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preface

The purpose of this book is to present within the scope of a one-
semester course most of the principles of nonrelativistic wave me-
chanics, together with examples illustrating the applications of these
principles. The origin of the book lies in a set of notes issued by the
authors over a period of years with the aim of supplementing existing
texts and adapting them for students having a background of about
two years of college mathematics and physics, including atomic physies.

The change of the role of wave mechanics in science curricula, and
its introduction into engineering curricula, has influenced our presen-
tation of the subject. It is no longer realistic to assume that only those
students already having a highly specialized preparation in mathe-
matics and physics will study wave mechanies in a quantitative fashion,
while all the others can manage with a qualitative model. Rather we
wish to acquaint the student as early as possible with the fundamental
principles of wave mechanics and to give him practice in applying these
principles. By providing incentive for self-study, we hope to make the
student sufficiently versatile in coping with future problems in the
ever-increasing field of applications of wave mechanics.

The authors have consistently aimed at a logical sequence of topics
and a detailed discussion of each. Mathematical topics beyond partial
differentiation, integration, and the most elementary differential equa-
tions are presented in detail, and with sufficient generality to allow
applications outside the immediate scope of this book. Thus a self-
contained volume has evolved, in which the important principles are

v



vi

preface

first illustrated by examples and then again by problems interspersed
throughout the text. The emphasis is more on depth in detail than on
a broad coverage of topics.

As an introduction to the postulates of wave mechanics such ele-
ments of wave theory as expansion in terms of orthogonal functions
and the dispersion of wave packets are discussed. The statistical nature
of wave mechanics is stressed, and a separate chapter is devoted to the
uncertainty principle and operator commutation. The solution of
Schroedinger’s equation is preceded by various applications of the
postulates illustrating how information is extracted from wave func-
tions. Only when the student has had sufficient practice in the use of
wave functions is he asked to solve the wave equation. Each analytical
solution of Schroedinger’s equation is obtained by operator algebra;
this method has been found more satisfactory than the polynomial
expansion method, because it illustrates quantization more directly,
because it gives a more unified approach to the generation of Hermite,
Legendre, and Laguerre polynomials, and because it relates the wave
mechanical approach to that of matrix mechanics. Moreover, the oper-
ator form of these polynomials, as exemplified by Rodrigues’s formula
for Legendre polynomials, is particularly useful in deriving selection
rules. Operator algebra is also used in the discussion of electron spin.

In the chapter on perturbation theory a good deal of the preceding
material is applied again. This chapter is based on the foundation laid
by the introductory chapter on orthogonal functions, and its applica-
tion to an anharmonic oscillator further illustrates the usefulness of
the operator form of the eigenfunctions of the harmonic oscillator.
Finally, this chapter forms the basis for a discussion of direct spin
exchange interactions and the helium atom.

The book is concluded by a review of the various interactions that
determine the electronic configuration of atoms. An earlier chapter on
the resonance of an electron between two identical atoms provides the
introductory material for the study of molecular binding.

The authors are aware of many omissions, but in order to restrict
the material to a single semester, a choice often had to be made between
topics. The decision was always made in favor of wide applicability
and of relevance to the remainder of the book. Such topics as the vari-
ation method, the continuous spectrum of hydrogen, and the Russell-
Saunders and other spin-orbit coupling models regretfully had to be
omitted; in each case it was felt that the material in this volume would
provide a sufficient basis for continued study. One of the authors has
omitted Chaps. 8 and 9 in his class presentation without impairment
of the continuity of the material.
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chapter

1

1-1 Stationary states. So much of our knowledge of the structure
of atoms and molecules is based on the results of spectroscopy that
it is worthwhile to recall the development of ideas that have led to our
present concepts.

The correlation between spectroscopic term values and the energy
levels of the stationary states of atoms was first postulated by Bohr.
He proposed that an atom could exist only in certain stationary states,
each of which has a definite energy. The discrete radiation emitted by
an atomic system was the result of atoms going from an excited
stationary state to a less excited stationary state or to the nonexcited
state. This last state is usually designated as the normal or the ground
state. The frequency of the radiation emitted, as a result of the transi-
tion from one stationary state to another, is found from the relation

E,— Ey = hy (1-1)

where E, is the energy of the atom in the more excited state, E; is the
energy in the less excited state, h is Planck’s radiation constant, and
v is the frequency of the radiation.

1-2 Excitation potentials. Soon after Bohr’s proposal, Franck and
Hertz, and others, carried out experiments in which electrons were
accelerated through tubes containing elements in their gaseous state.
As the accelerating voltage was gradually increased, the electrons

1



2

introduction to wave mechanics

passed through the gas without change in energy until a critical ac-
celerating voltage was reached, when the electrons were found to have
lost most of their energy. The critical accelerating voltages were found
to be different for each gaseous element. Franck and Hertz concluded
from their measurements that energy was transferred from the elec-
trons to the atoms in the gas by inelastic collisions and that these atoms
in turn lost the energy by radiation. When the region in which the
inelastic collisions occurred was exposed to the slit of a spectrograph the
spectral line observed had a frequency given by the relation

(AV)e = hy

where e is the charge on the electron and (AV)e corresponds to the
loss in energy of the accelerated electron. The spectral line was the
result of transitions from a state with energy E, to a state with lower
energy, E;. The value of the frequency of the spectral line was in
agreement with Eq. (1-1).

As the accelerating voltage was increased, additional inelastic col-
lisions corresponding to greater excitation potentials of an atom were
observed and simultaneously new spectral lines of the atomic spectrum
appeared, corresponding to excitation of atoms to higher levels. As
the accelerating voltage was increased still further, the complete atomic
spectrum of the element appeared. These experiments provide an
excellent experimental confirmation of Bohr’s postulate for the mecha-
nism of the emission of spectral lines.

In practice, much greater accuracy for the energy (term value) differ-
ences is obtained from spectroscopic than from electron-impact meas-
urements. The latter type of measurements supplemented the former
in determining the difference between the energy of the excited states
and that of the ground state.

1-3 Selection rules for transitions. Early empirical spectroscopic
studies showed that the apparent complexity of the spectrum of an
element could be resolved as follows. For each element a comparatively
small set of numerical terms was found to exist, such that the fre-
quency of each spectral line equals the difference between the numeri-
cal value of a pair of terms.

Even before Bohr’s postulate it was recognized that every spectral
term of an atomic system did not combine with every other term to
give a spectral line. Bohr correlated this behavior with certain quan-
tized changes of the angular momentum of the atom in the two energy
states involved in a transition. This “selection rule’” was partially
successful in predicting the presence and absence of certain transitions.
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The concept of transitions between stationary states to give spectral
lines has been found to have general application to nuclear and molecu-
lar systems as well as to atomic systems. It is one of the important
concepts used in physics today.

problem 1-1.  As the accelerating voltage of electrons through mercury
vapor is gradually increased, one finds excitation potentials at

4.69, 4.91, 5.48, 6.73, 7.75, 7.94 - - - volts

and finally the ionization potential at 10.5 volts. Transitions with
radiation emission are observed only from the 4.91, 6.73, and 7.75
excited levels.

(a) Calculate the wavelength (angstroms) of the first spectral line
to appear as the accelerating potential is gradually increased (from
Zero). v

(b) Three strong spectral lines in the visible emission spectrum of
mercury are at 4040, 4358, and 5460 A. Demonstrate that these levels
have a common upper level, from this information.

problem 1-2. When neon gas at a low pressure is exposed to radiation
of the following wavelengths:

AN=T745 A the 745-A resonance line is reemitted
A =627 A the 8900-A, 7180-A, and 745-A lines are emitted
A =502 A photoelectrons of 3.11-volt energy as well as the com-

plete spectrum are observed
Predict the results of the following separate experiments:

(a) Irradiation of neon gas with A = 7180 A

(b) Passage of 15-volt accelerated electrons through neon gas
(c) Passage of 19-volt accelerated electrons through neon gas
(d) Passage of 22-volt accelerated electrons through neon gas

1-4 Bohr theory of the hydrogen atom. Bohr also derived an
expression for the energies of the different stationary states of the
hydrogen atom, from a consideration of the internal motion of the
atom, namely, that of the electron with relation to its proton. He
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assumed that the electron moved in a circular orbit around the nucleus
and that the electric force of attraction between the proton and electron
just balanced the centrifugal force of the rotating electron. If Ze
represents the charge on the nucleus, e the charge on the electron, r
the distance of the electron from the nucleus, m, the mass of the
electron, and v the velocity of the electron

2 2
Ze* _ mao (1-2)

r2 r

In the excited states the electron moved around the proton also in
distinct circular orbits, but further from the proton. The postulate of
discrete energy levels restricted the circles in which the electron might
move. Here, Bohr introduced his second postulate which predicted
exactly which circles are permitted for the electron motion. The quan-
tization condition is

2rmerv = nh (1-3)

where 7 is a quantum number, which may take on integral values from
1 to «, and & is Planck’s constant. According to Eq. (1-3), the angular
momentum of the system can assume only multiple values of A/2r.
In terms of the quantum number n, the velocities of the electron and
the radii of the orbits for the different stationary states are therefore

2nZe?
v ==

ok (1-4)
n?h?
"= LiZem, -]

The total energy E is equal to the sum of the kinetic energy and the
potential energy

2
E = %merﬂ — ZTe (1-6)

Substitution of Eq. (1-2) into Eq. (1-6) gives
E=—-—"=—-mu? (1-7)

Substitution of Eq. (1-4) into Eq. (1-7) gives

—2m27 % m,

e n2h?

(1-8)



