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PREFACE . : : e . b b v 3 & o

The purpose of theése notes is to present certain Fourier teehniques for ana—
lyzing Tinite difference approximations te initigll value problems for 1inear partisl
: aifferential equations with constant cdefficisnts. In particular, we shall be cen="7
cerned with stability and convergerce estimatés in the Lb norm of' such ‘approxima-—
tions; the main theme is to determine the degree of approximation of different
methods and the precise dependence of this degree upon the smoothness of the initial
data as measured in Lp. In L, the analysis generally depends on Parseval's rela—
tion and is simpley it is to overcome the difficulties present in order to obtain
estimates in the maximum-norm, or more generally in Lp with p # 2, wvhich is the
aim of this study.

The main tools which we shall use are some simple results on Fourier multipliers
‘based on inequalities by Carlson and Beurling and by van der Corput. Many results are
expressed in terms of‘norms in Besoyv spaces B;’q where s essentially describes
the degree of smoothness with respect to Lp.

The firgt two chapters contain the prerequisits on Fourier multipliers and on
Besov spaces, respectively, needed for our applications. The purpose of these two
chapters is only to make these notes self-contained and not to give an extensive
treatment of their topics. Chapters 3 through 6 then form the main part of the notes.
In Chapter 3 we present preliminary material on initial value problems and finiie
difference schemes for such problems. In particular.'the concepts of well-posedness
in L-D of @n initial value problem and stability in Lp and accuracy of a finite
iiffersnce approximaﬁion are defined and expressed in terms of Fourier transforms,

and estimates which are based on simple analysis in L2 are derived. The ‘remaining

® -

‘:haﬁters are then devoted to the more refined results in Lb with p £ 2 Ffor the
heat equatioﬁ, first crder hyperbolic =quations and the Schrddinger equation,
respectively.

Except for some results in Chapter 6, the material in these notes can be found
in pupers published by the authors and athsrs. RBather than striving for gensrality
we have chosen, for the purpose of making the techniques transparent, 1 treat only

simple cdses,
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The results and formulae are numbered by chapter, section, and order within each
section so that, for instance, Theorem 1.2.3 means the third theorem of Chapter 1,
Section 2 (or Section, 1.2). For reference within a chapter the first number is drop-
. ped so that the above theorem within Chapter 1 is referred to as Tﬁeoreﬁ 2.5. The
references to the literature are listed at the end of each chapter.

Throughout these notes, C and ¢ will denote large.and small positive con~
stants, respectively, not necessarily the same at different occurrences.

The work of the latter two authors has been suppofted in pari by the National

Science Foundation, USA.

Géteborg, Sweden and Ithaca, N.Y., USA in September 1974



TABLE OF CONTENTS

"CHAPTER 1, FOURIER MULTIPLIERS ON Lp.

1.

2.

Preliminaries and definition.

Basic properties.

. The Carlson - Beurling inequality.
. Periodie multipliers.

. van der Corput's lemma,

References.

CHAPTER 2. BEBOV SPACES.

15

N

CHAPTER 3. INITIAL VALUE PROBLEMS AND DIFFERENCE OPERATORS.

&

2

3+

Definition.

- ‘Emoedding results.
. An equivalent characterizatio.

. Two examples.

An interpclation property.

. Two special operator estimates.

References.

Well posed initial wvalue problems.
Finite difference operators and stability.
Accuracy and convergence.

References.

CHAPTER L. THE HEAT EQUATION.

1s

2.

Convergence estimates in Lp.

Inverse results.

. Convergence estimstes from L, to L .,

1 =

. bmoothing of initial data.

References.

ki
19
24
28
30
30
33
38
43
L6
18
Lg

51
51
55
63
67

68
68
76

8L
89



CEAPTER 5.. FIRST ORDER HYPEKBOLIC EQUATIONS.
r 1. The initial value problem for a symmetric hyperbolic system in Lp.
2. Stebility in .Lp of difference. analogues of du/3t = 3u/dx.
3. Growth in the unstable case. E
L. Convergence estimates.

5. Convergence estimates in a sepi—linear’.yivo‘alu.

References.

Cm 6. THE SCHRODINGER EQUATION.
1. Lp estimates for the initial value problem.
2. Growth estimates for finite difference operators.
3. Convergence estimates in Lp.
L. Inverse results.

5. Convergence estimates from L, to L_.

References.

.u'

9 -

9

o



CHAPTER 1. FOURIFR MULTIPLIERS ON Lp.

In this chapter we develop the theory of Fourier multipliers on Lp to the
extent needed for the applications in later chapters. Since our applications are
guantitative rather than gualitative, we shall define the Lp multiplier norm
Mp(&) for smooth & only, and our efforts will then be to describe sope tech-'
niques to estimate this norm. In Section 1 we introduce the necessary definitionms
and in Section 2 we then collect a number of basic properties of thg multiplier
norme. . In Section 3 we derive an ineguality f:or Ma(a) by Carlson and Beyrling
which will be one of our main tools later. In Section 4 we reduce the problem of
estimating periodic multipliers to the corresponding problem for multiplierz with
compact support, and in Section 5, finally, we prove & lemma by van der Corput and

some consequences relevant to the present context.

1.1. Preliminaries and definition.

d

=
For x = (x1,...,xd) €ER and E = (51,...,5(1) € R, let <x,E> =x1z,+...+xd£d

snd |x| = <x,x>1/2. We shall use the Fourier transform normalized so that for func-

tions u € L1,
| Fule) = alg) = I e T2 B 0
Its ix'werse is then formally
F N0 = Yx) s (21r)-dI e L

and the Fourier inversion formula ?_1u =u holds if u and u both belong to L1.

Parseval's formula now reads
_ g s
uvdx = (2w) uvdg .

(Unless specified to the contrary all functions considered will be complex-valued.)
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For a = (01.. s g0 d) & non-negative multi-integer we define

a a a @
a 1 d a v 1 3 4 d
€ o g Fegh L g

. and have then
ulx) = W-’((ie)“ﬁ)(x)..‘
mrther; for y € Rd,

(1) ulery) = @R ),

and 5
(usv)(x) = I ulx-y)viy)ay fy_"(fx;l)(x);
Let _&; = &S(Rd) denote the class of functions which have Fourier transforms im
c; = C;(Rd), the set of functions v € Co(Rd) with supp(v) (the support of v)

compact. In this chapter we shall mainly work with the Fourier transform and its
inverse acting on functions in &; and 'CS, respectively, but in later chapters the
Fourier transform (and differentiation) will be applied more generally to elements in
the space S' of tempered distributione, in particular to functions in LP,

1spse.

The norms in the spaces Lp, 1<p <=, are gi#eq as usual by

([l Pax)? zor 1 <5<,
Il = |

ess sup lu(x) | for p=e=.
xERd A

" : L . “o0 o
We sha)l denote by Wp the closure in the Lp norm of Cj (or Cys Or 8, the
clags of functions which together with all their derivatives tend to zero faster than
any negetive power of |x|, as [x| tends to infinity). For 1 <p<e we have
= i -
Vp - Lp vhereas W_ is the space of continuous functions which venish at infinity

and is properly contained in L_.

Let now for. a € c-(Rd) the operator A from C; inte itself be defined by

(1:2) - Au=F (aw)s



7

It is easily seen from (1.1) that A is translation invarient so that for any
y e 8%,
Alu(e-y) ) (x) = Aulx—y).

If A is a given translation invariant operator of the form (1.2), the function a
is referred to as its sjrm'bol and is of‘teﬁ denoted‘by ;\. .

In Chapter 2 ff. we shall mainly work with functions a in the class of slowly
inez'-eaa.i,ng Punctions, i.e. functions which together with all their derivatives have
at most polynomial growth. In this case we may consider A deﬁ.ned by (1.2) es &
continuous opgra.to:“ in 8'.

We say that & is a Fourier multiplier on L,.or thet a €M = Hp(Rd) if
.Mp(a) = sup(”ﬁu[lé: u€ C;, """p Sl S

The operstor A on 6; defined by (1.2) may then be extended by completion trcn-

é; to wp, Since :‘_[‘p is continuously embedded in S' this extemsion is consistent.

with the distribution interpretation of (1.2) vhen & is siowiy increasing. We s.hall

see later (Theorem 2.3) that in the ‘case p = ®» we can similarly extend A to &

bounded” linear operator not only on W_ but on L.
Occasionally we shall use the nptation Mé’d)} and M;d)(.)

and their nor;ms in order to emphasize the dimension of the underlying space r9,

for the mﬁltipiiers

Notice that in this presentation multil;liers are always ¢ functions.

1.2. Basic properties.

We first show that Mp is symmetric with 'respect to conjugate indices.
Theorem 2.1. Let 1< p, p' X =, 1/p+1/p' =1, Then up-%v, and for a € C,

,MP(S) = 'MP,(a). g

Proof. In‘t u_(i)-; u(-x). Using (1.2) we have by Parseval's formula, HSlder's
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inequality, and the fact that (u)_ = (u_), that for u,v € C;,

[IAV- uax| = |jy"(.$)3"‘iax| = ()79 ]a:v(a)_ael

e [ D v ax] <ol < (@bl el -

Hence by the converse of Hlder's inequality,
”Av“pl ) Mp(a)llvllp| s

that is, Mp,(a.) < Mp(a). Reversing the roles of p and p' we obtain the desired
result.

We next give characterizations of M2 and M (= M, by Theorem 2.1).

Theorem 2.2. M2

uy(e) = [Rll,.

consists of the uniformly bounded functions in ¢” and for & € llz,

Proof. Assume first that a is bounded. Then with A defined by (1.2) we have for
u € é;,
-d/2).2 -d/2
lhlly = (2o 2Rl < (@ /2L IRl = Ikl 5

and hence a € M2 and

(2.1) M,(2) < |kll,-

d

Conversely, let a € M, andlet ) € R® and ¢ > 0 be arbitrary. Then there

exists a sphere B with center -at £y such that

(2.2) la(g)}.> |algy)|{1-e) for & € B.
“Let € &8, ug % 0, be such that supp(:xo) < B. Then Parseval's formula snd (2.2)
give

lally = (2n) ™ 2liigll, > (20072 a(55) | (1-€) gl = 1aCEg) | C1-e) syl

b, L, T



Since EO and ¢ are arbitrary, we conclude that a is bounded and that

loll, < My(a).

Together with (2.1) this completes the proof of the theorem.

For the characterization of M , let B denote the set of bounded complex
regular measures on Rd with the total variation norm V(s). Recall that for
ulx) = f(x)ax with £ € L, V(u) =|je]|,, and that the convolution between, a function

and & measure is defined by
ump(x)= I ulx=y)au(y).

Our next result shows that the elements of M.. {or M1) are Fourier transforms

of measures in B.
Theorem 2.3. Let a € M . Then there exists u € B such that
= >
(2.3)  ate) = [ TFPa0, A

(2.4) M (a) = V(u),

(2.5) Au -3—1(&3) =u*y for u€ 63
Conversely, let a € ¢ and assume that (2.3) holds with u € B. Then a € M_ and
(2.4), (2.5) hold true.

Proof. Assume first that a € M ., We have for the operator A,
[au(0)| < M_(a) |hll_.

Hence the linear form wu ~ Au(0) may be extended to a bounded linear functional on

W_. By the Riesz representation theorem there exists a measure u in B such that
Au(0) = I u(-y)au(y) for u € W, .

Since the operator A is translation invariant it follows that
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au(x) = Ala(r))(0) = [ ueyian(y) = weutx),

which proves (2.5).

By the Riesz representation théorem we also have for each fixed x that

supéﬂ Auux = V(p),

u € 0 -«
and hence the norm equality (2.4) follows easily.

It remains to prove (2.3). Fourier transformstion of (2.5) gives for u € 5;,
(2.6) au = Flusy).
The“right hand side may be calculated as follows:
Flusy)(e) = J o 1eKst> I u(x-y)du(y)ax

. j ( [ ISKE2 0 yaanly) = alE) [ T2 (0,

Here the change in the order of integration is justified by the Fubini-Tonelli theo—~

rem since

[ (J1e i Putepmau) o) < fall v
Hence it follows from (2.6) that

a(g)ale) = a(e) f iV (y),

which proves (2.3). A
' For the converse we find for wu € C., using again the Fubini-—Tonelli theorem

to justify the interchange in the order of integration,

fulx) = P Yate)ale) ) = (2r)"d J’eiq’5> ] Iy (yilE)aE

- f (20)70 j V(g )agau(y) = ] u(x-y)au(y) = usulx).
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This proves (2.5), and

el < VG0 ] -

Hence & € M_, and the equality (2.4) follows as before.

This completes the proef of the theorem:

In partieylar, if e € M, end-if u is as in the theorem, we mey define &
bounded linear operator A on L with morm M (a) by Au=u#y for uw€ L.
It is easily seen that if a. is slowly increasing, then we have in the sense of
distributions , Au 8@-1(33), for u€ L , so that A coincidea on L  with the
o
o

Our next two Tesults describe inclusions and norm relations among different

extension to S' of the operator in (1.2) on C

spaces of multipliers. The proofs will be based on the following well known lemma.

Lemms 2.1. (The niuzm wlltion theorem.) Let 1 £ PgePpaTgery L@ ‘and

let T be a linear operator from L N L inte L NL such that there exist
Po P o ™1

constants N, and N, such that

. ‘.
lhl’fllri £ Nllklgi. for £E€1, ., i=o,
Let O <©® <1 and let. p. and r be defined by

o A
0. P4

sl
r

1
Xy 1

|

Then T msy be extended to & bounded lineesr operator from Lp to L with

1-6..0 1 J
el < ¥, HYJEIL, for feEL.

Theorem 2:4%. Let 1/p+1/p' =1 with 1 <p < p' :; and aesume that IEIP-'M

aeuq for all. q with p<q<p' and

(2.7) Mq(&) < Hp('a).
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llall = =M Lal.
o - .E 4 " e

Front'. By Theorem 2.1 we have a € Mp, with Mp,(a)' = Mp(e'.), and hence the operator

A in (1.2) is bounded in both Lp and Lp,. Writing 1/q={1-8)/p+8/p' we there-

fore obtain by Lemma 2.1, for u € 53,
< ¥ (2) 70 () fally = e G huf] 5
g = "p B L g e
which proves (2.7). The last statement is now an immediate consequence of Theorem 2.2.

Theorem 2.5. Assume that a € M_. Then &€ Mp for 1<p<w= sand

Mpl(a) < Me(ale‘:g/pMm(a)e/pﬂ, for p £ 2,

Mp(a) _<_M2(a)2/pi4w(a)1_2_,/p, for. p> 2.

Proof, The fact that a € Mp for 1 < p < e is contained in Theorem 2.4. Since
M (a) = M1(a), the inequalities now 'follow by applying Lemma 2.1 to the operator A

im (1.2)s

We shall now prove that under certain conditions, limits of multipliers are

muitipliers.

-

\ E et 2 - ¥ e T ) e Y TS . —— —
Theorem 2.6, Let a € Mp" n=1,2,... be such that for some constant K,

1
o, Y
A

{2.8) M(a ) < Ky n= 132,000

Assume further that there exists a function a € C  such that for every v € C;,

(2.2) lim J a vdg =J avdE .

n -+

Then a €M and M (a) < K.
P D =

N Eae o e _ame BB
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Proof. Setting Au -yq(anﬁ) we obtain by (2.9) for each u € 6; and x € Rd,

lin A ulx)=(20)"" 1in lan(s)eiq’€>ﬁ(£)d£= ¥ (aillx) = Aulx).

n- o n-+> e
Purther, since by Theorems 2.2 and 2.4,

legll. <¥ (a) < K,

we have

|auo] < (2n) e LIRN, < (2m) K],

and hence by dominated convergence, for v € C;.

(2.10) lim JAnu-vdx- J Ausvdx.

n +w.

On the other hend, using H&lder's inequality, we have for p and p' conjugate
indices,
[ auevaxl < Iaull i, .

so that by (2.8) and (2.10),

| | au e vax) < xlhll vl -

The converse of Holder's inequality then proves that

), < ks
which cémpletes the proof of the theorem.

We next show that Mp is closed under multiplication.

Theorem 2.7. Let a,b € Mp. Then ab € Mp and

Mp(ab) < Mp(a)Mp(b).

Proof. Let u € 6; Then Bu = s’"m}) € éz and hence with the notation (1.2),
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[Ba) [ < M (@Bl < ¥ (a)te () ]}, -

Since A(Bu) = & (ap 1), this proves the theorem.

In the next two theorems we shall study the behavior of multipliers nqdez atfjrm
trensformetions. It will be convenient to prove first the following lemma, in which

we denote (2eb)(f,n) = alt)b(n).

(1)

Lemma 2.2. Let a € Mp (n)

s+ b€ MP . Then a®b € Muﬂl)

and
P

M) (e p) = u ) (a)n ™) (v).
D D )

2 x 2 ' + £ 4
In particular, if a € Mél), the natural extension ael1 of a to Rl % is in
(1+n)
M and
P

u;““’(a. 1) = M;”(a).

lf“ and (&,n) its duel variable. Con-
Rl+n

Proof. Let (x,y) denote the variable in R

sider first the extension =al(E,n) = a(f)e1 of a to a function on . We then

have, with obvious notation, for u € (.3;(Rl+n),

Raley) =F] @2, wxy) =F el F, 0 (x)
=F Uae)F ) (x.y).
Integration with respect to x gives

j | Rax,y) [Pax = i )a)® Jlu(x,yﬂ Pax ,

(

and after integration also with respect to y we conclude that 2 € "lﬂx)

and
M;h")('i) < Mx(,l)(a)-

Denoting similarly ©(f,n) = 1eb{n) we conclude by Theorem 2.7 that



