 Lecture Notes in
Computer Seletice

ety .EdtdbyGG dJHtma

Programmmg
I\ ethodology




Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

23

Programming Methodology

4th Informatik Symposium, IBM Germany
Wildbad, September 25-27, 1974

Edited by Clemens E. Hackl

Springer-Verlag
Berlin - Heidelberg - New York 1975



Editorial Board: P. Brinch Hansen - D. Gries
C. Moler - G. Seegmiiller - N. Wirth

Prof. Dr. Clemens E. Hackl
IBM DEUTSCHLAND

UV Wissenschaft

7 Stuttgart 80

Pascalstr. 10"

BRD

Library of Congress Cataloging in Publication Data

Infci%tik Symposium, 4th, Wildbad im Schwarzwald, Ger.,
Programming methodology.

(Lecture notes in computer science ; 23)

"Sponsored by IBM Germany and the IBM World Trade
Corporation."

Bibliography: p.

Includes index.

1. Programming (Electronic computers)--Congresses.
I. Hackl, Clemens E., ed. II. IEM Deutschland.
I;I. IBM World Trade Corporation. IV. Title. V. Se-
ries.
QA76.6.147 1974 001.6'42 T4-343€2

AMS Subiject Classifications (1970): 00A10, 02 G 05, 02G10, 68 A05,
68A10, 68 A20, 68A30, 68A40

CR Subject Classifications (1974): 4.0, 4.12, 4.20, 4.22, 4.30, 4.6,
5.20, 5.23

ISBN 3-540-07131-8 Springer-Verlag Berlin - Heidelberg - New York
ISBN 0-387-07131-8 Springer-Verlag New York - Heidelberg - Berlin

This work is subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation,
reprinting, re-use of illustrations, broadcasting, reproduction by photo-
copying machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to
be determined by agreement with the publisher.

© by Springer-Verlag Berlin - Heidelberg 1975. Printed in Germany.

Offsetdruck: Julius Beltz, Hemsbach/Bergstr.



PREFACE

The papers in these proceedings were presented at the 4th
Informatik-Symposium which was held in Wildbad, Federal Republic
of Germany, from September 25 - 27, 1974. The symposium was or-
ganized by the Scientific Relations Department of IBM Germany and
sponsored by IBM Germany and the IBM World Trade Corporation.

The aim of the Informatik-Symposia is to strengthen and improve
communication between universities and industry by covering a
subject in the field of computer science as well from a university
as from an industrial point of view.

Following last year's subject of computer structures the emphasis
in this conference was placed on programming methodology which
has become a field of increasing activity during the last years.
Like in hardly any other segment in computer science problems are
related to research, development, education and application with
progress depending both on advances in theory and on increased
practical experience.

By organizing this symposium it was tried to cover this broad
spectrum of programming methodology. At the beginning problems and
experiences of production programming in an industrial environment
were presented. Aspects for the development of large systems,
organizing for structured programming, investigations about the
reliability of programming systems and error analysis and error
causes in production programming were covered.

After presenting the industrial aspects system programming was
considered from an university point of view. Problems in education,
in language design for systems programming and general aspects of
software engineering were addressed.

In the following lectures emphasis changed from product development
to subjects in advanced development and research. New approaches
for program testing, new concepts about reasoning in program
synthesis and methods of interprocedural analysis were presented.



v

A subject of particular importance in advanced programming seems
to be functional or nonprocedural programming. The strictly
sequential character of a program is relegated tc the background
in favour of a precise description and formulation of the problem
to be solved. A change from a procedure oriented programming to

a description oriented programming could be a final goal.

In concluding the symposium contributions were presented which

were related to the formal definition and representation of programs,
the description of mathematical structures in programming languages
and to the axiomatic foundation of programming languages.

Finally, we would like to thank all the lecturers for their con-
tributions and for the very valuable advice and assistance given
during the preparation of the symposium.

Stuttgart, October 24, 1974

Gerhard Hiibner Clemens E. Hackl
Manager Scientific Relations Symposium Chairman
IBM Germany



CONTENTS

On the Development of Systems of Men and Machines

H.D. MillS ccicciacoccncosccosscccsssnossscossscssasssasnosse 1
A New Look at the Program Development Process
P, Hiemann .cccccececconscocoscsscssossscssssssssssccssssssans "
Organizing for Structured Programming
Folis BBKOT o ocniwivonianonssionsssonssssesnssnseesonssssssssssess 38
The Reliability of Programming Systems
H. Gerstmann/H.Diel/W.WitzZel ...ceccesvecccccncsncsssscancas 87
Fehleranalyse und Fehlerursachen in Systemprogrammen
A. ENATres .cccccsccsscacicsssscsossivossseanssosssasssnsssssnas 114
APLGOL - A Structured Programming Language for APL
H.G: KOLISKY covcsesccocassasscoscsscscscanscsscsssossosssscsas 161
Systemprogrammierung aus der Sicht der Universitit
No WATER sonmessnmennsnonnnionsesissssssssssanssssnssessessssss 192
Systemprogrammiersprachen und Strukturiertes Programmieren
G. GOOS :ccovecccsocoscscsosssssssnsosesssscsssssssasosssssass 203
Software Engineering or Methods for the Multi - Person
Construction of Multi - Version Programs
D.L. PATNAS +evevevceececocneossnsosscosnssscsssassssasssascsss 225
Knowledge and Reasoning in Program Synthesis
Z. MANNA +¢vveveeessecsosssssssssascssssasssesssssssssssnssss 236
A New Approach to Program Testing
J.C. KINg .vviinerenceceeosanssncasosssasssseascssscsenonasans 278
Interprocedural Analysis and the Information derived by it

291

F.Eo ALlEN .civcevroccecsccsscacacssssasssssossossassesssssssnss



\!

Neue Verfahren zur Optimierung und Parallelisierung von Programmen
G. Urschler ...cccccce. Csesssesteesessesesebes s ses et o0 e 323

Automatic Programming
P.C. GOLAbOTZ ssvssvssoiosissonionososeseansassesssvssesnnssns 347

Non-Procedural Programming
B.M. Leavenworth ...... e e e Gesessessensssesees s e ss 362

Formal Definition in Program Development
C.B. Jones ....... S L R S R S RSP 387

Programmierte Strukturen
Re GRALZ sesvsscswnmnvsnnsos ceesesesecsasns cesecns cesesnssnen 444

Axiomatisierung bei Programmiersprachen und ihre Grenzen
Ge HOLZ svvvcnnoscnwossanmes cesenvesser s e ae I eseenes 466

Formalization - History, Present and Future
H. Zemanek ..... ceeains T S O U 477



ON THE DEVELOPMENT OF SYSTEMS OF MEN AND MACHINES

H. D. Mills, IBM Corporation and The Johns Hopkins University

With Appendix by R. C. Linger, IBM Corporation

ABSTRACT

We formulate the development of systems of men and machines as a
programming problem for multiprocessing in which some processors
are men and some are machines. In this way, users guides, training
courses, etc., are determined from processing requirements, just

as machine specifications, which are consistent with the objectives
of the total operation. An Appendix illustrates this idea in

miniature for a supermarket checkout operation.

Systems of Men and Machines

Our topic is the architecture, implementation, and operation of

large systems of men and machines in some definite and coherent
enterprise -- managing a business, operating an airline reserva-
tion system, running a government agency, getting men to the moon

and back, etc. In such systems there are many kinds of men (and
women) -- managers, clerks, specialists of various kinds, and machine
tenders; there are also many kinds of machines -- computers, ter-

minals, sensors, actuators, communications equipment, etc.

Ordinarily computer programming is regarded as part of the machine side

of the system, and programmers as part of the machine tenders.

We bring a different view -- that the architecture of the opera-

tions of the enterprise is programming, as well. Our thesis is

that modern principles of programming -- forced on us out of

necessity in dealing with machines of much logiFal capability but no common
sense -- can play as vital a role in bringing systematic discipline and

standards into all phases of large systems development.

For this point of view we escalate the concept of programming to that of
providing comprehensive instructions for either man or machine activities.

The operations of an enterprise becomes a multiprocesssing operation of men



and machines; then the architecture of the operations defines the configura-
tions and types of men and machines in the system, and the programs which
direct each type of man and machine. For example, a users guide becomes

one part of a cooperating system of programs operating in séparate processors

(the user and a machine).

Of course, the characteristics of man and machine are quite different in
such a system, just as machines are different among themselves. And yet
their architectural properties can be treated in a uniform way. For example,
in deciding on a particular machine requirement, various considerations of
physical or logical capability will arise, as well as whether the require-
ments can be met with off-the-shelf equipment; these same considerations
apply to a man requirement, in common terms -- e.g., how many letters can

a postal clerk sort in an hour, and can this be done with minimal training,

etc.

It is well understood that men and machines do well at quite different
things. Machines are good at doing what they are told to do, very rapidly
and accurately. Men are good at using common sense -- even disobeying
instructions when they are obviously misconceived; at pattern recognition
-- discovering information by no special or dependable process; and at
invention -- creating a new idea for the enterprise to act on. One simple,
but very important form of pattern recognition is the translation of human
speech to aﬁd from machine readable text. This is routine for clerical
activities that interface with persons outside the enterprise -- e.g., in

an airline reservation system.

It may be asked how the concept of programming applies to men, which operate
so differently and unpredictably, compared to machines. It applies by
noting that programs are used in a local way by machines -- i.e., at this
moment, under these conditions, do this next. A good deal of programming

on the man side is already subsumed under general instructions and common
sense -- 1if the telephone rings, answer it; if you want to execute a program,
keypunch a job deck and submit it to the operator. We have no intention

of explicitly programming human activities now done by general instructions
and common sense; the typical level of human programming envisioned is that
which is found in users guides, operating instructions, etc., associated

with machine operations.



Principles of Programming for Men and Machines

The recent, twenty-five year, history of computer programming has seen an
explosive and traumatic growth of human activity and frustration in attempting
to realize the promise and potential of electronic and electromechanical
devices for processing data in science, industry and government. Out of

this history has come the stored program computer; programming languages,
compilers, and libraries; and new technical foundations for programming
computers, e.g., as propounded by McCarthy [ 4], Dijkstra [ 1], Hoare [ 3],
and Wirth [10]. 1In this period the computer has been the center of attention.
In the beginning, the numerical computing power was so great, compared to
manual methods, and the availability so limited, that men readily adapted

to this new tool -- from decimal to binary, from equations to algorithms.

But in a short time, the remarkable possibilities for more general data
processing (nonnumerical) were realized, and a new industry was born in

just a few years. In the later part of this period (up to now) the large
data processing systems appeared -- management information systems, airline
reservation systems, space tracking systems, etc. Even then, although

human factors were considered, these systems were conceived primarily as

data processing systems, which responded to users. But in our proposed
perspective, the users are as much a part of the multiprocessing enterprise

as the machines and their programs.

Thus, whereas the computer has forced us to find more effective programming
principles than we would otherwise have, it has also warped our sense of
perspective. By this time, simple human factors questions are in better
focus. There is enough data processing power available to invest part of

it in creating more human-like interfaces than binary and machine code.

But in extending programming to instructing men, with their entirely different

characteristics, additional ideas and principles are needed, such as

1. Languages. The programming languages used in the architecture of
systems of men and machines need be near natural languages. The difficulties
of processing natural languages are well known and that is not proposed.
Rather, what is proposed is a "naturalization' of processable programming
languages which is close enough for use as a dialect of natural language

by nhonprogrammers of the enterprise. Sammet [ 8] and Zemanek [11] discuss
both sides of this.



24 Procedures. The concept of procedure should be extended to include
indefinite procedures where it is not possible or desirable to define them.
In simple terms, "find values for these variables so that these equations
hold" (Wilkes discusses this in [ 9]), or more complex, "make sure no one's

feelings are hurt".

3. Interactions. The principal subject of the architecture is multi-
processing -- the conduct of the operation of the enterprise through programs
distributed to men and machines. The creation of such programs in an orderly,
systematic way will require a new and fundamental development beyond program-
ming principles for synchronous operations. The idea of the Petri net [ 7]
may be an embryonic step in such a development. Dennis illustrates

Petri nets as multiprocessing control mechanisms, in [ 2].

-

Architecture Principles

A system depends on its components. The architecture of a system specifies
the types of men and machines required, as well as how they are to interact
as a system operation, i.e., the selection and arrangement of the system
components, as well as detailed instructions for their behavior. In the

case of machines, the usual considerations apply -- define feasible require-
ments, either already embodied in existing machines, or possible with special
development where justified; tradeoffs and comparisons with alternative
approaches, even with manual approaches where feasible, etc. In the case of
men, the system architect is frequently shortsighted. There is a reason; it
18 much more difficult to predict a human performance than a machine perfor-
mance. Sometimes the human fails to live up to a requirement. But often

the human will exceed a requirement in a totally unexpected way, by acquiring
a skill not imagined possible beforehand. This is happening with computer
programmers right today, who are beginning to program with a precision not
believed possible five years ago. It happened with typing when touch typing

was introduced early in this century.

In retrospect, it is easy to identify a pitfall in overestimating machine
possibilities, leading to a common scenario in many large systems in recent
history, which put a "man in the loop" at the last moment, with marginal
operational results. In such a case, the operation was originally planned
as completely automatic, depending on some key algorithm (often involving
some form of pattern recognition); as a result of the planning, the data

processing functions surrounding the algorithm were developed in parallel



according to a general system design; then at the last moment, the perfor-
mance of the key algorithm proves inadequate, and the man is brought into

the loop, with two costs:

1. The human factors are bad (e.g., interacting with programs which

require long, fixed argument lists); these can be fixed up.

2. There is a lost opportunity in not having a better trained man in
the loop. The effort on algorithm development is frequently different than
that required for insight development for a human executing an indefinite

procedure, and the time is lost, anyway.

These operational experiences lead to the following principles of systems

architecture:
1. Components. Regard men and machines as equal status components

for system operations with equal requirements for development, state-of-art

projections, and improvement, according to their own characteristics.

2 Evolution. Plan on the unexpected, by well-structured interfaces,
that permit the replacement of components by improved versions which perform
identical functions more effectively. Parnas [ 6] deals with this inter-
changability by axiomatizing such interfaces.

3. Integrity. Value system integrity above all else, by requiring
that the multiprocessing operation of men and machines be described and
scrutinized according to the best principles of programming -- particularly
with respect to methods of specification and validation of programs. Note
especially the technique defined by Wirth [10] and Mills [ 5].

In an Appendix dealing with a minature problem, R. C. Linger illustrates
the idea of programming an operation through a set of abstract processes
which only later are specialized to either men or machines, depending on
their requirements. It is an easy transition from man as a user to man as
a processor and yet it seems a critical one in providing system coherence

and integrity with respect to a given operation.



Literatur

[1]

[2]

[3]

(4]

[5]
[6]

[7]

[8]
[9]
[10]

[11]

0. =J. Dahl, E. W. Dijkstra and C. A. R. Hoare, Structured g

Academic Press, London. 1972.

J. B. Dennis, '"Concurrency in Software Systems', Lecture Notd

in Economics and Mathematical Systems, 81 Advanced Course on

Software Engineering (Ed. F. L. Bauer), Springer-Verlag, Ber
Heidelberg, New York. 1973.

C. A. R. Hoare, "An axiomatic basis for computer programming!
CACM 12. '1969. pp. 576-580, 583.

J. McCarthy, "A basis for a mathematical theory of computat

Computer Programming and Formal Systems, (Eds. P. Braffort

D. Hirschberg), North-Holland Publishing Company. 1963.

H. D. Mills, "The new math of computer programming', CACM
1975. (To appear).

D. L. Parnas, "A technique for software module specificati
examples', CACM 15, 5. May 1972. pp. 330-336

C. A. Petri, Communications with Automata. Supplement 1

Technical Report RADC-TR-65-377, Vol. 1, Griffiss Air For
Base, New York. 1966. (Originally published in German:
Kommunikation mit Automaten, University of Bonn, 1962).

J. E. Sammet, '"The use of English as a programming langu{
CACM 9, 3. March 1966. pp. 228-230.

M. Wilkes, '"Constraint-type statements in programming 1
CACM 7. 1964. pp. 587-588.

N. Wirth, Systematic Prc «;w,;_ ;__‘; 26 uide
Hall, Englewood Cliffs, wew Jersey. 1973,

H. Zemanek, "Semiotics and programming languages', CAC1
3. March 1966. pp. 139-143.



ARKET CHECKOUT AS A MAN-MACHINE MULTIPROCESSING ACTIVITY

'nger, IBM Corporation

‘' the problem of specifying a design for a super market checkout

n. Several possibilities come to mind; a man with an adding machine
box, a man with a cash register, a man with an OCR device which reads
prices, etc. Whatever the final configuration, we can begin our

Ith a procedural description of the checkout process itself. 1In this
e dynamics of the process are of central interest. That is, we do

0 with a static description of components which must somehow fit

in a presumed system, but rather begin with a process which can be
work, and derive required (and possibly alternate) component config-

{of men and machines from it. Our tentative first refinement is:

start checkout
l open checkout station at 9 a.m.
do while before 5 p.m.
checkout next customer, if any
od
: close checkout station
stop
actions of men and machine are abstracted; we cannot determine
what, but can agree that the description seems reasonable so far.
refinement might be:
start checkout
establish man on duty at 9 a.m.
power up machines at 9 a.m.
n whil~ tefore 5 p.m
ace , aext oo e 3 any
total cost of all iteﬁ;
inform customer of total
accept payment
present change, if any, to customer
bag all items
od
balance cash total with sales total

power down machines

stop



Here the functions of man and machine begin to emerge; presumably they will
cooperate to 'total cost of all items" through manual keystroke entry or OCR

input, and the man will "bag all items," without mechanical assistance. We

identify 'before 5 p.m." as a man predicate, in view of the human propensity
for clockwatching, which hopefully yields to common sense to complete checkout
of customers waiting in line at quitting time! The possibility of 'exceptio
processing' arises in this procedure, as when the machines break down, or a
coffee break is desired. These situations are analogous to the interrupt

handling facilites of modern computers.

An aspect of the activity distribution between man and machine can be explored

through elaboration of the process to "total cost of all items:"

start total cost of all items
initialize subtotals to zero
do while items remain
if item type is produce then
add price to produce subtotal
else
if item type is meat then
add price to meat subtotal
else

add price to grocery subtotal

add subtotals to find total cost

SCOE

The cooperating give and take actions of man and machine appear as an abstract
process here; "items remain" is likely a man predicate, while the "item type'
expressions appear to be machine predicates set by man. The subtotal accumu-

lations are best handled as machine functions.



We can establish concrete procedures for man and machine by defining an
interface between them. In illustration, consider an electromechanical

cash register with control keys as follows:

0, 1,...,9 price digits

. decimal point

initialize (for new customer)
produce

meat

grocery

H O X " o

total

For this interface, the man procedure becomes

start total cost of all items -- man part
push I
do while items remain
get next item
push digit and decimal keys for price
if item type is produce then
push P
else

if item type is meat then

push M
else
push G
fi
fi
od
push T
stop

ad the corresponding machine procedure is:



10

start total cost of all items -- machine part (I key depressed)
set produce subtotal to zero
set meat subtotal to zero
set grocery subtotal to zero
do until T key
wait for T|P|M|G key
if -+ T key then
read and clear price register
if P key then
add price to produce subtotal
else
if M key then
add price to meat subtotal
else

add price to grocery subtotal

od
add produce, meat, grocery subtotals
display result

stop

A different set of procedures derive from an alternate interface, as with a
cash register using OCR input, and equipped with only I and T keys. In

this case the man procedure simplifies to

start total cost of all items -- man part
push I
do while items remain
pass item label over OCR window
od
push T

StOE

and the matching machine procedure must extract both item type and price

from encoded labels.

We observe that the man procedures above can evolve naturally into users
guides and training courses, possibly containing instructions no machine
would understand, as, "Don't be distracted while pushing price keys." The
machine procedures give a explicit basis for electromechanical component

design, or executable procedures in the case of programmable devices.



