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PREFACE

The theory of geometrical probability is, certainly, one of the oldest branches of
probability theory. It deals with probability distributions on spaces of geometrical
objects (points, lines, planes, triangles, sets etc.) and the corresponding random
elements, see Ambartzumian (1990). The notion of a random closed set was introduced
by Kendall (1974) and Matheron (1975). Since their studies the concept of probability
was defined in a satisfactory manner from the point of view of probability measure
on a space of closed sets.

Although a random closed set is a special case of general random elements, random
sets have special properties due to the topological structure of the space of closed sets
and specific features of set-theoretic operations. Therefore, well-known theorems of
classical probability theory gain new meanings and features within the framework of
the theory of random sets.

The role and place of limit theorems in probability theory can scarcely be exagger-
ated. Many important distributions appear as limiting ones with respect to various
operations. It is of great interest to derive limit theorems for random sets with respect
to set-theoretic operations such as union, intersection or Minkowski (element-wise) ad-
dition. It should be noted that limit theorems for random vectors will naturally follow
from limit theorems for random sets, since a random vector can be considered to be
a single-point random set. On the other hand, limit theorems for random sets gain
new features as long as we deal with shapes of limiting random sets and summands.

The limit theorems for random sets have been investigated mostly for the Min-
kowski addition. The properties of this operation imply that the limiting distribution
corresponds to a convex random closed set. Since any convex set can be associated
with its support function, limit theorems for Minkowski sums follow from the central
limit theorem for sums of random support functions as Banach-space-valued random
elements.

In these notes we consider limit theorems for unions of random sets. It should
be noted that the union scheme for random sets generalizes the max-scheme for ran-
dom vectors in a partially-ordered space, whereas Minkowski addition of random sets
generalizes the additive scheme for random vectors in a linear space. Limiting ran-
dom sets for normalized unions of independent identically distributed random sets are
naturally said to be union-stable.

It is well-known that the distribution of a random closed set is determined by
the corresponding capacity (or hitting) functional on the class of all compacts. This
functional is a so-called alternating Choquet capacity of infinite order. Although
there are many examples of capacities, sometimes they are not alternating or the
corresponding random sets are difficult to construct and simulate. The main stumbling
block in the theory of random sets and, especially, in statistics of random sets, is the
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shortage of convenient models of random sets. In fact, until now only the grain-germ
(or Boolean) model provides suitable examples of random sets. In this connection, it
should be noted that limit theorems for unions and convex hulls supply us with new
models of random sets, which appear as limits.

Unlikely distribution functions of random variables, a principal problem in the
theory of random sets is to reduce the number of compacts needed to determine the
distribution of a random set by means of its capacity functional on the chosen class.
Similar problems are of no interest in classical probability theory, since a distribution
function or density are defined naturally on the whole space. The chosen class of
compacts then appears in a strong law of large numbers for unions and in definitions
of probability metrics for random sets.

Similarly to the max-scheme for random variables or coordinate-wise-maximum-
scheme for random vectors, the analysis of unions of random closed sets uses the
technique of regularly varying functions. On the other hand, the theory of random sets
sparks the theory of regularly varying functions with new concepts such as regularly
varying capacities or multivalued regularly varying functions.

The probability metrics method elaborated by Zolotarev (1986) has proved its
efficiency in the study of limit theorems for random variables. We define some proba-
bility metrics for random closed sets and apply them to limit theorems for unions. The
essence of this method lies in proving limit theorems with respect to the most ”con-
venient” metric for the given operation. Then the speed of convergence is estimated
with respect to other metrics by the instrumentality of the appropriate inequalities
between probability metrics.

Many of the ideas of these notes originate in the pioneering work done by Matheron
(1975), who introduced the first notion of union-stability and infinite-divisibility of
random sets. Very general notions of infinite divisibility and stability of random sets
with respect to various set-theoretic operations were introduced by Trader (1981).
Some of the results presented in these notes are closely connected with recent works
on general extremal processes, max-stable random vectors and lattice-valued random
elements, see Norberg (1986b, 1987), Vervaat (1988), Pancheva (1988), Gerritse (1986,
1990).

The book begins with the introduction of the basic tools and known results on
random sets distributions and their weak convergence. Although the book is devoted
to the study of limit theorems for unions, in Chapter 2 we present several results
on Minkowski sums of random compact sets in the Euclidean space. In Chapter 3
we bring the notions of union-stable and convex-stable random closed sets. Their
distributions are characterized in terms of the corresponding capacity or inclusion
functionals. In Chapter 4 we prove limit theorems for scaled unions and convex
hulls of random sets. Limit theorems for unions of special random sets (random
triangles, balls) are considered too. Almost sure stability of unions is investigated in
Chapter 5. In Chapter 6 the limit theorems for unions are reformulated in terms of
regularly varying multivalued functions, whose definition is introduced too. Chapter
7 is devoted to the development of the probability metrics method in the framework of
random sets theory. In the last chapter we discuss several applications. The content
of Chapter 8 ranges from the estimates of the volume of random samples and the
corresponding statistical tests to the limit theorems for pointwise maxima of random
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functions and polygonal approximations of convex compact sets.

In each chapter we use notations introduced in it without any comments. While
referring to theorems, propositions, examples, formulae etc. from the same chapter we
use two-digit notations, e.g., (3.2) designates the second formula from the third section
of the same chapter. Otherwise three-digit notations are used, e.g., Theorem 3.1.1
designates Theorem 1.1 from Chapter 3.

I am grateful to Professor V.M.Zolotarev for suggesting the idea of writing these
notes and for his further encouragement. These notes appeared as a result of an at-
tempt to generalize the probability metric method for random closed sets. The idea
originated in the annual workshop on stability problems for stochastic models organi-
zed by V.M.Zolotarev and V.V.Kalashnikov. I thank the organizers and participants
of this workshop for helpful comments.

This book was benefited from a lot of discussions with Professor D.Stoyan. His
suggestions led to a substantial improvement of the text. The final stage of the work
was carried out at the time of my stay at the Technical University Mining Academy
of Freiberg. This stay would have been impossible without the financial assistance
of the Alexander von Humboldt-Stiftung (Bonn, Germany) and the hospitality of the
Mining Academy.

[ am indebted to all my colleagues for invitations, comments and discussions of
this work at different stages and sending me reprints and preprints, especially, to
A.J.Baddeley, N.Cressie, W.F.Eddy, F.Hiai, N.V.Kartashov, V.S.Korolyuk, E.Omey,
E.Pancheva, T.Norberg, R.Rebolledo, A.D.Roitgartz, V.Schmidt, F.Streit, W.Ver-
vaat, R.Vitale, W.Weil, M.Zahle and many others.

Special thanks go out to my mother for her invaluable help and constant attention
to my research work.

Freiberg, July 7th, 1993 Ilya Molchanov
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Chapter 1

Distributions of Random Closed
Sets

1.1 The Space of Closed Sets.

Roughly speaking, a random closed set is a random element in the space of all closed
subsets of the basic setting space E. The setting space E in the classical theory of
random sets (see Matheron (1975), Stoyan, Kendall and Mecke (1987), Cressie and
Laslett (1987) as principal references) is supposed to be locally compact, Hausdorff
and separable. It should be noted that Norberg and Vervaat (1989) recently showed
that non-Hausdorff E is the natural setting too.

Everywhere below we consider random closed sets in R? only, i.e. we suppose E
to be equal to R?. Nevertheless, many results can be easily reformulated for random
closed sets in a general finite-dimensional linear space £. The dimension d of the
Euclidean space is supposed to be fixed. The Euclidean norm and metric in R? are
denoted by ||.|| and p(.,.) respectively. The ball of radius r centered at = is denoted
by B,(z). We shortly write B, instead of B,(0) and B instead of B;(0).

Define F to be the family of all closed subsets of R? (including the empty set 0).
Introduce sub-classes of F by

FX={FeF:FNX=0},Fx={FeF:FnX#0}, (1.1)

where X C R?. The class F is endowed with the topology T; (sometimes called
hit-or-miss topology) generated by
‘7:2:1 Gn=}-Kn‘7:Glm"'n}-Gn» (12)

.....

where n > 0, K runs through the class K of compacts in R%, Gy,...,G, belong to
the family G of all open sets. It was proven that the space F furnished with the
hit-or-miss topology is compact, separable and Hausdorff, see Matheron (1975).

A sequence of closed sets F,,n > 1, converges in Ty to a certain closed set F' if
and only if the following conditions are valid

(F1) if KN F = { for a certain compact K, then K N F,, = { for all sufficiently large

n;

(F2) if GN F # ( for a certain open set G, then G N F, # § for all sufficiently large

n.
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We then write FF = F—limF,, or F, —'Ev F. .
Let T, be the topology on K induced by T;. To ensure the convergence of a
sequence K,, n > 1, of compact sets in Ty an additional condition is required:

(F3) there exists a compact K’ such that K, C K’ for all n > 1.

We denote K = K—lim K, in case K, converges to K in Ty.

The convergence of compact sets in Tx can be metrized by means of the Hausdorff
metric pg on K. The Hausdorff distance between two compacts K and K is defined
as

pu(K,K;) =inf{e >0: K C K{, K, C K°}, (1.3)

where

K*=U{B.(z):z € K} = K & B,(0)

is the e-envelope of K, @ is the Minkowski addition (see Section 1.5). The Hausdorff
distance between two closed sets is defined similarly. However, it can be infinite.

The upper limit F —limsup F;, is the largest closed set F' which satisfies the con-
dition (F1). Similarly, KX —limsup is defined by combining (F1) and (F3).

Lemma 1.1 Let K,,, n > 1, be a sequence of compact sets. Then K C K—limsup K,
if and only if
en=inf{e >0: KC K.} -0 as n — oo.

PROOF. Let €, — 0 as n — oo. For any z from K there exists a sequence of points
z, € K,, n > 1, such that ||z — z,|| < &,. Thus, z, - z as n — oo, so that
z € K—limsup K,.

Let K C K—limsup K,. Suppose that €, > § > 0, n > no. Then there exist points
zn € K, n > ny, such that Bs(z,) N K, = 0. Without loss of generality suppose that
Zn — To € K as n — oo. Then Byj3(zo) N Kn = 0, n > ng, ie. zo ¢ K—limsup K.
Hencee, 2 0asn —00. O

For later use we denote by M, IntM, M, M¢, conv(M) respectively the closure,
interior, boundary, complement in R? and the convex hull of any set M C R¢.

A set M is said to be canonically closed if M coincides with the closure of its
interior, i.e. M = IntM.

1.2 Random Closed Sets and Capacity Function-
als.

According to what has been said, a random closed set is an F-valued random ele-
ment. To complete this definition the class F is endowed with the Borel o-algebra oy
generated by T;. Then a random element in (F,oy) is said to be a random closed set
(RACS). Here are several examples of random closed sets: random points and point
processes, random spheres and balls, random half-spaces and hyperplanes etc.

The distribution of a random closed set A is described by the corresponding prob-
ability measure P on oy. In this connection

P{Ff¥nFen...nFs,} =P{ANK =0,ANG, #0,...,ANG, # 0}.
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Clearly, these probabilities determine the measure P on oy. Fortunately, P is deter-
mined also by its values on Fx for K running through K only. Let T'(K') be equal to
P(Fk), i.e.
T(K)=P{ANK #0},K € K. (2.1)
The functional T is said to be the capacity (or hitting) functional of A. Sometimes
we write T4(K) instead of T'(K). Considered as a function on K the capacity func-
tional T is an alternating Choquet capacity of infinite order (briefly Choquet capacity).
Namely, T has the following properties:

(T1) T is upper semi-continuous on K, i.e. T(K,) | T(K) in case K, | K as n — oo.

(T2) The following functionals recurrently defined by
SI(KO; I() = T(I(o U K) =i T(]\’o)

Sn(Ko; K1y...; Kn) = Snc1(Ko; K1y ooy Kno1) — Sno1(Ko U K5 Ka, ..., Kn_y)
are non-negative for all n > 0 and Ko, K}, ..., K, from K.

The value of S,(Ko; K1, ..., K,) is equal to the probability that A misses Ko but
hits K, ..., K,. In particular, T is increasing, since S; is non-negative.

The properties of T resemble those of the distribution function. Property (T1)
is the same as the right-continuity and (T2) is the extension of the notion of mono-
tonicity. However, in contrast to measures, the functional T is not additive, but only
subadditive.

EXAMPLE 2.1 Let A = (—o0,¢] be a random set in R', where ¢ is a random variable.
Then T(K) =P {¢ >inf K} for all K € K.

EXAMPLE 2.2 Let A = {¢} be a single-point random set in R?. Then T'(K) is equal
to P {£ € K} and coincides with the corresponding probability distribution of £. It
can be proven that the capacity functional T is additive iff A is a single-point random
set.

The powerful result derived by Matheron (1975) and Kendall (1974) establishes
one-to-one correspondence between Choquet capacities and distributions of random
closed sets.

Theorem 2.3 (Choquet) Let T be a functional on K. Then there is a (necessary
unique) distribution P on F with

P{Fk}=T(K), K€Kk,

if and only if T is an alternating Choquet capacity of infinite order such that 0 <
T(K)<1and T(0)=0.

Capacity functionals play in the theory of random sets the same role as distribution
functions in classical probability theory. However, the class K of all compacts is too
large to define efficiently the capacity functional on it. In this connection an important
problem arises to reduce the class of test sets needed. That is to say, is the distribution



4 CHAPTER 1. DISTRIBUTIONS

of a random closed set determined by the values T(K), K € M, for a certain class
M cK?

It was proven in Molchanov (1983) that if realizations of a random set belong to
a certain sub-class & C F then this extra knowledge reduces the class M of test sets
needed.

Theorem 2.4 Let 6 C F, and let M C K. Suppose that the following conditions
are valid.

1. M is closed with respect to finite unions.

2. There erists a countable sub-class B C G such that any compact K from M is
the limit of a decreasing sequence of sets from B, and also any G from B is the
limit of an increasing sequence from M.

3. For any G € BU {0}, K1,..., K, € M, n >0, the class

is non-empty, provided K; \ G is non-empty for all1 <i < n.
4. The o-algebra o,, generated by
{F& c.N6 KeMU{B},GieB,1<i<n}

coincides with the o-algebra oy N6 = {ANG: A € o4} induced by o5 on the
class &.

Let & be the closure of & in T;. Then the functional T on M is a Choquet capacity
of infinite order on M (i.e. the conditions (T1)-(T2) are valid on M U {0}) such
that 0 < T <1 and T'(B) = 0 if and only if there is a (necessary unique) probability
P on o,, such that

P{FkN6}=T(K),K € M.

In general, the distribution of any random closed set is determined by the values of
its capacity functional on the class K, of all finite unions of balls of positive radii, or
on the class Ky, of all finite unions of parallelepipeds, see Salinetti and Wets (1986),
Lyashenko (1983). Norberg (1989) established deep relations between topological
properties of continuous partially ordered sets and distributions of random closed
sets.

The capacity functional T is said to be mazitive if
T(]\’l U [(2) = max (T(]"l),T(IX’2))

for all compacts K4, K>. Such capacities arise naturally in the theory of extremal

processes, see Norberg (1986b, 1987).

EXAMPLE 2.5 Define a maxitive capacity T by

T(K)=sup{f(z): z € K},
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where f:R? — [0,1] is an upper semi-continuous function. Then T' describes the
distribution of the random set A defined as

A={zeRr®: f(x) 27},
where 7 is a random variable uniformly distributed on [0, 1].

A random closed set A is said to be stationary if A and A+ z coincide in distribu-
tion, whatever z in R? may be. Similarly, A is isotropic if A has the same distribution
as its any non-random rotation. Of course, the capacity functional of a stationary
(isotropic) random set is shift-invariant (rotation-invariant).

A random set is said to be compact if its realizations are almost surely compact.

1.3 Convex Random Sets.

Define C to be the class of convex closed sets in R?, and let Co = C N K be the class of
all convex compact sets. A random closed set is said to be convez if its realizations
are almost surely convex, i.e. A belongs to C almost surely. Of course, the distribu-
tion of any convex random closed set A is determined by the corresponding capacity
functional (2.1). Fortunately, the additional properties of the realizations of A (see
Theorem 2.4) yield the reduction of the class of test compacts needed. The following
result is due to Vitale (1983). It was proven independently by Molchanov (1983), see
also Trader (1981).

Theorem 3.1 The distribution of any convexr compact random set A is determined
uniquely by the values of the functional

(K)=P{ACK}
for K running through the class Co of convexr compact sets.

PrOOF. Check the conditions of Theorem 2.4. Having considered a single-point
compactification E' = R*U{w}, we can regard A to be a convex RACS in the compact
space E’. Since A is supposed to be compact, it misses {w} almost surely. Let M be
the class of complements to all open bounded convex sets in R%, and let B be the class
of complements to convex polyhedrons with rational vertices. It is easy to show that
the first and the second conditions of Theorem 2.4 are valid. The third one is valid
too, since for all G € BU {0}, Ki,..., K, € M and z; belonging to K;\ G, 1 <i <n,
the convex hull of {z,,...,z,} misses G, so that

.....

Verify the fourth condition. Let K be a compact set, and let F' € FX N Cy. Then
F e F¥1n ¢, for a certain K; from M. E.g., K can be chosen to be the complement
to a certain bounded neighborhood U(F') of F such that U(F)N K = .

Let FF € FgNCy for a certain open G, and let

zo = (zo1,...,%0d) € FNG.
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Pick 6 > 0 such that
Go = {z = (Z1,...,Z4q): lrr<1_a&)§|:c,' — zoi| < 6} CcG.

For each collection of numbers I; = +1, 1 <: < d, define

e _ €
H; = Hlxy--.ld

J
{1=($1» xd)z zo.1>1-5},s>01<1<2‘*

If € is sufficiently small, then every convex set, which misses G§ and hits Hf, 1 < j <
27, also contains zo. Observe that G§ belongs to M. Thus

F e Fis we, NCo S Fa NG,

whence o, = o5 N Co.

By Theorem 2.4, there exists the unique probability measure P on o such that
P {.7'-1( N Co} = K) K € M. The closure C, consists of also convex sets containing
the point {w} (i.e. Co = C). However, since the random set A is compact, the cor-
responding probability P is concentrated within Co. Thus, P {Fx NCo} = T(K) for
each compact K. Then the distribution of A is determined by the values P {A C K¢},
whence the statement of Theorem easy follows. O

The functional t(K), K € Co, is naturally extended onto the class C by
(F)=P{ACF},FecC. (3.1)

This functional t is said to be the inclusion functional of A. It is a so-called
monotone capacity of infinite order (see Choquet, 1953/54). In other words, it satisfies
the following conditions.

(I1) t is upper semicontinuous, i.e. t(F,) — t(F) if F, | F as n — oo for F,, F
belonging to C, n > 1.

(I2) The recurrently defined functionals

S{F;F) = t(F) _{FNR)

SHF; Fryn Fy) = St _(FiFryeey Fay) = St _((FNFy; By, . Frsq)
are non-negative, whatever n > 1 and F, Fi, ..., F,, from C may be.

In fact, S}(F; Fy,..., Fy,) is the probability that A C F and A ¢ F;, 1 <1 < n.
Note that t is expressed in terms of the capacity functional T' by means of

{F)=P{AC F} = T(F),F €C. (3.2)

The following example shows that the distribution of a non-compact convex RACS,
in general, cannot be determined via the functional t on C.
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EXAMPLE 3.2 Let A be the half-space which touches the unit ball B; at a random
point uniformly distributed on its boundary. Then t(F) = 0 whenever F € C, F # R
Thus, the inclusion functional of A coincides with the inclusion functional of the set
A=R%

Nevertheless, we sometimes consider the functional t(F), F' € C, even for un-
bounded A. If A is non-convex, then this functional does not determine the distribu-
tion of A, but conv(A).

For any convex F' define the support function

sp(u) = sup{u-v: v € F}, (3.3)

where u - v is the scalar multiplication, u runs through the unit sphere §?~! in R%.
The function sg is allowed to take infinite values if F' is unbounded. Of course, sf is
finite everywhere iff F' is compact.

If A is a convex compact random set, then s4(u) is the random element in the
space C(5%!) of continuous functions on §¢7!.

Let H be the class of all finite intersections of half-spaces in R,

Proposition 3.3 The distribution of a compact conver random set is determined by
the values of its inclusion functional on H.

PROOF. The statement follows from the fact that the values t(F') for F' running
through H determine the finite-dimensional distributions of the random process s4(u),
vestl. O

1.4 Weak Convergence of Random Closed Sets.

Weak convergence of random sets is a particular case of weak convergence of prob-
ability measures, since a random closed set is associated with a certain probability
measure on 0. A sequence of random closed sets A,, n > 1, is said to converge weakly
if the corresponding probability measures P,, n > 1, converge weakly in the usual
sense, see Billingsley (1968). Namely,

P.(%) - P(%) as n — oo (4.1)

for each % € o4 such that P(d%) = 0 for the boundary of % with respect to T, (i.e. 2
is a continuity set for the limiting measure).

However, it is rather difficult to check (4.1) for all % from os. The first natural
reduction is in letting 2 to be equal to Fx for K running through XK. It was proven
in Lyashenko (1983) and Salinetti and Wets (1986) that the class Fx is a continuity
set for P if

P{Fk}=P{Fmnr}.

In other words,
P{ANK #0,ANIntK =0} =0 (4.2)



