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Introduction

This volume contains the proceedings of the Workshop in Commutative Algebra, held
at Salvador (Brazil) on August 8-17, 1988. A few invited papers were included which
were not presented in the Workshop. They are, nevertheless, very much in the spirit of
the discussions held in the meeting.

The topics in the Workshop ranged from special algebras (Rees, symmetric, symbolic,
Hodge) through linkage and residual intersections to free resolutions and Grobner bases.
Beside these, topics from other subjects were presented such as the theory of maximal
Cohen-Macaulay modules, the Tate-Shafarevich group of elliptic curves, the number of
rational points on an elliptic curve, the modular representations of the Galois group and
the Hilbert scheme of elliptic quartics. Their contents were not included in the present
volume because the respective speakers felt that the subject had been or was to be
published somewhere else. Other, more informal, lectures were presented at the meeting
that are not included here either for similar reasons.

The meeting took place at the Federal University of Bahia, under partial support of
CNPq and FINEP to whom we express our gratitude. For the practical success of the
Workshop we owe an immense debt to Aron Simis’ wife, Lu Miranda, whose efficient
organization was responsible for letting the impression that all was smooth.

To all participants our final thanks.

WINFRIED BRUNS ARON SIMIS
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Straightening Laws on Modules and
Their Symmetric Algebras

WINFRIED BRUNS*

Several modules M over algebras with straightening law A have a structure which is
similar to the structure of A itself: M has a system of generators endowed with a natural
partial order, a standard basis over the ring B of coefficients, and the multiplication
A x M — A satisfies a “straightening law”. We call them modules with straightening
law, briefly MSLs.

In section 1 we recall the notion of an algebra with straightening law together with those
examples which will be important in the sequel. Section 2 contains the basic results on
MSLs, whereas section 3 is devoted to examples: (i) powers of certain ideals and residue
class rings with respect to them, (ii) “generic” modules defined by generic, alternating or
symmetric matrices of indeterminates, (iii) certain modules related to differentials and
derivations of determinantal rings. The essential homological invariant of a module is its
depth. We discuss how to compute the depth of an MSL in section 4. The main tool are
filtrations related to the MSL structure.

The last section contains a natural strengthening of the MSL axioms which under
certain circumstances leads to a straightening law on the symmetric algebra. The main
examples of such modules are the “generic” modules defined by generic and alternating
matrices.

The notion of an MSL was introduced by the author in [Br.3] and discussed extensively
during the workshop. The main differences of this survey to [Br.3] are the more detailed
study of examples and the treatment of the depth of MSLs which is almost entirely
missing in [Br.3]

1. Algebras with Straightening Laws

An algebra with straightening law is defined over a ring B of coefficients. In order
to avoid problems of secondary importance in the following sections we will assume
throughout that B is a noetherian ring.

Definition. Let A be a B-algebra and II C A a finite subset with partial order <. A4 is
an algebra with straightening law on II (over B) if the following conditions are satisfied:
(ASL-0) A = 6P, Ai is a graded B-algebra such that Ay = B, II consists of homoge-
neous elements of positive degree and generates A as a B-algebra.
(ASL-1) The products & -+ &pm, m > 0, & < -+ < €, are a free basis of A as a B-
module. They are called standard monomials.
(ASL-2) (Straightening law) For all incomparable £, v € II the product v has a repre-
sentation

(v = Za#p, a, € B,a, #0, p  standard monomial,

*Partially supported by DFG and GMD



2 BRUNS

satisfying the following condition: every p contains a factor ¢ € II such that ( < ¢, ( < w.
(It is of course allowed that v = 0, the sum Y a,u being empty.)

The theory of ASLs has been developed in [Ei] and [DEP.2]; the treatment in [BV.1]
also satisfies our needs. In [Ei] and [BV.1] B-algebras satisfying the axioms above are
called graded ASLs, whereas in [DEP.2] they figure as graded ordinal Hodge algebras.

In terms of generators and relations an ASL is defined by its poset and the straightening
law:

(1.1) Proposition. Let A be an ASL on II. Then the kernel of the natural epimorphism
B([Ty: 7 e II] — A, Tp — m,

18 generated by the relations required in (ASL-2), i.e. the elements
TeTo— Y ayTy, Tu=Teg T if p=t1-bm

See [DEP.2, 1.1] or [BV.1, (4.2)].

(1.2) Proposition. Let A be an ASL on II, and ¥ C II an ideal, i.e. Y € ¥, ¢ < 3
implies ¢ € ¥. Then the ideal AV 1s generated as a B-module by all the standard
monomzials containing a factor o € U, and AJAY is an ASL on II\ ¥ (11 \ ¥ being
embedded into AJAV in a natural way.)

This is obvious, but nevertheless extremely important. First several proofs by induc-
tion on |II|, say, can be based on (1.2), secondly the ASL structure of many important
examples is established this way.

(1.3) Examples. (a) Let X be an m X n matrix of indeterminates over B, and 1,4, (X)
denote the ideal generated by the r + 1-minors (i.e. the determinants of the r +1 x r+1
submatrices) of X. For the investigation of the ideals I,;1(X) and the residue class
rings A = B[X]/I,41(X) one makes B[X]| an ASL on the set A(X) of all minors of X.
Denote by [ay,...,a¢|b1,. .., b:] the minor with row indices ay,...,a; and column indices

by,...,b;. The partial order on A(X) is given by

[al,...,aulbl,...,bu] S [CI,‘-«,cvldlw--,dv] <
u>v and a; <g¢;, b; <d;, 1=1,...,v.

Then B[X] is an ASL on A(X); cf. [BV.1], Section 4 for a complete proof. Obviously
I,4+1(X) is generated by an ideal in the poset A(X), so A is an ASL on the poset A,.(X)
consisting of all the z-minors, ¢ < r.

(b) Another example needed below is given by “pfaffian” rings. Let X;;, 1 <1 <
J < n, be a family of indeterminates over B, X;; = —X;j, Xi; = 0. The pfaffian of the
alternating matrix (X; ;,: 1 < u,v < t),t even, is denoted by [t1,...,7;]. The polynomial
ring B[X] is an ASL on the set ®(X) of the pfaffians [i1,...,2¢], 91 < --- <1y, t < n. The
pfaffians are partially ordered in the same way as the minors in (b). The residue class
ring A = B[X]/Pf,42(X), Pf,42(X) being generated by the (r + 2)-pfaffians, inherits its
ASL structure from B[X] according to (1.2). The poset underlying A4 is denoted ®,.(X).
Note that the rings A are Gorenstein rings over a Gorenstein B—in fact factorial over a
factorial B, cf. [Av.1], [KL].
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(c) A non-example: If X is a symmetric n X n matrix of indeterminates, then B[X]
can not be made an ASL on A(X) in a natural way. Nevertheless there is a standard
monomial theory for this ring based on the concept of a doset, cf. [DEP.2]. Many results
which can be derived from this theory were originally proved by Kutz [Ku] using the
method of principal radical systems. —

For an element ¢ € II we define its rank by

tké =k = there is a chain € = € > €1 > -+ > &, & €11,
and no such chain of greater length exists.
For a subset Q C II let
rk Q = max{rk¢: £ € Q}.

The preceding definition differs from the one in [Ei] and [DEP.2] which gives a result
smaller by 1. In order to reconcile the two definitions the reader should imagine an
element —oo added to II, vaguely representing 0 € A.

(1.4) Proposition. Let A be an ASL on II. Then
dimA =dim B +rkIl and htAIl = rkII

Here of course dim A denotes the Krull dimension of A and ht ATl the height of the
ideal AIl. A quick proof of (1.4) may be found in [BV.1, (5.10)].

2. Straightening Laws on Modules

It occurs frequently that a module M over an ASL A has a structure closely related
to that of A: the generators of M are partially ordered, a distinguished set of “standard
elements” forms a B-basis of M, and the multiplication A x M — A satisfies a straight-
ening law similar to the straightening law in A itself. In this section we introduce the
notion of a module with straightening law whereas the next section contains a list of
examples.

Definition. Let A be an ASL over B on II. An A-module M is called a module with
straightening law (MSL) on the finite poset X C M if the following conditions are
satisfied:

(MSL-1) For every z € X there exists an ideal Z(z) C II such that the elements

1€z, zed, &L ¢I(z), L < <&, n20,

constitute a B-basis of M. These elements are called standard elements.
(MSL-2) For every z € X and £ € Z(z) one has

£z €Y Ay
y<zr

It follows immediately by induction on the rank of = that the element {z as in (MSL-2)
has a standard representation

fx = Z(Z bfruyﬂ)y’ bfruy € B, bfruy # 0,

y<z

in which each py is a standard element.
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(2.1) Remarks. (a) Suppose M is an MSL, and 7 C X an ideal. Then the submodule
of M generated by 7 is an MSL, too. This fact allows one to prove theorems on MSLs
by noetherian induction on the set of ideals of X.

(b) It would have been enough to require that the standard elements are linearly
independent. If just (MSL-2) is satisfied then the induction principle in (a) proves that
M is generated as a B-module by the standard elements. —

The following proposition helps to detect MSLs:

(2.2) Proposition. Let M, M, M, be modules over an ASL A, connected by an ezact
sequence
0—)M1 —*M——-)Mg—')o

Let My and My be MSLs on X; and X,, and choose a splitting f of the epimorphism
M — M; over B. Then M is an MSL on X = X U f(Xa) ordered by z1 < f(z3) for
all 2, € Xy, zo € Xy, and the given partial orders on X1 and the copy f(X2) of Xs.
Moreover one chooses I(z), x € X1, as in My and I(f(z)) = Z(z) for all z € X;.

The proof is straightforward and can be left to the reader.
In terms of generators and relations an ASL is defined by its generating poset and its
straightening relations, cf. (1.1). This holds similarly for MSLs:

(2.3) Proposition. Let A be an ASL on II over B, and M an MSL on X over A. Let
er, ¢ € X, denote the elements of the canonical basis of the free module A%. Then the
kernel Ky of the natural eprmorphism

AY — M, € — T,

is generated by the relations required for (MSL-2):

per = ez — Y Geayey, T EX, E£€I(a).
y<zx

PROOF: We use the induction principle indicated in (2.1), (a). Let Z € & be a maximal
element. Then 7 = X'\ {Z} is an ideal. By induction A7 is defined by the relations pe.,
¢ €T, ¢eI(z) Furthermore (MSL-1) and (MSL-2) imply

(1) M/AT =~ AJAT(F)

If a7 — 37, c7 ayy = 0, one has az € AZ(Z) and subtracting a linear combination of the
elements pgz from aze; — zyeT aye, one obtains a relation of the elements y € 7 as
desired. —

The kernel of the epimorphism AY — M is again an MSL:

(2.4) Proposition. With the notations and hypotheses of (2.3) the kernel Ky of the
epimorphism A% — M is an MSL if we let

I(pez) = {r € : w £ &}

and
Pez < Puy = z<y or z=y, £E<wv.
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PROOF: Choose 7 and 7 as in the proof of (2.3). By virtue of (2.3) the projection
A¥ — Ae; with kernel A7 induces an exact sequence

0— Kr — Ky — AI(7Z) — 0.

Now (2.2) and induction finish the argument. —

If a module M is given in terms of generators and relations, it is in general more
difficult to establish (MSL-1) than (MSL-2). For (MSL-2) one “only” has to show that
elements pe, as in the proof of (2.3) can be obtained as linear combinations of the given
relations. In this connection the following proposition may be useful: it is enough that
the module generated by the p¢, satisfies (MSL-2) again.

(2.5) Proposition. Let the data M, X,Z(z),z € X, be given as in the definition, and
suppose that (MSL-2) is satisfied. Suppose that the kernel Kx of the natural epimorphism
AY — M is generated by the elements pe; € A% representing the relations in (MSL-2).
Order the per and choose I(per) as in (2.4). If Kx satisfies (MSL-2) again, M is an
MSL.

PROOF: Let T € X be a maximal element, 7 = X \ {Z}. We consider the induced
epimorphism
AT — AT

with kernel K7. One has K7 = Kx N A7. Since the pex satisfy (MSL-2), every element
in Ky can be written as a B-linear combination of standard elements, and only the p,z
have a nonzero coefficient with respect to e;. The projection onto the component Ae;
with kernel A7 shows that K7 is generated by the pez, © € 7. Now one can argue
inductively, and the split-exact sequence

0 — AT — M — M/AT = AJAT(Z) — 0

of B-modules finishes the proof. —

Modules with a straightening law have a distinguished filtration with cyclic quotients;
by the usual induction this follows immediately from the isomorphism (1) above:

(2.6) Proposition. Let M be an MSL on X over A. Then M has a filtration 0 = My C
M, C -+ C M, = M such that each quotient M;i1/M; is isomorphic with one of the
restdue class rings AJAZ(z), z € X, and conversely each such residue class ring appears
as a quotient in the filtration.

It is obvious that an A-module with a filtration as in (2.6) is an MSL. It would however
not be adequate to replace (MSL-1) and (MSL-2) by the condition that M has such a
filtration since (MSL-1) and (MSL-2) carry more information and lend themselves to
natural strengthenings, see section 5.

In section 4 we will base a depth bound for MSLs on (2.6). Further consequences

concern the annihilator, the localizations with respect to prime ideals P € Ass A, and
the rank of an MSL.

(2.7) Proposition. Let M be an MSL on X over A, and

J=A([) I(z)).

TEX
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Then
JDOAnn M D J", n =r1kX.
PROOF: Note that A(()Z(z)) =) AZ(z) (as a consequence of (1.2)). Since Ann M anni-

hilates every subquotient of M, the inclusion Ann M C J follows from (2.6). Furthermore
(MSL-2) implies inductively that

I'Mc > Ac

rkz<rkII—:

for all ¢, in particular J"M = 0. —
(2.8) Proposition. Let M be an MSL on X over A, and P € Ass A.
(a) Then {r € II: © ¢ P} has a single minimal element o, and o 1s also & minimal
element of II.
(b) Let Y ={z € X: 0 ¢ I(z)}. Then Y is a basis of the free Ap-module Mp. Further-
more (Kx)p is generated by the elements gor, ¢ ¢ Y.
Proo¥F: (a) If m, 7y, m # ma, are minimal elements of {w € II : = ¢ P}, then, by
(ASL-2), mymy € P. So there is a single minimal element o. It has to be a single minimal
element of II, too, since otherwise P would contain all the minimal elements of II whose

sum, however, is not a zero-divisor in A ([BV.1, (5.11)]).
(b) Consider the exact sequence

0— AT — M — AJAZ(Z) — O

introduced in the proof of (2.3). If 7 ¢ Y, then 7 € ApT by the relation g,z, and we are
through by induction. If z € ), then o and all the elements of Z(z) are incomparable,
so they are annihilated by ¢ (because of (ASL-2)). Consequently (A/AZ(z))p = Ap, T
generates a free summand of Mp, and induction finishes the argument again. —

We say that a module M over A has rank r if M ® L is free of rank r as an L-module,
L denoting the total ring of fractions of A. Cf. [BV.1, 16.A] for the properties of this
notion.

(2.9) Corollary. Let M be an MSL on X over the ASL A on II. Suppose that Il has a
single minimal element 7, a condition satisfied of A 18 a domawin. Then

rank M = |{z € X: Z(z) = 0}].

3. Examples

In this section we list some of the examples of MSLs. The common patterns in their
treatment in [BV.1], [BV.2], and [BST| were the author’s main motivation in the creation
of the concept of an MSL. We start with a very simple example:

(3.1) Example. A itself is an MSL if one takes X = {1}, Z(1) = 0. Another choice is
X =TU{1}, Z(§) = {m e I: 7 # £}, I(1) = II, 1 > = for each m € II. The relations
necessary for (MSL-2) are then given by the identities 71 = 7, the straightening relations

v = Z bust, £,v  incomparable,
and the Koszul relations
v = vE, € <w.
By (2.1),(a) for every poset ideal ¥ C II the ideal A¥ is an MSL, too.
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(3.2) MSLs derived from powers of ideals. (a) Suppose that ¥ as in (3.1) addition-
ally satisfies the following condition: Whenever ¢,1 € ¥ are incomparable, then every
standard monomial g in the standard representation ¢ = > a,pu, a, # 0, contains at
least two factors from ¥. This condition appears in [Hu], [EH], and in [BV.1, Section 9]
where the ideal I = AV is called straightening-closed. See [BST] for a detailed treatment
of straightening-closed ideals. As a consequence of (b) below the powers I™ of I = AV¥
are MSLs. Observe in particular that the condition above is satisfied if every p a priori
contains at most two factors and ¥ consists of the elements in II of highest degree.

(b) In order to prove and to generalize the statements in (a) let us consider an MSL
M on X and an ideal ¥ C II such that I = AW is straightening-closed and the following
condition holds:

(*) The standard monomials in the standard representation of a product ¥z, ¢ € ¥,
z € X, all contain a factor from W.

Then it is easy to see that IM is again an MSL on the set {¢pz: z € X', ¢ € U\ I(z)}
partially ordered by

Yz < Py = t<y or z=y, p<g,

if one takes
I(ypz)={rell: 2 ¢}

Furthermore (*) holds again. Thus I"M is an MSL for all n > 1, and in particular one
obtains (b) from the special case M = A.
The residue class module M/IM also carries the structure of an MSL on the set X of
residues of X' if we let
I(T) =I(z) U L.

Combining the previous arguments we get that I"M/I"*'M is an MSL for all n > 0.
Arguing by (2.2) one sees that all the quotients I"M/I"**M are MSLs.

In the situation just considered the associated graded ring Gry A is an ASL on the
set IT* of leading forms (ordered in the same way as II), cf. [BST] or [BV.1,(9.8)], and
obviously Gry M is an MSL on A'*.

(c) If an ideal I = AV is not straightening-closed, one cannot make the associated
graded ring an ASL in a natural way. Under certain circumstances there 1s however a
“canonical” substitute, the symbolic associated graded ring

Gr{(4) = @ 10/16+Y),
1=0

Suppose that every standard monomial in a straightening relation of A contains at most
two factors and that ¥ consists of all the elements of II whose degree is at least d, d
fixed. Furthermore put

if degn < d,

= d oo Tm ) = 7
() {degw_(”l else, and  y(m...mm) =Y y(m)

for an element 7 € II and a standard monomial 7 ... m,, (deg denotes the degree in the
graded ring A). Then it is not difficult to show that the B-submodule J; generated by
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the standard monomials p such that y(u) > ¢ is an ideal of A and that @ J;/Jit1 is
(a well-defined B-algebra and) an ASL over B on the poset given by the leading forms
of the elements of II c¢f. [DEP.2, Section 10]. Therefore J; and J;/Ji+1 have standard
B-bases and one easily establishes that they are MSLs.

For B[X], B a domain, X a generic matrix of indeterminates or an alternating matrix
of indeterminates, J; indeed is the i-th symbolic power of the ideal I generated by all
minors or pfaffians resp. of size d, [BV.1, 10.A] or [AD]. Consequently Gr(l)(A) is an ASL,
and I() | () /1G+1) are MSLs for all 7.

(3.3) MSLs derived from generic maps. (a) Let A = B[X]/1,41(X) as in (1.3),
(a), 0 <7 < min(m,n) (so A = B[X] is included). The matrix z over A whose entries
are the residue classes of the indeterminates defines a map A™ — A™, also denoted by z.
The modules Im z and Coker z have been investigated in [Br.1]. A simplified treatment
has been given in [BV.1, Section 13], from where we draw some of the arguments below.

Let dy,...,dmn and €1,..., e, denote the canonical bases of A™ and A™. Then we order
the system €,,...,€, of generators of M = Coker z linearly by
€y > -+ > €n.

Furthermore we put

1(z) { {6en(X):6% [1,..‘,r|1,...,/i\,...,r+1]} for i <,
€;) =

0 else,
if 7 < n, and in the case in which r = n

IE)={6€A(X): 62 1,...,r —1[1,...,7,...,r] }.

(where % denotes that i is to be omitted). We claim: M is an MSL with respect to these
data.
Suppose that § € Z(€;). Then
§=lar,...,as|l,... 0, bit1,...,bs], s<r.

The element
D (=1 ag, e 8hpen e @allyennyi = LBigrye ooy Bo]2(da;)
=1

of Im z is a suitable relation for (MSL-2):

n

(1) ei= Y Elar,... a1, = 1,k bigr,. ., byJex.
k=it1
Rearranging the column indices 1,...,7 — 1,k,bi+1,...,bs in ascending order one makes

(1) the standard representation of é€;, and observes the following fact recorded for later
purpose:

(2) &8¢ I(ex) for all k > 1+ 1 such that [a,...,as]1,...,2 — 1,k bit1,...,bs] # 0.
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In order to prove the linear independence of the standard elements one may assume that
r < n since [,(X) annihilates M. Let

M= Y 4z, ¥={6eA(X):6#[1,....,r[L,...,r=1,r+1]} and I= AL

=r+1

We claim:
(i) M is a free A-module.
(ii) M/M is (over A/I) isomorphic to the ideal generated by the minors [1,...,7|1,... 1,
ooy, r+1,,1<i<r in A/
In fact, the minors just specified form a linearly ordered ideal in the poset A (X)\ ¥
underlying the ASL A/I, and the linear independence of the standard elements follows
immediately from (i) and (ii).

Statement (i) simply holds since rankz = r, and the r-minor in the left upper corner
of z, being the minimal element of A.(X), is not a zero-divisor in A. For (ii) one applies
(2.3) to show that M/M and the ideal in (ii) have the same representation given by the

matrix
Ty T1r
. : )
Tmi oo Tmr
2

the entries taken in A/I: The assignment &; — (—=1)**1[1,...,7|1,...,7,...,7+1] induces
the isomorphism. The computations needed for the application of (2.5) are covered by
(1).

By similar arguments one can show that Im z is also an MSL, see [BV.1, proof of (13.6)]
where a filtration argument is given which shows the linear independence of the standard
elements. Such a filtration argument could also have been applied to prove (MSL-1) for
M, cf. (¢) below.

(b) Another example is furnished by the modules defined by generic alternating maps.
Recalling the notations of (1.3), (b) we let A = B[X]/Pf,4+2(X) and M be the cokernel
of the linear map

z: F — F*, F=A"

In complete analogy with the preceding example M is an MSL on {e,...,€n}, the
canonical basis of F* & > --- > €,, if one puts

I(E_)_{{7r€@r(X):wZ[l,...,?,...,r—kl]} for i<r,
Yol else,

if r < n, and in the case in whichr = n

I(z) = { (re®X):m#[1,....0...,r=1]} for i<n-—1,

{[1,...,n]} for 7 =n.

The straightening law (1) is replaced by the equation

n

(1) mei= Y E[1,...,i—1,kbi1,..., by €,
k=141
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obtained from Laplace type expansion of pfaffians as (1) has been derived from Laplace
expansion of minors. Observe that the analogue (2') of (2) is satisfied. The linear
independence of the standard elements is proved in entire analogy with (d). With M =
Z?=r+1 A€; and I = A[l,...,r| one has in the essential case r < n:

i M is a free A-module.

(ii") M/M is (overA/I) isomorphic to the ideal generated by the pfaffians [1,... iy,
r+1,1<i<r,in A/I.

A notable special case is n odd, r = n — 1. In this case Cokerz = Pf,.(X) is an ideal of
grade 2 and projective dimension 2 [BE] and generated by a linearly ordered poset ideal
in ®(X).

(¢) The two previous examples suggest to discuss the case of a symmetric matrix of
indeterminates as in (1.3),(c), too. As mentioned there, the ring A = B[X]/L,41(X) is
not an ASL. Nevertheless the cokernel M of the map z: FF — F*, F = A™, has the same
structure relative to A as the modules in the two previous examples. With respect to
what is known about the rings A, it is easier to work with slightly different arguments
which could have been applied in (a) and (b), too, and were in fact applied in [BV.1] to
the modules of (a).

Taking analogous notations as in (b), we put M; = Z?=i+1 A€;, €j denoting the residue
class in M of the j-th canonical basis element of F*. One has a filtration

M=M,>M D2 M,

We claim:

(i) M, is a free A-module.

(i1) The annihilator J; of M/M; is the ideal generated by the i-minors of the first 7
columns of z.

(ii1) The generator € of M;_,/M; is linearly independent over A/J;.

Claim (1) is clear: rankz = r, and the first r columns are linearly independent, hence
rank M /M, = 0 = rank M — (n — r)—none of the r—minors of z is a zero-divisor of A by
the results of Kutz [Ku]. (This may not be found explicitely in [Ku] for arbitrary B, it is
however enough to have it over a field B, cf. [BV.1, (3.15)]). Since M/M; is represented
by the matrix (z |¢) consisting of the first ¢ columns of z, Ann M/M; D J;. On the other
hand the first 1 — 1 columns of (z | ) are linearly independent over A/J; (again by [Ku]),
and by the same argument as used for (i) one concludes (iii) and (ii).

Altogether M has a filtration by cyclic modules whose structure can be considered
well-understood because of the results of [Ku] or the standard basis arguments based on
the notion of a doset [DEP.2]. In particular M is a free B-module. Taking into account
the remark below (2.6) one sees that one could call M an MSL relative to A. Of course
the modules in (a) and (b) have an analogous filtration as follows from (2.6). —

(3.4) MSLs related to differentials and derivations. Let A = B[X]/I,41(X). The
module 2 = Q2 4,p of Kahler differentials of A and its dual Q*, the module of derivations,
have been investigated in [Ve.1l], [Ve.2], and [BV.1]. A crucial point in the investigation
of Q is a filtration which stems from an MSL structure on the first syzygy of 2. In fact,
with I = I,41(X), one has an exact sequence

0——)1/1(2) —PQB[X]/B®A—*Q—~>0,
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and it has been observed in (3.2),(c) that I/I® is an MSL.

The surjection Qp(x) p®A — 2 induces an embedding 2* — (Qp[x)/p®A)* whose
cokernel is denoted N in [BV.1, Section 15|. It follows immediately from the filtration
described in [BV.1, (15.3)] that NV is an MSL. (It would take too much space to describe
this filtration in such a detail that would save the reader to look up [BV.1].)

4. The depth of an MSL

As usual let A be an ASL over B on II. For any A-module M we denote the length
of a maximal M-sequence in AIl by depth M. An MSL M over A is free as a B-
module, in particular flat. Let P be a prime ideal of A, P D AIl, and put Q@ = PN B,
k(Q) = Bg/QBg. By [Ma, (21.B)] one has

depth Mp = depth Bg + depth(M ® &(Q))p.
Since all the prime ideals @ of B appear in the form P N B, it turns out that

depth M = m}én depth(M ® <(Q))p, Q=PnNB.

One sees easily that M ® (@) is an MSL over A ® x(Q), an ASL over (Q). Therefore
eventually
depth M = mén depth M ® £(Q).

This means: In computing depth M only the case in which B is a field is essential, and
if the result does not depend on the particular field (as will be the case below) it holds
automatically for arbitrary B. (Another possibility very often is the reduction to the
case B = Z in order to apply results on generic perfection, cf. [BV.1], [BV.2].)

Every MSL has a natural filtration by (2.6). Applying the standard result on the
behaviour of depth along short exact sequences one therefore obtains:

(4.1) Proposition. Let M be an MSL on X over A. Then
depth M > min{depth A/AZ(z): z € X'}.

We specialize to ASLs over wonderful posets (cf. [Ei], [DEP.2], or [BV.1] for this notion
and the properties of ASLs over wonderful posets).

(4.2) Corollary. Let A be an ASL on the wonderful poset II. If M is an MSL on X
over A, then

depth M > min{rkII — rkZ(z): z € X'}.

Since M may be the direct sum of the quotients in its natural filtration there is no way
to give a better bound for depth M in general. Even when (4.2) does not give the best
possible result it may be useful as a “bootstrap”. While it is sometimes possible to find
a coarser filtration which preserves more of the structure of M, there are also examples
for which the exact computation of depth M requires completely different, additional
arguments. We now discuss the examples in the same order as in the preceding section.



