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Preface

This volume includes selected papers from the International Workshop on Challenges in Web Information
Retrieval and Integration (WIRI 2005), which was held in conjunction with the 21* International Conference on
Data Engineering (ICDE 2005), in Tokyo, Japan, April 8-9, 2005.

Web information utilization has become a critical emerging research area due to the exponential increase in the
information circulation and dissemination over the Web. Many challenging problems must be solved in order to
utilize and exploit web information that is both highly heterogeneous and dynamic in nature. This workshop focuses
on the technology for analyzing, integrating and retrieving information on the Web.

In this context, WIRT Workshop has attracted very interesting work which covers crucial and emerging research
topics such as querying on the Web, data mining techniques, Web and XML data management, as well as Web
applications. There were 47 submissions from 18 countries, and three reviewers were assigned to each paper. The
program committee has finally selected 11 regular papers and 20 short papers for presentation at the workshop. The
innovative research presented at WIRI 2005 was very interesting and exciting and the Workshop involved lively
discussions and fruitful comments.

Moreover, WIRI included a very interesting invited talk by Dr. Daniel Gruhl, who presented “Precognition:
Thinking about the the Query before it Happens”, a topic which is now emerging and of wide interest. The WIRI
chairs thank Dr. Gruhl for his impressive invited talk and his support for WIRI activities.

WIRI chairs thank all the program committee members for their dedicated effort to review papers in their area
of expertise and in a timely manner. Their effort was valuable to accommodate high quality papers in the WIRI
program. Special thanks to Professor Xiaofeng Meng from the Renmin University of China for his support to the
WIRI organization and to Professors Atsuhiro Takasu and Kenro Aihara from the National Institute of Informatics,
Japan, for their hard working attitude in organizing the Workshop and in technically supporting its activities. Lastly,
we express our sincere gratitude for the support received from Professor Masaru Kitsuregawa of University of
Tokyo (ICDE 2005 General Chair) and Professor Masatoshi Yoshikawa of Nagoya University (ICDE 2005
Workshops Co-Chair.)

WIRI Co-Chairs

Jun Adachi (NII)
Wang Shan (Renmin University)
Athena Vakali (Aristotle University)
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Precognition: Thinking about the query before it happens

Daniel Gruhl
IBM Almaden Research Center
650 Harry Rd., San Jose, CA, 95120
dgruhl@us.ibm.com

Web Information Retrieval and Integration is one of
the most challenging of emerging information retrieval do-
mains. Traditional approaches of returning all of exactly
what the user asks for are not feasible; what does a user
do with a billion pages in rank order? Identifying relevant
documents requires substantially more “thought” go into se-
lecting each result; but the data scale is such that doing the
“thinking” at query time as a post-processing of results is

not really a viable option.
The solution that WebFountain[5] has pursued is that of

examining the pages and really “thinking” about them be-
fore the query occurs. There are many kinds of analysis
that are easier to do page by page than over a whole cor-
pus. For example, trying to find all of the pages that contain
a mention a drugs which contain aspirin is difficult (there
are thousands of drugs and brand names that do). A query
with this kind of term fan-out is untenable in a high per-
formance system. Instead, consider a program that scanned
a document and was able to add a tag Drug: Aspirin
whenever it found one of the variants. While doing so
it could also add Drug: Cox I inhibitor and
Drug-type: Analgesic. This allows high level
queries such as Drug: Cox II inhibitor NEAR
Condition: Cardiac Disease to be processed as
a simple 2 term boolean query.

But there is more to finding information than simple
boolean queries. In many cases it is not actually the pages
that are of interest, but aggregate information on them. With
the proper indexes and complex joining functionality it is
possible to explore what trends and relationships occur be-
tween entities mentioned on webpages. For example, what
I say in my blog about a popular music artist is not a good
predictor of their popularity, but the trend of the number
of all blog mentions is an excellent predictor of sales two
weeks later. We have found the same true for certain classes
of book sales as well. Understanding the strong relation-
ships between people, places, universities, companies, prod-
ucts, etc. is another example where the preponderance of ex-
istence in a particular set of websites is sufficient evidence
to propose a linkage.

These higher level annotations and more complex query-

0-7695-2414-1/05 $20.00 © 2005 IEEE

ing capabilities enable not only better point querying, but
also open the door for more interesting higher level applica-
tions. Examples include exploring trends in discussions and
information diffusion[6], identifying templates[4], detect-
ing collusion([3], finding connections[1], finding the con-
nections between the real world and the web[7], and discov-
ering aliases[8], just to name a few. In short, the creation
of this semi-structured metadata from unstructured source
data allows the system to begin to perform “business intel-
ligence” type queries over the unstructured corpus.
Traditionally, the thought of generating and storing all
this metadata has been prohibitive. However, the price on
low end storage has been dropping, recently falling below
$.31 a gig. This opens the door for this kind of research even
in small scale systems.
References
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Efficient Method of Combinatorial Item Set Analysis
Based on Zero-Suppressed BDDs

Shin-ichi Minato and Hiroki Arimura
Graduate School of Information Science and Technology, Hokkaido University

Abstract

Manipulation of large-scale combinatorial data
is one of the important fundamental technique for
web information retrieval, integration, and min-
ing. In this paper, we propose a new approach
based on BDDs (Binary Decision Diagrams) for
database analysis problems. BDDs are graph-based rep-
resentation of Boolean functions, now widely used in sys-
tem design and verification area. Here we focus on
Zero-suppressed BDDs (ZBDDs), a special type of BDDs,
which are suitable for handling large-scale sets of com-
binations. Using ZBDDs, we can implicitly enumerate
combinatorial item set data and efficiently compute set op-
erations over the ZBDDs. We present some encouraging
experimental results of frequent item set mining prob-
lem for practical benchmark examples, some of which have
never been generated by previous method.

1. Introduction

Manipulation of large-scale combinatorial data is one of
the fundamental technique for web information retrieval in-
tegration, and mining[16]. In particular, frequent item set
analysis is important in many tasks that try to find inter-
esting patterns from web documents and databases, such
as association rules, correlations, sequences, episodes, clas-
sifiers, and clusters. Since the introduction by Agrawal et
al.[2], the frequent item set and association rule analysis
have been received much attentions from many researchers,
and a number of papers have been published about the
new algorithms or improvements for solving such mining
problems(7, 9, 17].

In this paper, we propose a new approach based on
BDDs (Binary Decision Diagrams) for database analysis
problems. BDDs are graph-based representation of Boolean
functions, now widely used in system design and verifica-
tion area. Here we focus on Zero-suppressed BDDs (ZB-
DDs), a special type of BDDs, which are suitable for han-
dling large-scale sets of combinations. Using ZBDDs, we

0-7695-2414-1/05 $20.00 © 2005 IEEE

can implicitly enumerate combinatorial item set data and
efficiently compute set operations over the ZBDDs.

For a related work, FP-Tree[9] is recently received a
great deal of attention because it supports fast manipulation
of large-scale item set data using compact tree structure on
the main memory. Our ZBDD-based method is a similar ap-
proach to handle sets of combinations on the main memory,
but will be more efficient in the following points:

e ZBDDs are a kind of DAGs for representing item sets,
while FP-Trees are tree representation for the same
objects. In general, DAGs can be more compact than
trees.

e ZBDD-based method provides not only compact data
structures but also efficient item set operations written
in a simple mathematical set algebra.

We present some encouraging experimental results of fre-
quent item set mining problem for practical benchmark ex-
amples, some of which have never been generated by previ-
ous method.

Recently, the data mining methods are often discussed
in the context of Inductive Databases[4, 12], the integrated
processes of knowledge discovery. In this paper, we place
the ZBDD-based method as a basis of integrated discov-
ery processes to efficiently execute various operations find-
ing interest patterns and analyzing information involved in
large-scale combinatorial item set databases.

2. BDDs and ZBDDs
2.1. BDDs

BDD is a directed graph representation of the Boolean
function, as illustrated in Fig. 1(a). It is derived by reducing
a binary tree graph representing recursive Shannon’s expan-
sion, indicated in Fig. 1(b). The following reduction rules
yield a Reduced Ordered BDD (ROBDD), which can effi-
ciently represent the Boolean function. (see [5] for details.)

e Delete all redundant nodes whose two edges point to
the same node. (Fig. 2(a))



(b) Binary tree.

Figure 1. BDD and binary tree: F' = (aAb) Ve.

. share
Jump
0\ /1
> 0 1 0
f0 f1 o f1

(a) Node deletion. (b) Node sharing.

Figure 2. Reduction rules of ordinary BDDs

e Share all equivalent sub-graphs. (Fig. 2(b))

ROBDDs provide canonical forms for Boolean functions
when the variable order is fixed. Most research on BDDs
are based on the above reduction rules. In the following sec-
tions, ROBDDs will be referred to as BDDs (or ordinary
BDDs) for the sake of simplification.

As shown in Fig. 3, a set of multiple BDDs can be shared
each other under the same fixed variable ordering. In this
way, we can handle a number of Boolean functions simul-
taneously in a monolithic memory space.

Using BDDs, we can uniquely and compactly repre-
sent many practical Boolean functions including AND,
OR, parity, and arithmetic adder functions. Using Bryant’s
algorithm[5], we can efficiently construct a BDD for the re-
sult of a binary logic operation (i.e. AND, OR, XOR), for
given a pair of operand BDDs. This algorithm is based
on hash table techniques, and the computation time is al-
most linear to the data size unless the data overflows the
main memory. (see [14] for details.)

Based on these techniques, a number of BDD packages
have been developed in 1990’s and widely used for large-
scale Boolean function manipulation, especially popular in
VLSI CAD area.

Fl=aAbd

F2=g€9b
F3=% B
Fd=aVdb

Figure 3. Shared multiple BDDs.

2.2. Sets of Combinations and ZBDDs

BDDs are originally developed for handling Boolean
function data, however, they can also be used for implicit
representation of sets of combinations. Here we call “sets
of combinations™ for a set of elements each of which is a
combination out of n items. This data model often appears
in real-life problems, such as combinations of switching de-
vices(ON/OFF), fault combinations, and sets of paths in the
networks.

A combination of n items can be represented by an n-bit
binary vector, (z1x2 . ..xz,), where each bit, z, € {1,0},
expresses whether or not the item is included in the combi-
nation. A set of combinations can be represented by a list of
the combination vectors. In other words, a set of combina-
tions is a subset of the power set of n items.

A set of combinations can be mapped into Boolean space
by using n-input variables for each bit of the combination
vector. If we choose any one combination vector, a Boolean
function determines whether the combination is included in
the set of combinations. Such Boolean functions are called
characteristic functions. The set operations such as union,
intersection, and difference can be performed by logic op-
erations on characteristic functions.

By using BDDs for characteristic functions, we can ma-
nipulate sets of combinations efficiently. They can be gener-
ated and manipulated within a time roughly proportional to
the BDD size. When we handle many combinations includ-
ing similar patterns (sub-combinations), BDDs are greatly
reduced by node sharing effect, and sometimes an exponen-
tial reduction benefit can be obtained.

Zero-suppressed BDD (ZBDD)[13, 15] is a special type
of BDDs for efficient manipulation of sets of combinations.
ZBDDs are based on the following special reduction rules.

e Delete all nodes whose 1-edge directly points to the 0-
terminal node, and jump through to the 0-edge’s desti-
nation, as shown in Fig. 4.

e Share equivalent nodes as well as ordinary BDDs.

Notice that we do not delete the nodes whose two edges
point to the same node, which used to be deleted by the
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Figure 4. ZBDD reduction rule.

S(abc):  S(abed):

abc abcd | S
000 [ 0 |[ 0000 | O S(abcd)
AR AN
110 | 0 || 1100 | O S(abed)
001 | 0 || 0010 | O S(abc)
101 | 0 || 1010 | O
011 [ 0 | 0110 | O
111 | 0 || 1110 | ©
0001 | O
1001 | 0
0101 | 0
1101 | 0
0011 | 0
1011 | O
0
0

Figure 5. Example of ZBDD effect.

original rule. The zero-suppressed deletion rule is asymmet-
ric for the two edges, as we do not delete the nodes whose
0-edge points to a terminal node. It is proved that ZBDDs
are also gives canonical forms as well as ordinary BDDs un-
der a fixed variable ordering.

Here we summarise the features of ZBDDs.

e In ZBDDs, the nodes of irrelevant items (never cho-
sen in any combination) are automatically deleted by

{ abcd, bc, cde }

Figure 6. Explicit representation by ZBDD.

“0” Returns empty set. (O-termial node)

“1” Returns the set of only null-combination.
(1-terminal node)

P.top Returns the item-ID at the root node of P.

P .offset(v) Selects the subset of combinations each
of which does not include item v.

P.onset(v) Selects the subset of combinations in-
cluding item v, and then delete v from
each combination.

P.change(v) | Inverts existence of v (add / delete) on
each combination.

PUQ Returns union set.

PNnQ Returns intersection set.

P—-Q Returns difference set. (in P but not in Q.)

P .count Counts number of combinations.

Table 1. Primitive ZBDD operations

ZBDD reduction rule. In ordinary BDDs, irrelevant
nodes still remain and they may spoil the reduction
benefit of sharing nodes. (An example is shown in
Fig.5.)

e ZBDD:s are especially effective for representing sparse
combinations. For instance, sets of combinations se-
lecting 10 out of 1000 items can be represented by
ZBDDs up to 100 times more compact than ordinary
BDDs.

e Each path from the root node to the 1-terminal node
corresponds to each combination in the set. Namely,
the number of such paths in the ZBDD equals to the
number of combinations in the set. In ordinary BDDs,
this property does not always hold.

e When no equivalent nodes exist in a ZBDD, that is
the worst case, the ZBDD structure explicitly stores all
items in all combinations, as well as using an explicit
linear linked list data structure. An example is shown
in Fig. 6. Namely, (the order of) ZBDD size never ex-
ceeds the explicit representation. If more nodes are
shared, the ZBDD is more compact than linear list. Or-
dinary BDDs have larger overhead to represent sparser
combinations while ZBDDs have no such overhead.

Table 1 shows the most of primitive operations of ZB-
DDs. In these operations, @, 1, P.top are executed in a con-
stant time, and the others are almost linear to the size of
graph. We can describe various processing on sets of com-
binations by composing of these primitive operations.



Data name #I #T lavg|T| lavg|T|/#I
T40110D100K 942 1100,000 39 4.14%
mushroom 119 | 8,124 23 19.32%
BMS-WebView-1| 497 | 59,602 2 0.40%
basket 13,103 | 41,373 9 0.06%

Table 2. Statistics of typical benchmark data.

3. ZBDD-based Database Analysis

In this section, we discuss the method of manipulating
large-scale item set databases using ZBDDs. Here we con-
sider binary item set databases, each record of which holds
a combination of items chosen from a given item list. Such
a combination is called a tuple (or a transaction).

For analyzing those large-scale tuple databases ef-
ficiently, basic problems of data mining, such as fre-
quent item set mining[3] and maximum frequent item set
mining[6], are very important and they have been dis-
cussed actively in last decade. Recently, graph-based meth-
ods, such as FP-Tree[9], are received a great deal of
attention, since they can quickly manipulate large-scale tu-
ple data by constructing compact graph structure on
the main memory. ZBDD technique is a similar ap-
proach to handle sets of combinations on the main mem-
ory, so we hope to apply ZBDD-based method effectively
in this area.

3.1. Property of Practical Databases

Table 2 shows the basic statistics of typical benchmark
data[7] often used for data mining/analysis problems. #I
shows the number of items used in the data, #T is the
number of tuples included in the data, avg|T| is the aver-
age number of items per tuple, and avg|T|/#1I is the av-
erage appearance ratio of each item. From this table, we
can observe that the item’s appearance ratio is very small
in many cases. This is reasonable as considering real-life
problems, for example, the number of items in a basket pur-
chased by one customer is usually much less than all the
items displayed in a shop. For another example, the number
of links from one web page is much less than all the web
pages in the network. This observation means that we of-
ten handle very sparse combinations in many practical data
mining/analysis problems, and in such cases, the ZBDD re-
duction rule is extremely effective. If the average appear-
ance ratio of each item is 1%, ZBDDs may be more com-
pact than ordinary BDDs up to 100 times. In the literature,
there is a first report by Jiang et al.[10] applying BDDs to
data mining problems, but the result seems not excellent due
to the overhead of ordinary BDDs. We must use ZBDDs in
stead of ordinary BDDs for success in many practical data
mining/analysis problems.

tuple | frequency | F, | F, | Fy
abc | 5(101) |1 [0 |1
ab 3(011) (0] 1]1
be 2(010) (0| 1]0
c 1(001) (0|01

Fy = {abc, ab, c}
F, = {ab, bc}, F, = {abc}

Figure 7. ZBDD vector for tuple-histogram.

3.2. Tuple-Histograms based on ZBDDs

A Tuple-histogram is the table for counting the number
of appearance of each tuple in the given database. In practi-
cal databases, the same tuple often appears many times. For
example, "BMS-WebView-1" in Table 2 includes 59,602
records, and the most frequent tuple appears 1,533 times in
the records. The top 10 frequent tuples appears 8,404 times
in total. (Shares 14% in the records.)

Here we present a method of representing tuple-
histograms by using ZBDDs. Since ZBDDs are rep-
resentation of sets of combinations, a simple ZBDD
distinguishes only existence of each tuple in the
databases. In order to represent the numbers of tu-
ple’s appearances, we decompose the number into m-digits
of ZBDD vector {Fy,Fi,...,F,_1} to represent inte-
gers up to (2™ — 1), as shown in Fig. 7. Namely, we encode
the appearance numbers into binary digital code, as F, rep-
resents a set of tuples appearing odd times (LSB = 1), F}
represents a set of tuples whose appearance number’s sec-
ond lowest bit is 1, and similar way we define the set of
each digit up to F,,_;.

In the example of Fig. 7, The tuple frequencies are de-
composed as: Fo = {abc,ab,c}, Fi = {ab,bc}, F, =
{abc}, and then each digit can be represented by a sim-
ple ZBDD. The three ZBDDs are shared their sub-graphs
each other.

Now we explain the procedure for constructing a ZBDD-
based tuple-histgram from given tuple database. We read
a tuple data one by one from the database, and accumu-
late the single tuple data to the histogram. More concretely,
we generate a ZBDD of T for a single tuple picked up
from the database, and accumulate it to the ZBDD vector.
The ZBDD of T can be obtained by starting from “1” (a
null-combination), and applying “Change” operations sev-
eral times to join the items in the tuple. Next, we compare
T and Fy, and if they have no common parts, we just add
T to Fy. If Fy already contains 7', we eliminate 7" from Fy
and carry up 7' to Fy. This ripple carry procedure continues
until 7" and Fj. have no common part. After finishing accu-



Pattern | Freq.
abc 5
Tuple | Freq. ab 8
abc 5 - {abc, ab, bc, ac, a, b, ¢, 1} bc 7
ab 3 |>{ab,ab, 1} ac 5
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Figure 8. Tuple- and pattern-histogram.

mulations for all data records, the tuple-histogram is com-
pleted.

Using the notation F.add(T") for addition of a tuple 7" to
the ZBDD vector F', we describe the procedure of generat-
ing tuple-histogram Fr for given database D.

Fr=0

forall T € D do
FT = FT.add(T)

return Fr

When we construct a ZBDD vector of tuple-
histogram, the number of ZBDD nodes in each digit
is bounded by total appearance of items in all tuples. If
there are many partially similar tuples in the database,
the sub-graphs of ZBDDs are shared very well, and com-
pact representation is obtained. The bit-width of ZBDD
vector is bounded by log Sy,qz, Where Sp,qz is the appear-
ance of most frequent items.

Once we have generated a ZBDD-based tuple-
histogram, it is easy to extract the set of frequent tu-
ples which appears more than « times. By encoding the
given threshold « into binary code, we can compose an al-
gorithm of bit-wise arithmetic comparison between o and
Fr based on ZBDD operations. After execution of those
ZBDD operations, the result of frequent tuples can be ob-
tained as a ZBDD. The computation time is almost linear
to total ZBDD size.

3.3. Pattern-Histograms based on ZBDDs

In this paper, a pattern means a subset of items included
in a tuple. A pattern-histogram is the table for counting the
number of appearance of each patterns in any tuple in the
given database. An example is shown in Fig. 8.

In general, a tuple of k items includes 2* patterns, so
computing a pattern-histogram is much harder than comput-
ing a tuple-histogram. In many cases, it is difficult to gener-
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Figure 9. ZBDDs for a tuple and all sub-
patterns

ate a complete pattern-histogram for a practical size of tu-
ple database. Therefore, conventional methods extract only
frequent patterns which appears more than a-times, for a
given thresholds «, within a feasible computation time and
space[7].

Using the ZBDD-based data structure, we may have
more compact representation than previous methods, as a
number of similar patterns can be shared in ZBDDs, and
in some cases, this makes possible to generate complete
pattern-histograms which have never succeeded in previous
methods. Figure 9 shows a ZBDD for a tuple T = abcde
with five items and a ZBDD representing a set of all 32 pat-
terns P = {1, a,b,c,d, e, ab,ac, be, cd, abe, . . ., abede} in-
cluded in T. Clearly we can see that 2¢ patterns in a k-
item tuple can be represented by only k£ nodes of ZBDDs.
As well as generating tuple-histograms, we can generate
pattern-histograms by accumulating such a single ZBDD P
for a set of patterns one by one, Here we summarise the pro-
cedure for computing a pattern-histogram Fp from a given
database D as follows.

Fp=0
forall T € D do
P=T
forallv € T do
P = P U P.onset(v)
Fp = Fpadd(P)

return Fp
Unfortunately, ZBDDs grows larger as repeat-
ing accumulations, and eventually may overflow

the memory for some large examples. While tuple-
histgrams are bounded by the total items in the tu-
ples, pattern-histograms are not bounded and so many
patterns will be generated.

However, if we have succeeded in generating a ZBDD-
based pattern-histogram for a given instance, we can enjoy



very powerful data processing by using efficient ZBDD op-
erations. It is interesting and important how large-scale in-
stances we can generate complete pattern-histograms. The
experimental results will be shown in later section.

In addition, we present an alternative procedure for gen-
erating ZBDD-based pattern-histograms. We can generate a
pattern-histgram Fp from a complete tuple-histogram Fr.

Fp=Fr
forall v € Fr do:

Fp = Fp.add(Fp.onset(v))
return Fp

We have not determined which algorithm is faster in prac-
tical environments. Anyway, the final form of ZBDD vec-
tors must be the same if the two algorithms are computing
for the same instance.

3.4. Utilities of Tuple/Pattern-Histograms

Once we generate tuple-/pattern-histograms using ZB-
DDs, various operations can be executed efficiently. We
show several examples in this section. Suppose that we have
obtained F' : {Fy, F1,..., Fp_1}, the ZBDD vector repre-
senting a tuple- or pattern-histogram.

e We can efficiently extract a subset of tuples/
patterns including a given item or sub-pattern P.

S=UFx
forall v € P do:

S = S.onset(v).change(v)
return S

Inversely, we can extract a subset of tuples/
patterns not satisfying the given conditions. It is
easily done by computing | J F, — S. After extract-
ing a subset, we can quickly count a number of tu-
ples/patterns by using a primitive ZBDD operation
S.count. The computation time is linearly bounded
by ZBDD size, not depending on the amount of tu-
ple/pattern counts.

e For given o, we can extract all frequent tuples/patterns
appearing more than « times. Computation time is al-
most linear to the ZBDD size. Repeating this proce-
dure with different a’s, we can determine the threshold
Qi to pick up the top m frequent tuples/patterns. Af-
ter generating ZBDD-based histograms, it is quite easy
to extract frequent sets with different o’s, while previ-
ous methods need almost recomputing again for each
a.

e From ZBDD-based histograms, we can efficiently
calculate indexes, such as Support and Confi-
dence, which are often used in probabilistic/
statistic analysis and machine learning area.

Data name #T | total|T| | |ZBDD| [Time(s)
T1014D100K 100,000 | 1,010,228 | 552,429 43.2
T40I10D100K {100,000 | 3,960,507 3,396,395 | 895.0
chess 3,196 118,252 40,028 1.4
connect 67,557 | 2,904,951 | 309,075 58.1
mushroom 8,124 186,852 8,006 1.5
pumsb 49,046 | 3,629,404 |1,750,883 | 188.5

pumsb_star 49,046 | 2,475,947 |1,324,502 | 123.6
BMS-POS 515,597 | 3,367,020 |1,350,970 | 895.0
BMS-WebView-1| 59,602 149,639 46,148 18.3
BMS-WebView-2| 77,512 358,278 | 198,471 138.0
accidents 340,183 |11,500,870 3,877,333 | 107.0

Table 3. Generation of tuple-histograms.

ZBDD nodes | Time(s)
513,762 214.0

#Pattern
> 2G)

Table 4. Pattern-histogram for “mushroom”.

A feature of ZBDD-based method is to construct power-
ful data structure on the main memory, and we can interac-
tively execute various queries to the database. Moreover, it
is very interesting that the queries can be specified by math-
ematical set operations.

4. Experimental Results
4.1. Generation of Tuple-Histograms

For evaluation of our method, we conducted experiments
to construct ZBDD-based tuple- and pattern-histograms
for typical benchmark examples[8] used in data min-
ing/analysis problems.

We used a Pentium-4 PC, 800MHz, 512MB of main
memory, with SuSE Linux 9. We can deal with up to
10,000,000 nodes of ZBDDs in this machine. Table 3 shows
the results of generating tuple-histograms. In this table, #7T
shows the number of tuples, total|T| is the total of tuple
sizes (total appearances of items), and |ZBDD] is the num-
ber of ZBDD nodes for the tuple-histograms. We can see
that tuple-histograms can be constructed for all instances in
a feasible time and space. The ZBDD sizes are almost same
or less than total|T|.

4.2. Generation of Pattern-Histograms

Next we tried generating pattern-histograms for the same
benchmark set. Within an available memory space (up to
10,000,000 ZBDD nodes), we succeeded in constructing a
complete pattern-histgram only for “mushroom”, which is a



Threshold « Time(s) #Pattern
81 22.60 91,273,269

40 67.96 295,117,613

16 244.06 | 1,176,182,553

8 494.05 | 1,983,493,667

4 891.31 (> 2G)

1] 1,322.48 > 2G)

Table 5. FP-Tree-based method for “mush-
room”.

relatively small instance (Table 4). In this case, the pattern-
histogram requires about 65 times more ZBDD nodes than
the tuple-histogram for the same data.

The “mushroom” pattern-histogram is implicitly repre-
senting at least 2,000,000,000 patterns. (The counter over-
flows the range of 32-bit integers.) The number of ZBDD
nodes are 4,000 times smaller than number of patterns. This
shows a great benefit of compression ratio obtained by ZB-
DDs.

To compare with a previous method, we applied a fre-
quent pattern mining program based on FP-Tree[9], to ex-
tract the set of frequent patterns appearing more than o
times, for the same example “mushroom”. The results are
shown in Table 5. For smaller a’s, more patterns are ex-
tracted, and the computation time increases up to hundreds
or thousands of seconds. Notice that the FP-Tree-based
method only extracts a set of frequent patterns for a given
a, but does not generates a complete histogram for all pos-
sible patterns. Our ZBDD-based method generates a com-
plete histogram for all patterns in 214 seconds, and it corre-
sponds to computing frequent pattern sets for all a’s at once.
Based on ZBDD data structure, we need only 48 second of
additional time to extract frequent pattern sets for all differ-
ent a’s from 1 to 100, namely, only 0.48 second needed for
each extraction in average. The result shows that ZBDD-
based implicit method is especially effective for handling a
huge number of patterns.

4.3. Utility of ZBDD-Based Histograms

We conducted another experiment of the set operations
on ZBDD data structure. First we generate a ZBDD for S,
a set of all the patterns contained in “mushroom”, and then
compute S.onset(v) for an item v. We tested this onset op-
eration for all different 119 items, and only 0.10 second
needed for each operation in average. The other primitive
operations, such as offset, change, union, intersection, etc.,
are in the almost same range of computation time. Conse-
quently, ZBDD-besed implicit method is very powerful for
representing huge number of patterns and efficiently apply-
ing various set operations for database analysis.

Data name #Ton [#Taone |ratio% | |ZBDD| [Time(s)
T1014D100K 100,000 | 43,395 | 43.40 9,968,062 | 1,711
T40110D100K {100,000 740 | 0.74 P,863,736 123
chess 3,196 703 | 22.00 8,242,212 919
connect 67,557 | 2,095 | 3.10 9,146,429 | 2,502
mushroom 8,124 8,124 (100.00 | 513,762 214
pumsb 49,046 61 0.12 (7,018,198 89
pumsb_star 49,046 288 | 0.59 8,343,418 375
BMS-POS 515,597 9,837 1.90 9,679,161 266
BMS-WebView-1| 59,602 | 17,757 | 29.79 P,372,436 134
BMS-WebView-2 77,512 | 39,045 | 50.37 9,515,386 | 1,113
accidents 340,183 133 0.04 8,394,811 223

10

Table 6. Pattern-histograms for sampling
data.

Table 6 shows the results for generating pattern-
histograms for other larger instances. Here we cannot gen-
erate complete pattern-histograms for all tuples, but we can
construct them for a part of tuples in the database. In this ex-
periment, we started from first line of the data file, and
stopped at the line just before memory overflow. The ta-
ble shows the number of tuples we completed. The par-
tial results are still meaningful as sampling computation.
For smaller or medium size of instances, we can gener-
ate pattern-histograms for more than 20% of tuples in the
database. Here the tuples are selected in a determinis-
tic manner, but we may shuffle the order of tuples in real
applications.

5. Conclusion

In this paper, we presented a new method of using ZB-
DD:s for database analysis problems. Our work is just start-
ing now, and we have many future works to be consid-
ered, such as ZBDD variable ordering problem for reduc-
ing graph size, and more efficient implementation of ZBDD
set operations.

We expect that it would be too memory-consuming to
construct ZBDDs of the complete pattern-histograms for
the large-scale benchmarks, besides “mushroom”. How-
ever, hopefully we will be able to handle those practical
size of databases by using well-known improvement tech-
niques, such as preprocessing of pruning not frequent items
and patterns, or handling only maximum item set data[6],
etc. ZBDD-based method will be useful as a fundamental
techniques for various processing of database analysis, and
will be utilized for web information retrieval and integra-
tion.




