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PREFACE TO ENGLISH EDITION

The original text of this volume is part of the book “Problems and Solutions
in Thermodynamics and Statistical Mechanics”, itself one of the “University
Series” published by the Shokabo Publishing Company. At the request of
the present publisher, the English edition is being published in two volumes,
one on thermodynamics and the other on statistical mechanics. Considering
the more urgent interest of university students in statistical mechanics,
this volume has been translated and published first. The volume on thermo-
dynamics is expected to be published within a year.

The translation was made from the Japanesé text by the original authors,
together with a few collaborators. As the editor of the original Japanese
edition and of the English edition, I wish to express my deep appreciation to
Drs. Masaji Kubo, Toshihiko Tsuneto and Satoru Miyake who did the trans-
lation work with the authors, and particularly to Professor Donald C. Worth
of International Christian University, Tokyo, who kindly took the trouble of
helping us with linguistic difficulties. The authors are also indebted to Miss
N. Tokuda for the preparation of the manuscript.

1964 RyoGgo Kuso



PREFACE TO JAPANESE EDITION

Thermodynamics and statistical mechanics are indispensable tools in studying
the physics of the properties of matter. Statistical mechanics, together with
quantum mechanics, provides a foundation for modern physics which aims at
the thorough understanding of physical phenomena from the microscopic
viewpoint of atomic physics. Fundamental knowledge and training.in statis-
tical mechanics are therefore of vital importance not only for students
studying the physical properties of matter but also for those who study
nuclear physics or even astrophysics. Outside the realm of physics, its im-
portance is rapidly penetrating into chemistry, biology and into those vast
areas of technology which owe their growth to the advances in - modern
physics.
Thermodynamics belongs completely to classical physics and is some-
- times regarded as unimportant by students of physics who are over-occupied
in learning modern physics. Even for students in chemistry, the present
is different from the time some decades ago when physical chemistry was al-
. most nothing but chemical thermodynamics. However, it must be stressed
here that the usefulness and unique significance of thermodynamics as
a fundamental science remain as basic today as they were in the latter
half of the last century. Thermodynamics teaches us the value of a
phenomenological approach. It avoids explicit use of physical images
or models such as atomsand molecules. Instead it deals with relations
between somewhat abstract quantities such as energy, entropy, free energy
and so forth. Admittedly it does not give intuitive pictures as atomic theories
do, which is one of the reasons why students find it difficult to gain sufficient
understanding and familiarity to use thérmodynamics in real problems. But
the simplicity of the logic of thermodynamics sometimes makes us see more
clearly into the nature of the basic physics of a given problem from very
general principles. This is the great advantage of a phenomenological
approach.
" Obviously, however, it is impossible to explore more deeply the under-
_ lying atomic processes in a given physical phenomenon if we confine our
attention to thermodynamics. Such progress is made possible only by
quantum mechanics and statistical mechanics. Statistical mechanics provides
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us with a means to link the physical laws of the microscopic world to those
of the macroscopic world. Without close cooperation with statistical mecha-
nics, quantum mechanics itself would not be able to represent the physics of
the real world. In this sense, statistical mechanics is indispensable as one of
the keystones of modern physics.

Like any other science, statistical mechanics cannot be mastered easnly just
by learning its principles once. One has to think by oneself a great deal before
one grasps the way in which to use the statistical approach in one’s thin-
king, and to apply statistical mechanics to real physical problems. In statis-
tical mechanics and in thermodynamics, there are certain aspects which are
quite different from other fields of physics. We often meet students who
find difficulty in mastering thermodynamics or statistical mechanics, lacking
confidence in applying it to real problems, although they know the prin-
ciples. Such difficulties are due to insufficient and inadequate training.

The purpose of the present book is to provide a guide for students studying
and acquiring facility in thermodynamics and statistical mechanics. Thus it
contains fundamental topics, examples and a fairly large number of problems
with complete solutions. The fundamental topics are rather condensed, but
still they cover all of the points which dre basic. This book is meant to be read-
able without reference to other textbooks. By reading through these topics
only, one would be able to obtain fundamental knowledge of thermo-
dynamics and statistical mechanics. The examples are partly to supplement
the fundamental topics, but they are primarily meant to show the reader how
the principles are applied to physical problems.

The problems are classified into three groups, A, B and C, in order of in-
creasingdifficelty. If areaderhasenoughtime he may go throughall problemsin
each chapter. But, if not, it is recommended that he studies first the problems
in group A throughout the whole book and then later comes back to try Band
C. By just finishing group A problems, he will find himself to have obtained a
much better understanding of physics. The number of group A problems
is fairly large, so that he may even select about half of these and come back
later to the other half. The subjects in the fundamental topics and examples
which are marked by * are not needed in solving problems in group A.

In this bookt, thermodynamics and statistical mechanical problems are
mostly limited to those of equilibrium states. It might be desirable to include
kinetic methods and extensions of thermodynamics and statistical mechanics

t The reader is reminded that this text is a translation of the Preface to the original
Japanese edition, in which thermodynamics and statistical mechanics are contained in
one volume.
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which apply to non-equilibrium problems. We had, however, to content our-
selves in treating such topics in a limited way only 'in the last chapter
(Chapter 6 of the present English edition). This is because the whole volume
had become much larger than the original plan and also because such non-
equilibrium problems are certainly somewhat advanced.

* As mentioned previously in this preface, quantum mechanics is the funda-
mental dynamics of the microscopic world. In this sense, statistical mechanics
ought to be essentially quantum-statistics. However, since the present book
devotes itself to clear understanding of the nature of statistical considera-
tions, only an elementary knowledge of quantum mechanics is requiréd in
studying problems in groups A and B. Therefore, even those students who
are not specializing in physics but have only an elementary background
in quantum mechanics will not find any serious difficulty in starting to
study this book.

What is most important in studying a physical problem is to grasp it as a
problem in physics. Mathematical manipulations may sometimes be tedious
and sometimes may require specialized techniques. Training in mathematical
methods should not be ignored, but it would be a serious mistake if one was
to be dazzled by the mathematics and to forget the physics. Teachers often
meet students’ papers in which the student seems to be in no doubt about the
numerical answers although they are in error by two or three orders of
magnitudes or are dimensionally incorrect. Professor H. Nagaoka (a pioneer
physicist in Japan) was carrying out calculations on a blackboard in his class.
He changed the sign of his answer saying “It is plus rather than minus.
Isn’t it?” Mathematical calculations may very often be in error. A physical
mind is very important, for this can give you the right sign even when your
calculation betrays you. An answer obtained by calculation is in many cases
easily understood, at least qualitatively. It may not be guessed before making
calculations, but one should not forget to think it over again in order to
see if one can see some physical meaning contained in it. Such remarks are
not given in each solution of the problems, so that we should like to empha-
size here the importance of such reasoning.

Here and there between the pages some comments 1-are inserted under the
title “Divertissement”. While giving seminars to students we sometimes take
a rest to drink a cup of tea and chat. We hope that the reader will spare a few
minutes at these spots to listen to a chat from the authors, drinking tea or
coffee or just smoking.

t These are revised in this English edition.
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The fundamental topics were mostly written by R. K. Examples and prob-
lems were selected after repeated discussion by all the authors. The final check
of the solutions was made by R. K. and the whole design of the book was
made by N. H. The authors would appreciate it if readers would kindly
point out any mistakes which may have escaped our notice.

Five years have passed since this book was originally planned, and two
years since we started actually to write it. The undertaking proved to be
much more difficult than we anticipated. The authors are particularly grate-
ful to Mr. K. Endo, editor of Shokabo Publishing Company, for his continual
encouragement ahd help.

January, 1961 RyoGgo KuBo
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CHAPTER 1
PRINCIPLES OF STATISTICAL MECHANICS

Thermodynamics is a phenomenological theory based upon a few funda-
mental laws derived from empirical facts. In contrast to this, statistical
mechanicsaims to provide a deductive method which leads us from the micro-
scopic physical world to the macroscopic world starting from the atomic or
molecular structure of matter and the fundamental dynamical principles of
the atomic world and combining with these the logic of probability theory.
Tt answers the questions what are the physical laws of the microscopic world
behind the thermodynamic laws, how the thermodynamics can be “‘explained”
from such laws and why a specific physical system exhibits such thermo-
dynamic characteristics. The fundamental principles of statistical mechanics
involve, in fact, very profound and difficult questions if one meditates upon
them, but it would not be very wise for the beginners to be too much con-
cerned with such questions. The most important thing is to learn how one
thinks in statistical mechanics and how one applies statistical considerations
to physical problems.

Fundamental Topics

§ 1.1. MICROSCOPIC STATES

Microscopic and macroscopic states: A physical system which one observes
usually consists of a great number of atoms or molecules and so has an
enormously large number of degrees of dynamical freedom. But in the usual
case, only a few physical quantities, say the temperature, the pressure and the
density, are measured, by means of which the “state’ of the system is speci-
fied. A state defined in this crude manner 1s called a macroscopic state
{example: a thermodynamic state). On the other hand, from a dynamical
point of view, each state of a system can be defined, at least in principle, as
precisely as possible by specifying all of the dynamical variables of the system.
Such a state is called a microscopic state. :

Classical statistical mechanics and quantum statistical mechanics: The
statistical mechanics based on ciassical mechanics is called classical statistical
mechanics and that based on quantum mechanics is called quantum statistical
mechanics. Since rigorous mechanics in the atomic world is quantum mechan-
ics, rigorous statistical mechanics must be quantum statistical mechanics

]
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and so classical statistical mechanics may be said to be useful only as a
certain approximation to quantum statistical mechanics. But the classical
theory has even today a great value from theoretical and educational
points of view because it makes us understand more clearly the basic ways
of thinking in statistical mechanics.

Classical phase space: Let (g, q,, . . . q,) be the generalized coordinates of
a system with f degrees of freedom and (p,, p,, ... p;) their conjugate
momenta. A microscopic state of the system is defined by specifying the values
of (¢1, 42 - - - 455 P1, P25 - - - Py)- The 2 f-dimensional space constructed from
these 2 f variables as the coordinates is the phase space of the system. Each
point in the phase space (phase point) corresponds to a microscopic state.
Therefore the microscopic states in classical statistical mechanics make a
continuous set of points in phase space. -

If the Hamiltonian of the system is denoted by 5 (g, p), the motion of
the systcm is determined by the canonical equation of motion

r
pi=———, 4=, (_]=l,2,f) (1.1)

Constant energy surface
Sk i Fig. 1.1.

This determines the motion of the phase point, P,, defining the state of the
system at time ¢. This motion of 'P, will be called the natural motion in the
phase space. The trajectory of the phase point occurring during natural
motion is called a phase orbit. For a conservative system, the energy is
constant, i.e.

X(g,p)=E. ‘ (1.2)

Therefore the phase orbit must lie on a surface of constant energy (ergodic
surface).

Quantum states: According to quantum mechanics, p and ¢ cannot be
specified simultaneously (the uncertainty principle of Heisenberg), so that
classical phase space loses its rigorous meaning. In quantum statistical
mechanics, a microscopic state is a state defined in a quantum mechanical
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. sense. In particular, a stationary dynamical state of a system must be one of
the quantum states determined by the equation

.f¢, = E‘¢1 (l = 1, 2, ...). (1.3)

Here 5% is the Hamiltonian of the system, E, the energy of the quantum state
! and g, is the wave function representing the quantum state /.

The set of microscopic states in quantum statistical mechanics is thus a
discrete denumerable set of quantum states denoted by the quantum number
I. (In statistical mechanics, one usually considers a system confined ina
limited space, so that the quantum number /is usually discrete. A system with
infinite extension is considered as the limit of one of finite extension.)

§ 1.2. STATISTICAL TREATMENT

Whenever a system is kept in equilibrium and remains constant according to
macroscopic observations, it never stays constant from the microscopic point
of view, and so one can never say precisely in which microscopic state the
system is found. One can only define the probability for the set of all possible
microscopic states of the system.
" Fundamental assumption for observed values of physical quantities: Suppose
a physical quantity A is observed for the system under consideration. 4 isa
dynamical quantity from the microscopic point of view and is a functlon
of microscopic states. The microscopic value of A4 is represented by
A(q, p) = A(P) in classical mechanics (P is a phase point) and by the expec-
tation value

=I¢;A¢.drs<1MIl> K (14

in the quantum state / in quantum mechanics. The observed value 4, in the
macroscopic sense must be a certain average of microscopic 4: i.e.

Ay, =A. - (L.5)

Realization probability of a microscopic state: Let IR be the set of all possi-
ble microscopic states which can be realized by the system under a certain
macroscopic condition. IR is classically a certain subspace of the phase
space and quantum-mechanically it is a set of quantum states of the system.
The probability that these microscopic states are realized is defined as the

t The integration in the following expression is carried out over the variables which are

used to represent the wzve function, say ¢, ¢s, . . . gr. Here dt is a volume element of the

space of these variables. Note that a quantum state corresponds to a phase orbit in classical
" mechanics and so A; corresponds to the average taken over such an orbit.
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probability that one of the microscopic states in the volume element AI” of
phase space is realized:

PrADN = { f(P)dr, (Arem) (1.6a)t
Ar

or the probability that the quantum state / is realized:
Pr)y=f(D, (1e9) (1.6b)

that is, by giving the probability density f(P) = f(gq, p) or the probability
f{). f(P) and f (/) are sometimes called simply the distribution functions.t¥
When the distribution functions are given, the average value(1.5) is explicitly
written as

Aps =4 =EUJ; A(P)f(P)ar, (1.7a)
A=Y Af(). (1.7b)
m

Statistical ensembles: In order to make the probabilistic idea as clear as
possible, let us consider an hypothetical ensemble consisting of a great
number of systems each of which has the same structure as the system under
observations, and assume that the probability that a system arbitrarily
chosen from this ensemble is found to be in a particular microscopic state is
given by (1.6a) or (1.6b). For this hypothetical ensemble, (1.5) may be
written as

’ Agps = ensemble average of A = 4. (1.8)

A statistical ensemble is defined by the distribution function which character-
izes it. The most fundamental ensemble is the micro-canonical ensemble to
be discussed later, but many other ensembles can be considered corresponding
to various physical conditions (see (1.12) and (1.13)). '
Ideal gas — I' space and p-space: So far the whole system in question is
considered as the object of statistical treatment. This is the general stand-
point of statistical mechanics established, in particular, by Gibbs. If the
system under consideration is an ideal gas or a nearly ideal gas, it is possible
to take each molecule as a statistical unit and regard the gasasareal ensemble

t A volume element of phasespace is denoted by d/ : dI" = dqidge .. dgsdpi dp2 dps.
11 In mathematical probability theory, a distribution function is usually defined by

z
| fx)dx = Fi(x)
—®
in the one-dimensional case, for example. The term “distribution function” in statistical
mechanics is usually used in a loose way.
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consisting of such units. This point of view was taken in the kinetic theory of
gases which became the prototype of statistical mechanics. From this stand-
point, the important thing is, in classical statistical mechanics, the distribu-
tion function of the position x and the momentum p of a molecule, i.e.,
the probability that a molecule chosen from the ensemble of gas molecules
is found to have the coordinate and momentum values between x and
x + dx, pand p + dp is equal to

f(x,p)dxdp. (1.9)

Most of the properties of dilute gases can be derived from a knowledge of this
distribution function. This is a distribution in a six-dimensional space, which
is often called the u-space. The phase space of the N molecules of the gas is
called the I” space.

Maxwell distribution: In a thermal equilibrium state at high temperatures,
the distribution function f for a dilute gas is given by

i -Vl_,, 2, o2y

where T is the absolute temperature, m the mass of a molecule, and k the
Boltzmann constant. This Maxwell distribution can be derived by various
methods. The most general derivation will be described later§1.15, eq. (1.100).

§ 1.3. THE PRINCIPLE OF EQUAL WEIGHT AND THE MICROCANONICAL
ENSEMBLE

When a system consisting of a great number of particles (more generally a
system having a great number of degrees of freedom) is isolated for a long
time from its environment, it will finally reach a thermal equilibrium state.
In this case, the energy of the system is constant, so that it is presumed
to be fixed at the value £ with a certain allowance SE. This is the prescribed
macroscopic condition. The set M(E, SE) of the microscopic states to be
considered under such conditions  is
classically: the shell-like subspace of the phase space between the two
constant-energy surfaces fors# = Eand # = £ + JF;
and quantum-mechanically: the set of quantum states having the energy
eigenvalues in the interval E < E; < E + JE.
The principle of equal weight: In a thermal equilibrium state of an isolated -

1t Under certain circumstances, other constants of motion such as the total linear momen-
tum or the total angular momentum may be prescribed. In such a case, D is further
restricted.
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system, each of the microscopic states belonging to the set R(E, JE) is
realized with equal probability, namely:

(classically)
f(P) = constant = [

E<#<E+4E

.1 -1
ar ] ,  PeM(E,6E) (L.1la)

(quantum-mechanically)

-1
(1) = constant = [RE‘,\; msl] ,  IR(E,SE).  (L.11b)

The microcanonical ensemble: A statistical ensemble defined by the plincipie
of equal weight, or more precisely by the probability distribution given by
( 1.1 1a) or (1.11b), is called a microcanonical ensemble, and the distribution
is called a microcanonical distribution. A microcanonical ensemble thus rep-
resents an isolated system which has reached thermal equilibrium.

Classical limit (0E — 0): Using classical considerations, one may go to the
limit 6E — 0 and take the set o(F) on the surface of constant energy E in-
stead of M(E, SE). Then one has, instead of (1.6a) and (1.11a)

Pr(Ao) = | f(P)do, Peo(E) (1.122)
or, Ae .
£(Pydo = — 2 L (1.12b)
7= | grad & | | grado? |’ )
- #=E
where do is a surface element on the constant energy surface, and
o \? 0¢\? ¥
R ARk
; op; dq;
Equation (1.7a) becomes
A(g,p)do do J
A= . 1.13
j lgradof| | ) [gradof] (LI

H=E #=E

Ergodic theorem: In classical mechanics, the dynamical states of an isolated
system are represented by the motion of a phase point in phase space and so a
dynamical quantity 4 is represented by a time-dependent quantity 4, = A(P,) _
which changes in time according to the motion of the phase point. An ob-
served value A, of 4 is therefore to be considered as a time average of 4,.
Since A, remains constant for the thermal equilibrium state of the system,
" jt may be an average over a sufficiently long period of time. In this way,



