Ll
N
<
<
g
a

use=data management System

that=costs=only=pennies=per=program!

An=easy=to=

BY-GREG-GREENE

.

DATABASE
MANAGER

MICROSOFT®

BASIC

BY GREG GREENE

TAB BOOKS Inc

TAB :
BLUE RIDGE SUMMIT, PA. 17214

FIRST EDITION
SECOND PRINTING
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Copyright © 1983 by TAB BOOKS Inc.
Library of Congress Cataloging in Publication Data

Greene, Greg.
Database manager in microsoft basic.

Includes index.
1. Data base management. 2. Basic (Computer program
language) 1. Title.
QA76.9.D3G726 1983 001.64 83-4877
ISBN 0-8306-0167-8
ISBN 0-8306-0567-3 (pbk.)

This book is dedicated to my mother, who taught me that nothing is impossible to achieve
if you are willing to do your best, and my father, who showed me how.

Introduction

\

The age of the microcomputer is upon us. Many
people have rushed out and bought a computer
expecting that it would be a useful tool. Too often
they have found that, while the machines them-
selves are capable of great things, the software or
programs that enable them to function do not work.
After purchasing their computers, they find that the
knowledge required to program the machines is not
as easy to acquire as they would like.

Like many of you, I bought my computer with
the idea of using it for a number of tasks. “Sure,” I
told my wife, “It will keep track of all kinds of
things, like recipes, Christmas card mailing lists,
and the like.” The trouble was that, although the
machine could indeed do all those things, it would
require a program for each separate task!

In order to bring some order to this seemingly
never-ending process of writing innumerable pro-
grams for similar applications, I wrote the pro-
grams contained in this book. With these programs
and others that you will be able to develop from
them, you will be able to have your computer keep
track of all those things that you want it to. You can

viii

use the programs if your computer system runs a
disk-based version of Microsoft BASIC. This in-
cludes the Heath/Zenith line or any other machine
that runs CP/M. The Radio Shack TRS-80 Models I
and III both use versions of Microsoft BASI C,asdo
the Apple and many others. The programs are writ-
ten in Version 5.1 of Microsoft BASIC, and were
developed on a Heath H-8 using dual disk drives
(100K per drive), and an H-19 terminal. Examples
of the changes required to make the programs run
on the TRS-80 and other machines are included.

If you have a microcomputer system that uses
a form of Microsoft BASIC and includes a disk
drive, and are interested in getting greater perfor-
mance from it now, this book is for you. Even if you
are just interested in seeing how a disk-based
database for a microcomputer system can be im-
plemented, this book is for you. The programs are
presented in both source code and flowcharts so
that you will be able to follow the development
process. Thus, if the source is not directly compat-
ible withyour system,youcan make the adjustments
required.

Contents

Introduction

The Equipment

The Computer System—Languages

Introduction to the Database Manager System
Databases—Features of the Database Manager System—Data Organization— Groundwork for the Input
Routines

Data Input Routines

Essential Subroutines
Subroutines for Special Function Keys, Error Traps, and the Menu—Subroutines for Screen and Input
Control—The Menu

The Database Parameter File
Setting Up the Database Parameter File —Establishing the Basis for Mathematical Capabilities

Dealing with the Data File

Subroutines to Execute the Mathematical Operations—The Menu for Using the Data File

Changing the Data File

Routines to Change the Data—Deleting Data

viii

16
21

30

40

10

11

Accessing the Data

Retrieving Information— Subdividing Files

Reporting the Data

Sorting and Other Final Touches
Reviewing the Parameters— Sorting Routines— Housekeeping Subroutines— Converting the Program for
Your Machine

Additional Ways to Use the Data Files

Mailing Labels—Form Letters— Simple Graphs

Appendix A The Database Manager Program Listing
Appendix B Flowcharts of the Database Manager Program

Appendix C User's Manual for the Database Manager Program
Definitions—Program Features—Using the Program

Appendix D A TRS-80 Input Routine
Appendix E An Alternate Packing Process

Index

68
77

86

96
111

150

160
162

165

This chapter takes a look at what a typical computer
system is, how it is organized, and how it performs.
The systems that are covered are those computer
systems that have one or more disk drives. Disk
drives are devices that are used by the computer for
long-term storage of information. If your system
does not have a disk drive attached to it, and if you
are not planning to add one to it, you will not be able
to use the programs and examples in this book.

THE COMPUTER SYSTEM

Figure 1-1is a diagram of a typical microcom-
puter system, showing the major parts. In it the
console is connected to a monitor, a printer, and a
set of disk drives.

Computers are very, very dumb machines.
They can do nothing without being told what to do,
when to do it, what information to use, the informa-
tion, and where to store it. They are also very, very
fast machines. This is their advantage. Once they
are instructed how to accomplish a specific task,

—

Chapter 1

The Equipment

they will do so in an incredibly short space of time.
It is this speed of operation that results in their
widespread use.

The computers that are widely used by the
general public are computers that essentially do
one of two things. Either they perform a dedicated
task such as playing the nth variation of space vil-
lains or they store and process information. It is the
machines in the latter category that we are in-
terested in.

Information storage and processing is a task
that computers can do well, if they are given the
correct routines to work with. In the type of com-
puter system that we will be dealing with, the
processing of information takes place within the
computer in the area called RAM. RAM can store
both a program and data. (A program is a set of
instructions that the computer will follow; data is
the information it will use when it performs these
tasks.) Different programs can use and manipulate
the same data. Simply put, the program acts on the

Fig. 1-1. A typical computer system.

data and may change it; the data is acted on by one
or more programs but will never change the pro-
gram. It is important to have this idea clear in your
mind.

The data that the program works with is stored
in one of two places in our system. Either it is on the
disk, or it is in the computer’s memory. If it is in the
computer’s memory, it can be changed and looked
at very quickly; if it is on the disk then it cannot be
changed or looked at quickly. Why then, you might
ask, would anyone want the data on the disk, and not
in memory? There are two reasons. First, the data
in memory will be lost when the power is shut off.
Second, the total amount of data we can keep in
memory is limited. When the data is stored in
memory, the limit is in the order of 64 thousand
characters of information or less. These characters
are usually referred to as bytes. A byte reflects the

2

amount of memory required to store one character
of information, and a character is typically a letter of
the alphabet or a number.

Some machines, especially the newer ones
that are coming out, can store a greater number of
bytés in their memories, up to and even beyond 1
million bytes. These machines are not, as of the
writing of this book, in great use. For the purposes
of this book, we will concern ourselves with the
computer system that has a limit of 64K of memory.
(One K is one thousand bytes.)

Unfortunately not all 64K of memory is avail-
able for data storage. Some space is needed for the
programs we will be using, and the computer needs
some more space for the various routines that are
required to get information to and from the terminal
screen, printer, and disk drives and for other inter-
nal requirements. In point of fact, there is really

about 30K of usable memory space, and this will
have to hold both the programs and the data. The
disk drive, however, can hold a great deal more
information. How much depends on your system. If
you only have one disk drive, and it must hold some
routines required by the system, you could, as in
the case of a TRS-80 owner, be limited to about
30-40K per disk. If you have a system, like Heath or
Zenith, that uses larger capacity drives, you can
have up to 750K per disk. In any case, disk drives
hold one great advantage over the 64K of memory
in the machine: you can use as many of them as you
need (or can afford). By using this method of multi-
ple disks you can utilize your microcomputer for the
storage and retrieval of information in a practical
way.

Data and programs are stored on disks by a set
of programs called an operating system. Sometimes
the operating system is supplied by the manufac-
turer, and sometimes it is an extra that you must
buy. If you have a Radio Shack TRS 80 computer,
an Apple, or a PET the operating system that you

have is one that is tailored to your particular system
and is incompatible with most other systems. If you
are using the operating system called CP/M, you
have one that allows compatibility with any other
system that uses CP/M, no matter what the make
or model. If you are planning to use the data only on
your own machine, all this is of little or no impor-
tance. If you are planning to use the information on
different systems, it is of immense importance.

The actual writing of information to the disk
and reading from it is done in terms of a unit of
measurement called a sector. A sector is often 256
bytes long, although this varies according to the
hardware you are using. Some systems using
BASIC allow you to read in more or even less than
one sector at a time. This will allow you to use
every bit of space on the disk. Other systems, like
Radio Shack, force you to read and write in single-
sector units only. This may waste some space on
the disk.

Look at the special diagram shown in Fig. 1-2.
This is called a memory map. A memory map is a

Top of memory

End of usable

area

area

H

H

H

:

:

H

Start of usable!
1)

H

:

Routines in ROM:
;

H

Bottom of memory

Monitor routines

64K
H
Operating system routines H
! 54K
Space for programs & data H
1 24K
Space for disk buffers :
1 10K

Fig. 1-2. A memory map

picture that tells you what parts of the computers
memory are being used for what purposes. The map
shown here is just an example, and although the one
for the system that you are using will be different,
the idea is the same. A memory map will tell you
how much space is available in your system for you
to store the program and the data in.

The numbers on the right side of the map show
the approximate boundary locations for the various
partitions. You would expect them to be different in
your system.

One area of the map is labeled Space for disk
buffers. Think of this space as a temporary area that
is set aside for a single purpose. It is the area where
information coming from the disk is placed so that
the program can find it. It is also the place where
information that is headed for the disk is put so that
the operating system can find it. The size of this
buffer area depends on the amount of space used by
a sector on your system and the number of files that
you have open at one time. In most systems you can
have up to three files open, and the buffer area will
be the standard sector size or 256 bytes. In some
versions of Microsoft BASIC, the buffer area can be
set to different sizes. This allows more information
to be read from the disk and written to it at one
time. This also allows the system to process sev-

eral records at one time, but this is done at the cost
of some memory space.

LANGUAGES

The language that you are using is a definite
part of the overall system. Some languages let you
do more than others do; some have special re-
quirements or pose certain restrictions on the way
that you will use the routines and examples in this
book. The language you will probably use is a lan-
guage called BASIC. In addition, it was probably
written by the folks at MicroSoft. All the routines
are in Microsoft BASIC release 5.2. For the most
part, they can easily be changed to most other
dialects of BASIC. Where we can, we will note the
differences. If you are using Radio Shack equip-
ment, you can use the routines almost entirely word
for word, although there will be some differences in
the screen formatting routines. If your particular
version of BASIC is not covered here, don’t de-
spair; you can get a number of excellent books that
will help you translate from one version to another.
Drop down to your local computer store, or look
through the listings of your favorite computer
magazine to find the titles and prices that suit you
best.

Introduction to the

Database Manager System

This chapter examines just what a typical database
is and why a database is desirable. Two types will
be presented in general and the type dealt with in
this book will be examined specifically. The kinds
of features you might want to see in your own
program will then be investigated. Next you will be
told how to look at your system and determine
which features you can implement. Then the or-
ganization of the information to go on the disk is
explored. Finally, the code that will make up part of
the foundation necessary for an effective program
will be presented.

DATABASES

What is a database, and why do you need one
anyway? A database is just a collection of data, any
data. It can consist of anything that is important to
the task at hand. A collection of the titles of the
songs and selections in your record collection is a
database. A collection of recipes is a database. In
short any grouping of data is a database. Why do you
need one? Chances are that you have a database

already. Some people have small books full of the
titles of music that they have. When they want to
hear a particular piece, they first look up their
selection in the book; see what record it’s on, and
then play that record. This works if they know the
title of the piece and the book is indexed according
to the titles. If they can only remember the name of
the group, they have to check in another book that
has the same information, but is indexed according
to the names of the groups. The desired information
could just as easily be a recipe, or the names and
addresses of your clients and what kind of equip-
ment that they have. The key point is that all the
data is similar because the same type of information
is being recorded about each person, song, or
group; and you will want to access the information
quickly.

Types of Databases

Having established the desirability of having a
database on your system, what kind of databases
are available? There are two kinds of databases, and

the difference lies in the way they organize the data
on the disk. One type of database is organized in a
hierarchal way. Each field of the data may have
subfields that fall under the main field. Several of
these main fields make up a record. The advantage
of this is that a reference to a particular main field
will automatically include the associated subfields.
In this type of database it is difficult for the program
to keep track of all the pointers that indicate which
subfield is under which main field, and which main
fields make up which record. This type of database
organization is found in environments where there
are very fast processors to look after all the point-
ers. What are the advantages of this type? One
advantage is that it is possible to avoid duplication
of any piece of data. If you have several records that
have fields that contain the same information, like
the name of a particular city, they will have a
pointer in that field that points to the location of this
piece of data. This can save an enormous amount of
space in a large system, such as a government
license registry. Space is saved because each
record is only long enough to store data that is not
duplicated in any other record. Thus the informa-
tion in a given record may bear little relation to any
other, but all information is organized in a strict
hierarchy.

The second type of database is called a rela-
tional database. In this type, the records all have the
same file structure. If a field contains the same
information in each record, the disk will have the
same information duplicated many times. The
maintenance of such a system is extremely simple
when compared to the hierarchal system. The pro-
gram merely concerns itself with the contents of
each field in a given record, without worrying about
the other records. To find the contents of a field in
this type of database organization, each record in
the file must be accessed and the appropriate field
checked. To find the contents of a file organized in
an hierarchal file, the field concerned is checked
and if the desired value is there, it will contain
pointers that will indicate which records are cur-
rently pointing to this field and this field value.
Those pointers can then be followed back to recon-
struct the original records.

The hierarchal system, then, is better suited
to the maintenance of a large database where rapid
searching for a particular record, based on the in-
formation in one or more fields, is required. A
relational database is better suited to the mainte-
nance of smaller databases.

It is much easier to design and implement a
relational database in a microcomputer environ-
ment, than it is to implement a hierarchal database.
This doesn’t mean it can’t be done, because it has
been done well; but the programs that do it are
written in assembly language and are too difficult
for the average computerist to do. This book will
examine the relational database, since it will be
much easier to develop and will serve you in look-
ing after almost anything you will want to store.

Figure 2-1 shows a chart of how a relational
database is organized. Each record will be in a row,
and the columns will be made up by the fields in the
record. For the purpose of this illustration, our
database will be one which looks after five things;
the name, address, city, zip code and state of each of
the persons on a mailing list.

You can see in this chart that each record has
the same organization as all the other records in the

"database. Each field stores its data in the same

manner and contains data that is the same type in
each record although the contents of each field may
have a different value. In record 1 the value of the
contents in the state field is MA, while in records
2, 3 and 4 the value is PA. The type of data is all the
same, but the contents are different in one field.
This illustrates some of the points of a relational
system; the program can count on the data being of
the same type and being in the same place in each
record. Thus the fields in each record have the
same relationships to each other as the correspond-
ing fields in the other records do. You can also see
that it is quite possible for each record to contain
the same data as any other record, and in the chart
above most of them do. While this does waste some
space, it makes the maintenance of such a database
very easy. For instance, in order to delete a field,
you merely have to erase its contents, and to
change data, you only have to modify the contents of
one or more fields. You will find this easier than

Field:—e | Name Address City Z.C. State
Record 1 Jones 123 Any Bost 021 MA
Record 2 Mudd 234 Here Phil 171 PA
Record 3 Lee 89 West Phil 171 PA
Record 4 Lee 23 East Phil 171 PA

Mailing List Database

Fig. 2-1. The organization of a relational database.

trying to develop a program that will keep track of
the many pointers that would be necessary in a
hierarchal database.

FEATURES OF THE DATABASE MANAGER SYSTEM

Now that the type of database has been estab-
lished the features to be implemented in the system
will be examined. Some basic decisions that will
affect how the program is written will be made.
Since the success of this program will depend to a
large degree on how well you can adapt the code to
your system, make sure you go over the next sec-
tion of the book carefully. Prepare a list like the one
we have shown, and make lots of notes!

Examining Your System

First, you must look at how your particular
system stores data on the disk. You will recall the
earlier discussion of how the operating system
stores data on a disk. You must now determine if
your system allows the use of random access disk
operations. This is by far the norm. To find out,
consult the manuals that came with your system. In
all likelihood they will describe two methods of
operation. First there is the sequential mode. In
this mode, data is placed on the disk as it becomes
available. If you have 50 records, the first one is
written, then the second; then the third, until you

have written the 50th record. This requires that if
the information you want is on the 45th record, you
must read the preceding 44 records first. This is not
a practical way of doing things. Random access is
much more efficient. The system should be able to
look at any of the records on the disk by having the
program state which record it wants to look at. If, in
this mode of operation, the program instructs the
computer to read record 45, it will do so without
looking at any of the other records. This is not to
say that you can’t build a database system that uses
sequential accessing, because you can. It’s simply
not a practical way of doing things. The time in-
volved will make the operations too slow, and the
increased disk wear will give you maintenance
headaches.

Assuming that you are allowed by the makers
of your system to utilize random access, the next
thing to determine is whether or not you can have
variable length records. A variable length record is
a record whose length is adjusted so that it uses
only the space required by the amount of data to be
stored. If your recipe records only take up 125
bytes of space, you will only use that much per
record. Some systems will allow you to use as little
as two bytes in a record and as much as 4096 bytes.
Most systems will require that you use 255 byte
records, so the Database Manager uses this type of
disk access. This means that you will waste some

space, but in the end, that could be an advantage.
Using this procedure will simplify operations since
the calling procedures for variable-length random-
access records may be confusing.

Now take a look at what you want your system
to accomplish. First, it must be able to write infor-
mation onto the disk, read it, and provide some way
to change and delete it. It must also provide a way to
search for specific information that may be on the
disk. It should have a way of reporting the informa-
tion back in a manner that you can easily change. It
would also be important to be able to sort the data to
reflect current requirements for reporting. The
system should also present you with choices for
various operations via a menu. Most importantly, at
the time that you create a file, you must be able to
define just what information goes into it.

In order to see how much you can do with your
machine, you must first take a look at what it offers.
Get out the owner’s manual for your computer and
turn to the section that describes the features you
can use. Write down the commands you have to use
to accomplish the following procedures, if indeed
you can do them at all.

Your Computer's Home Survey
1. Home the cursor and clear the screen.
Your System:

2. Erase a line or part of a line.
Your System:

3. Display characters in inverse video or half in-
tensity.
Your System:

4. Display characters on a status line, usually the
25th line of a display terminal.
Your System:

5. Set up programmable special function keys if

you have them.

Your System:

6. Address the cursor to a particular spot on the
screen.

Your System:

Now, use your BASIC manual and find out how
to do the following.

1. How to do error trapping so that you can recover
from BASIC error conditions. These are some-
times unavoidable and unless you can prevent
your program from crashing the program will be
harder to convert.

Sample statement: ON ERROR GOTO
Your System:

2. How to use the intrinsic string functions, the
most important of which is the ability to place a
new group of characters within a string that
already exists. You will also need to know about
the LEFT$ and RIGHTS$ functions.

Sample statement: MID$(X$,4,7)=Y$
Your System:

3. What the maximum length of your strings is. For
most BASICs this is 255 bytes.

Your System:

4. What fielding statements are required for ran-
dom access files.

Sample statement: Field #2,200 AS B$
Your System:

5. How to direct print statements to the printer or
the screen. For the most part it will be as simple
as using LPRINT instead of the PRINT state-
ment.

Sample method: Poking the I0 BYTE
Your System:

6. How to open and close random files.
Sample statement: OPEN “R”, CLOSE #1
Your System:

7. Whether or not you have a swap command that
will let you sort easily.

Sample statement: SWAP A$(X), A$(X+1)
Your System:

8. Whether the index variable is checked and in-
cremented at the beginning or end of a for-next
loop. This will determine the final value of the
variable when used as a counter.

Your System:

9. How to access a character input at the keyboard
without the return or enter key having to be
pressed and without echoing the character to the
screen.

Sample statements: INKEYS$,CIN,PIN,IN-
PUT$X)

Your System:

Most of today’s computers and terminals pro-
vide a way to tell the cursor where to go. This
allows you to set up the program to present infor-
mation in a pleasing manner. Being able to input
information at the same spot on the screen is a great
advantage. Some machines also allow you to high-
light certain portions by using a reverse video
technique. This turns on a block of text where the
letters are black on white instead of white on black.
Other features may also be available to you, such as
being able to use special function keys that take on
certain functions depending on what part of the
program you are in. Because there are a great
number of different protocols and ways of doing
things, this book must have a standard system. In
this standard system I will assume that you can tell
the cursor where you want it to go. Other than thatI
will assume you have an ordinary terminal display.
The terminal I use is a Heathkit H-19, so the pro-
tocols that I will be illustrating are the ones re-
quired for that terminal. They can easily be adapted
for use on other equipment, and I'll show you how.

So what we have arrived at is that we want a
database system that will do the following:

The Database Management System that will

be presented in this book will do the following:

1. work with your disk drives

use 255 byte records

. allow you to create different datafiles

allow you to add, change, delete, and modify

records

5. allow you to search the database and find
record(s) based on the contents of one or more
fields

6. allow you to sort the records you have found
based on the contents of one or two fields

7. allow the use of an addressable cursor

o

DATA ORGANIZATION

To organize your data you need to know how
the data is to be organized on the disk. You need to
know the kind of files that will be used and what
kind of information will be stored there. You need to
know how many records you can put on a disk, and
how to organize them so that you can have different
data in different databases that are all used by the
same program.

If your system offers you the use of variable
length records, you can set up a mechanism in the
program that will count how much space each field
takes and add these values together to get the total
record length. You can then use this information to
establish the record length on the disk. Since this is
a relational database, if you accurately define one
record in the database, you have done so for the
rest. This technique will save space on the disk and
allow you to have more records per disk. How many
records? That depends on the size of your disk. If
you are using a dual disk system, you can store the
data on one disk, and the programs on the other. In
the Heath system that this series of programs was
developed on, I can use 90K for program storage on
an initialized disk. If you have records that are 200
bytes long and you can use variable length records,
you can store 90,000/200, or 450 records.

Using variable length records has a major dis-
advantage: you cannot add a field later because all
the space is taken up. There are a number of ways to
avoid this. You can set up an empty field, if you can
foresee the inclusion of more data in a record at a

later date. You can use a program to bring data from
one database to another, and by setting up the new
field in the new database, transfer the fields you
wish. You can use 255 byte records, and redefine
the database by duplicating the specifications that
you already have, and then adding an extra field at
the end. If you have not exceeded the 255 byte limit
and have not changed any parameters of the original
fields, you are away to the races!

Now that you have some idea of the format of
your data files, it must be determined how to set
them up so that you can use the same programs to
create and maintain different data in different
databases? The answer is to create a separate
parameters file that will act as a sort of dictionary.
Whenever the program needs to look at a field for
any reason, it will consult the dictionary and from it,
the program will be able to tell where the field is in
the record structure, what kind of data it contains,
how long it is, whether or not there is a range limit
imposed on it by the user, and whether or not it is
stored in a compressed mode. Since this dictionary
file is likely to be small in comparison to the
database, you can store it in a sequential file on the
disk that contains the program. This will leave
more space on the data disk for our datafile and give
the program access to the dictionaries of more than
one database. Also we can write other programs
that need only consult this dictionary to find out
everything they need to know about a particular
database in order to perform specific tasks, such as
label making. In this way we add to the flexibility of
our system.

The information concerning each record must
be transferred to and from the disk. Most BASICs
that allow random access allow the user to specify a
certain number of fields in each record. Each field is
assigned a variable name, and when a particular
record is accessed, the information within the re-
cord is assigned to the variables. The way that this
is done is as follows. First BASIC sets aside a 255
byte area in memory called a disk buffer. The field
statements assigns portions of this area to certain
variables. To do this each variable is assigned a
pointer that tells it where its information begins in
the buffer. BASIC will assign all the information

10

from the start of that area character by character,
until the start of the next variable is reached. When
the information is retrieved by the get command,
the assigning of the information is done automati-
cally. When the put command tells the program to
place the information back to the disk, all the infor-
mation that is currently stored in the field variables,
will be transferred to the buffer and thence to the
disk. In order to protect the variables from getting
lost, it is important that they not be used outside of
a field statement or a LSET or RSET statement.
Figure 2-2 shows the fields graphically.

You will encounter a problem if you use this
method. You don’t know at the start of the program
how long the fields are to be because they haven’t
been created yet. You could get that information
from the data dictionary, but you would have to
substitute it into the field statements and that leads
to a lot of code. There is a much easier way. Since
any string variable in BASIC can be 255 bytes long,
why not simply field a single variable, and then use
the string functions of MID$, RIGHT$, and LEFT$
to take the string apart and find the information that
we want? This would work provided we copied the
information from the field string into a temporary
string prior to use and put any new information back
into the field string prior to putting it back on the
disk. This technique works for both those systems
that use variable length random-access records and
those that use fixed length ones. In order for this to
work well, you must depend on the data dictionary
toindicate where each field starts in the string, how
long it is, and whether the data is numeric or al-
phanumeric. Since you can use three types of
numeric data: integer, single precision, or double
precision, you can take advantage of the fact that
they can be stored in 2,4 or 8 bytes respectively by
converting them into strings. Thus you can save
space on the disk. You will need routines to sepa-
rate the information from the string and also to
repack it. A graphic representation is shown in Fig.
2-3.

The data dictionary will have to store several
pieces of information about each of the data fields in
our data base. In order to place this information
onto the disk and to recall it easily, it will be stored

