
BALSA-I. Our experiences were instrumental in incremental improvements
to BALSA-T and the entire design of BALSA-II. Appendix A discusses this
experience and also Andy’s experiences as instructor of an Introductory Pro-
gramming course that used the Electronic Classroom at the same time.

Thus, it is important for readers to understand that when I use the pro-
noun “we” in this dissertation, it is more than the proverbial “royal we.”

Most of the research reported here was performed while I was supported by
an IBM Graduate Student Fellowship. My tenure as a graduate student was
also supported in part by the ONR and DARPA under Contract N00014-83—
K-0146 and ARPA Order No. 4786, and NSF Grant SER80-04974. Their
assistance is gratefully acknowledged.

Finally, I am very thankful to Bob Taylor at DEC’s Systems Research
Center for providing support during the final months. His managerial style
and motivation techniques (read: prohibiting me from participating in SRC
projects until my dissertation is signed, sealed, and delivered) are creative.
I hope my contributions to the SRC environment in the coming years will
justify the confidence he has demonstrated.

Contents

TREPOAMCEION « « 6 v v 56 56 055 6 5 5 & 606 88 68 5 05 2 s o s o oo e o s 1
1.1 Thesis Contributions 3
1.2 Applications of Algorithm Animation 4
1.3 Conceptual Model « : s omsmsnsonsmsmsns wosisdsmesnesn 6
1.4 Perspective on Graphics in Programming 13
1.5 Automatic Algorithm Animations 18
1.6 Disclaimers i e 24
1.7 Thesis Outline 26

. Related Work 27
2.1 Algorithm Movies i 27
2.2 Graphical Display of Data Structures 30
2.3 Algorithm Animation Systems 34
2.4 DISCUSSION . v oottt e 45

. The Interactive Environment 47
3.1 Basic Tour 48
3.2 Advanced Tour 62
3.3 Model of the Interactive Environment 66
3.4 Summary e 70

C SCrIPtS . . 71
4.1 OVeIVIEW . . o it 71
4.2 APPLCALIONS & 5« sc 565 55 55 6 583 55 56 bie o e i oo s mie wr s wrre o 73
4.3 Related Efforts 75
4.4 The Author’s User Interface 77
4.5 The Viewer’s User Interface 78
4.6 Implementation Aspects 80

AT SUIATNBIT 5 s 2o 52 55 § 52 02 BE 35 5 6 8 58 68 G 5w v o n ;e s w 89

5. Programmer Interface. 91

Bl Algorifhms ::ssasrinsumsuinesnenss s RISP R VRS B LR s 93
5.2 Input Generators 98
BB VIBWS: « oo wiie oim o o s i i 5.6 5 6 Bl 5. 5 @5 B 5 MG HE LB E @S 104
54 Object-Oriented Pipes sccvcvsssnmsnimspsnsmpomswsss 117
5.5 Graphics Environment 121
6. Implementationc:uisasssasvcsanisasnssinsa 126
6.1 The BALSA-II Preprocessoroeeuuuennn. 127
6.2 The BALSA-II Application 135
6.3 Client-Programmer Specifications (Summary) 145
6.4 Evaluation e 156
Vo CONCIOBION - ;5 : 5 i inmans name sms s @i ®asssdissniusa 158
7.1 End-User Research Directions 158
7.2 Animator Research Directions 161
7.3 Systems Research Directions 163
7.4 Final Thoughts 164
A. An Electronic Classroom......................... 165
B. BALSA-Related Publications 172
References. 175

1

Introduction

An algorithm animation environment is an “exploratorium” for investigating
the dynamic behavior of programs, one that makes possible a fundamental
improvement in the way we understand and think about them. It presents
multiple graphical displays of an algorithm in action, exposing properties of
the program that might otherwise be difficult to understand or might even
remain unnoticed. All views of the algorithm are updated simultaneously in
real time as the program executes; each view is displayed in a separate win-
dow on the screen, whose location and size is controlled by the end-user. The
end-user can zoom into the graphical (currently, two-dimensional) image to
see more detailed information, and can scroll the image horizontally and ver-
tically. Views can also be used for specifying input to programs graphically.
A specialized interpreter controls execution in units that are meaningful for
the program, and allows multiple algorithms to be run simultaneously for
comparing and contrasting. The end-user can control how the algorithms
are synchronized by manipulating the amount of time each unit takes to ex-
ecute. Programmers can implement new algorithms, graphical displays, and
input generators and run them with existing libraries of algorithms, displays,
and inputs.

While an algorithm animation environment is a rich environment for ac-
tively exploring algorithms, in many situations a passive, guided approach
using a prepared “script” is more appropriate. For example, when dynamic
material is a visual aid in a lecture or when it complements a traditional
textbook or journal article, the audience is interested in viewing the “virtual
videotape” as the author conceived it, not in exploring the material indepen-
dently. And when an algorithm is being viewed for the first time, self-guided
exploration can easily result in distorted or incorrect interpretations and
leave important aspects of the algorithm undiscovered.

2 Introduction

To a first approximation, an algorithm animation script is a record of an
end-user’s session that can be replayed. At one end of the spectrum, a script
is merely a videotape that can be viewed passively. At the other, more
interesting end of the spectrum, a script is an innovative communication
medium: the viewer of a script can customize the movie interactively, and
can readily switch between passively viewing it and actively exploring its
contents. Scripts can be used as high-level macros, thereby extending the
set of commands available to end-users of the algorithm animation system,
and can also serve as the basis for broadcasting one end-user’s session to
other end-users on other machines. End-users can create scripts easily by
instructing the system to “watch what I do.” Scripts are stored as readable
and editable PASCAL programs.

Systems for algorithm animation can be realized with current hardware:
personal workstations—with their high-resolution displays, powerful dedi-
cated processors, and large amounts of real and virtual memory—can sup-
port the required interactiveness and dynamic graphics. In the future, such
workstations will become cheaper, faster, and more powerful, and will have
better resolution. An algorithm animation environment exploits these char-
acteristics, and can also take advantage of a number of features expected
to become common in future hardware, such as color, sound, and parallel
processors.

We develop here a model for creating real-time animations of algorithms
with minimal intrusions into the algorithm’s original source code, as well
as a framework for interacting with these animations. We also describe
a prototype system, BALSA-II, and its feasibility study system, BALSA—
I, that realize the conceptual model. Currently, BALSA-II is being used
in teaching parts of a data structures course, for research in the design
and analysis of algorithms, and for technical drawings in research papers
and textbooks. BALSA-I has been in production use since 1983 in Brown
University’s “Electronic Classtoom.” Appendix A documents some of our
experiences using the environment as a principal mode of communication
during lectures in an introductory programming course and in an algorithms
and data structures course. Appendix B cites publications describing various
aspects of the project.

1.1 Thesis Contributions 3

1.1 Thesis Contributions

The primary contributions of this thesis are its models for (1) programmers
creating animations, (2) end-users interacting with the animations, and (3)
end-users creating, editing, and replaying dynamic documents. These mod-
els have been realized in the BALSA-T and BALSA-II systems. A secondary
contribution of this research is the numerous static and dynamic graphical
displays of a wide range of algorithms and data structures we have created
using the prototype systems, most of which had never been displayed or
even conceived previously. The domain includes sorting, searching, string
processing, parsing, graphs, trees, computational geometry, mathematics,
linear and dynamic programming, systolic architectures, and graphics. The
systems have also be used to show innovative dynamic illustrations of funda-
mental concepts in procedural programming languages. The diagrams in this
document are a small sampling of these images; others have been reported
elsewhere [16, 17, 18].
We now elaborate on the primary contributions of this thesis.

(1) A model for programmers creating animations. The programmer
model is independent of the contents of all algorithms, inputs and views;
hence, it can be used to animate any algorithm in a systematic manner.
Moreover, the model makes it easy to animate new algorithms and create
new displays.

Algorithms being animated are separated into three components: the
algorithm itself, an input generator that provides data for the algorithm
to manipulate, and graphical views that present the animated pictures of
the algorithm in execution. Views are built following a classical graphics
modeler-renderer paradigm, and an adapter allows any particular view
to be used to display aspects of many different algorithms. Modelers
can be chained to provide views of views, and renderers can be based
on multiple modelers. Algorithms are annotated with interesting events
to indicate phenomena of interest that should give rise to the displays
being updated; in addition, the events provide the abstraction for end-
users to control the execution.

(2) A model for end-users interacting with animated algorithms.
The end-user model, like the programmer model, is independent of the
algorithms, inputs, and views; thus, end-users interact with animations

4 Introduction

in a consistent manner. This model gives well-defined semantics for each
end-user command; in fact, BALSA-I and BALSA-II can be thought of

as merely two different user interfaces that manipulate these properties.

The interactive environment is characterized at any point by its struc-
tural, temporal and presentation properties. The structural properties
are the set of algorithms currently running and the data they are pro-
cessing. Information concerning the specialized interpreter, such as the
program-specific units chosen for stopping and stepping points and how
multiple algorithms are synchronized, are the temporal properties. The
configuration of view windows on the screen are considered the presenta-
tion properties. In addition to providing data for algorithms to process,
end-users can manipulate the underlying algorithms, input generators
and views through the concept of parameters for each component. That
is, end-users can select among parameters preset by the programmers;
end-users cannot create new variants at runtime.

(3) Model for end-users creating, editing, and replaying dynamic
documents. Dynamic documents, called scripts, are created by having
the system watch what the end-user does. However, a semantic inter-
pretation of the actions is maintained in a textual file—an executable
PASCAL program—not a command or keystroke history. Scripts form
a basis for passively watching the dynamic material like a videotape,
or actively interacting with the material. The script model is mostly
independent of an algorithm animation system: the principals can be
applied to virtually any system with well-defined structural, temporal
and presentation properties.

1.2 Applications of Algorithm Animation

An obvious application of an algorithm animation environment is computer
science instruction, particularly courses dealing with algorithms and data
structures, e.g., compilers, graphics, databases, algorithms, programming.
Rather than using a chalkboard or viewgraph to show static diagrams, in-
structors can present simulations of algorithms and programming concepts
on workstations. Moreover, students can try out the programs on their own
data, at their own pace, and with different displays (from a library of existing

1.2 Applications of Algorithm Animation 5

displays) from those the instructor chose. Non-naive students can code their
own algorithms and utilize the same set of displays used by the instructor
in demonstration programs. As mentioned earlier, the appendices describe
how BALSA-I was used in computer science instruction.

Another proven application of an algorithm animation environment is as
a tool for research in algorithm design and analysis. Human beings’ ability
to quickly process large amounts of visual information is well documented,
and animated displays of algorithms provide intricate details in a format
that allows us to exploit our visual capabilities. For instance, experimenting
with an animation of Knuth’s dynamic Huffman trees [43] revealed strange
behavior of the tree dynamics with a particular set of input. This lead to
a new, improved algorithm for dynamic Huffman trees [70]. A variation of
Shellsort was discovered in conjunction with static color displays of Bub-
blesort, Cocktail-Shaker Sort, and standard Shellsort [41]. An early version
of BALSA-I was used to help understand and analyze a newly discovered
stable Mergesort [36].

Animations developed for instruction can be used for research, and vice
versa. For example, animations for an algorithms course were used with
minor changes to investigate shortest-path algorithms in Euclidean graphs
[61]. Conversely, displays developed in conjunction with research on pairing
heaps [29] were later incorporated into classroom lectures on priority queues.

Another application for an algorithm animation environment is as a testbed
for technical drawings of data structures. It allows interactive experimen-
tation with input data and algorithm parameters to produce a picture that
best illustrates the desired properties. Furthermore, the drawings produced
are always accurate, even ones which would tax the best of draftsmen. For
example, it is laborious indeed for a draftsman to take a set of points and
prepare the sequence in Figure 1.1 showing the construction of a Voronoi
diagram and its dual. As more and more researchers begin to typeset their
own papers and books, this application will become increasingly important.

A prime but so far unexplored application area for algorithm animation is
in programming environments. Pioneering environments on graphics-based
workstations, such as Cedar [65], Interlisp [64], and especially Smalltalk [31],
are, by and large, text-oriented. Recent workstation-based program devel-
opment environments incorporate graphical views of the program structure
and code, not data, and consequently have had limited success in giving
additional insight into the programs: “The experience we have had with

6 Introduction

Figure 1.1: Construction of a Voronoi diagram.

PECAN, however, has shown that such graphical views are limited in their
power and usefulness when they are tied to syntax. The syntactic basis forces
the user to treat these two-dimensional representations in a one-dimensional
way, and the graphics do not provide any significant advantage over text”
[57]. These systems could be greatly enhanced by the display capabilities of
an algorithm animation environment.

Algorithm animation has also been used for performance tuning [24], and
has the potential to be helpful in documenting programs [47] and in systems
modeling, especially for multi-threaded applications.

1.3 Conceptual Model

Algorithm animation involves two types of users: end-users and client-
programmers. The end-users watch and interact with the animations on
a workstation, whereas the programmers implement the algorithms, dis-
plays, and input generators that the end-users see and manipulate. An
algorithm animation system itself is domain-independent: the system does
not know whether an algorithm sorts numbers or produces random numbers,
or whether a view shows a tree or a table. It does not attempt to decide what
phenomena are interesting in a program, or what styles of input or visual
representations are appropriate. Rather, it provides tools so that a large va-
riety can be easily implemented and end-users can watch and interact with
them in a consistent manner.

We will use the terms algorithm animation environment and algorithm an-
imation system to reflect the two types of users. The algorithm animation

1.8 Conceptual Model 7

system is the code with which client-programmers interface, and the algo-
rithm animation environment is the runtime environment that end-users see.
It is the result of compiling the code that client-programmers implement with
the algorithm animation system.

For end-users, the main goal of the algorithm animation environment is
to provide a consistent manner in which to interact with animations, inde-
pendent of who happened to prepare the animation and what domain the
animation happens to be from. Once an end-user has used the system for
one algorithm, he should know how to use it for any and all algorithms.

For client-programmers, the main goal of an algorithm animation system
is to provide all of the ancillary functions needed to make an interactive
animation. Each programmer should not need to reinvent and reimplement
facilities common to all views, such as zooming into displays. A second
important goal is to provide a model whereby the animation code is sep-
arated from the algorithm. Moreover, the code relating to the animation
(and to preparing input for an algorithm) should be shareable by many al-
gorithms. Thus, a programmer implementing an algorithm should be able to
concentrate primarily on the algorithm, independent of input generators and
displays and the window configuration selected by the end-user. Conversely,
a programmer implementing a display should do so without concern for the
algorithm, input generators or the end-users.

The program being animated must be split into various pieces so that
the algorithm animation system, as well as the end-users, can manipulate
them systematically. Programs are separated into three components: the
algorithm itself, the various input generators that provide data for the al-
gorithm to manipulate, and the various graphical displays, or views, that
present the animated pictures of the algorithm in execution.

The remainder of this section presents a high-level overview of the model
an algorithm animation systepé gives to its two types of users. The descrip-
tions of the models here are necessarily brief and incomplete; Chapters 3
and 4 are devoted to end-usz%rs, and Chapters 5 and 6 to programmers.

¥y
s RG

End-User’s Model

S,
%

The end-user of an algorithm animation environment is always in a “setup-
run” loop:

Setup: The end-user arranges the screen and decides which algorithms to

8 Introduction

run, which input generator and views to use, and what the values
of any parameters to each of these should be. Each algorithm has a
default setup that can be designated and changed by the end-user.

Run: The end-user runs the algorithms and watches them in the view
windows on the screen. While the algorithms are running, the end-
user can suspend them to change the ensemble of views on the
screen as well as the program’s speed and breakpoints.

Changing or creating the content of an algorithm, view, and input gener-
ator is done, strictly speaking, not by an end-user but by a programmer.
Such editing is done outside of the algorithm animation environment, using
the standard editors and compilers. If the machine supports multiple pro-
cesses as well as dynamic loading and unloading, the algorithm animation
environment does not have to be exited.

Because the notion of parameters to algorithms, input generators, and
views is rather unconventional, we now elaborate.

Algorithms, input generators, and views can all be tuned directly by the
end-user. Just what the parameters mean for any particular algorithm,
input generator, or view depends on how it was implemented. Thus, it is
the programmer, not the end-user, who decides what the parameters are—
whether the particular component will even have any parameters, what the
user interface will be that controls how they are set, what their default
values are, and so forth. The user interface management tools and guidelines
of the underlying workstation environment promote consistency in the user
interface for manipulating parameters across many domains.

Algorithm parameters affect the algorithm, not the data that the algo-
rithm manipulates. For example, should the lexical analyzer in an animated
compiler use a hash table of size 119 or 2001? Or should it use a binary
tree (or some specific type of balanced tree) rather than a hash table? Input
parameters affect the input generators. For example, the input parameter
to a generator that reads numbers from a file for sorting algorithms would
be the name of the file. Another generator for the same sorting algorithm
might produce random numbers; the parameters for this generator would
be how many numbers to produce and a seed for a random number gener-
ator. Of course, an input parameter will affect the data indirectly, which
in turn will affect the algorithm. View parameters affect how information
is displayed in a particular view window; they do not affect the algorithm

