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COUNTING SINGULARITIES OF QUADRATIC FORMS ON VECTOR BUNDLES

Wolf BARTH

0. INTRODUCTION.

The study of surfaces ian3 with many nodes (= ordinary double points) is a beau-
tiful classical topic, which recently found much attention again [3, 4]. All sys-
tematic ways to produce such surfaces seem related to symmetric matrices of homo-
geneous polynomials or, more generally, to quadratic forms on vector bundles :

If the form q on the bundle E is generic, then q is of maximal rank on an open set.
The rank of g is one less on the discriminant hypersurface {det q = o}, which re-
presents the class 2c1(EX). This hypersurface is nonsingular in codimension one,
but has ordinary double points in codimension two exactly where rank q drops one

more step.

The aim of this paper is to show that the (rational homology class of the) singu-
lar variety of the discriminant is given by

(0) fle ey = g}, oy = ci(E").

3
If the base space has dimension three, the number of nodes of the discriminant

surface is computed in this way.

Although | do not know of any place in the |iterature, where this formula can

be found, | do not claim originality. |f rank E = 2 for example, then q € F(SZEx),
and the problem comes down to show that cS(SZEx) = 4c1(Ex)c2(Ex), which is well-
known. Also, for morphisms E — F there is Porteous' formula [:9 ] expressing the
loci of degeneration in terms of Chern classes. This formula does not apply direc-
tly to quadratic forms however, because they are selfadjoint, hence not generic

as morphisms.

Formula (o) of course is some intersection number on the bundle space P(SZEx).

Formulas for the higher-order degeneracies of quadratic forms analogous to Por-



.
teous' formula are to be expected as results of some computations in the intersec-

tion ring of P(SZEX).

| do not use here intersection theory onIP(SZEx), partly because | had some trouble
to identify the cycle on P(SZEX) of forms which on every fibre of E have a fixed
given rank. My method is to associate with a quadratic form q a sheaf € on the dis-
criminant hypersurface and to compute ch(¥). This sheaf € is closely related to the

theory of "even nodes" [ 4 ]

1. PRELIMINARIES.
Let S be the vector space of complex symmetric r x r matrices and define the follo-

wing subvarieties

D:={s€S :ranks<r-1}
C:={s€S :ranks <r -2}
B:={s€S :ranks<r - 3}

Then D is the zero-set of the determinant function, hence a hypersurface in S.

Lemma 1 : D is nonsingular outside of C and C is nonsingular outside of B. One
has
codimS Cc =3, codimS B = 6.
Proof :  Put
o o
st .o 1 s" = o

1 . 1
Then each s € D\C (resp. s € C\B) is of the form as'al (resp. as"a’) with a € GL(n).
This shows that D\C (resp. C\B) is homogeneous under GL(n), hence smooth. Also,
the dimension of C\B is

"1—

nZ = dim {a €6L(N) : as"a' = s"} .

Any a € GL(n) leaving s" invariant is of the form



2n
a, o (a1,a2) €C
a =

a, as as € 0(n-2)

So the dimension fto be subtracted is
20 + din 0(n=2) = 4 n (n=1) + 3

and dim C\B = % n(n+1) - 3. The same argument gives the dimension of B. |
Lemma 2 : D has ordinary quadratic singularities along C, i.e. any nonsingular

(local) threefold meeting C transversally in a point S & B intersects S in a

surface with an ordinary doublepoint at So

Proof : We may assume Sy ® s". Parametrize the threefold as

B . R . . .
s(u1,u2,u3) = (Sij(u1'u2’u3)) with s(o,0,0) = s". The intersection with S has

the equation

- _ 11,2]
f(u1,u2,u3) = det (sij(u1,u2,u3)) = ‘Z. S1i SZJ s 5
i#]
1121 . .
where s is the corresponding minor. So
3%t L By O . it | - 5 yp 8545
aum aun 0,0,0 au™ au" au” A" u au"
and the hessian of f at (o0,0,0) will be
o 1 o
(as/Bu)T 1 o o (3s/3u)
o o -2
with
asH/au1 3511/3u2 Bs”/au3
(3s/9du) := 8522/8u1 3522/8u2 Bszz/au3

3512/3u1 Sslz/au2 lez/au3

But the assumption that the threefold meets C transversally means rank (3s/3u)=3._]



2. QUADRATIC FORMS ON VECTOR BUNDLES Sac

A quadratic form on ¢" can be thought of as a linear map q : ¢" — @H* with
qT = q. This is the viewpoint for the study of quadratic forms on vector bundles

to be used in the sequel.

So let X be a smooth projective threefold over € and E some rank-r vector bundle

on X.

Definition : A guadratic form on E is linear morphism q : E — E* with q-r = q.
The set
A : ={x €E ; q(x) is not bijectivel}

is called the discriminant of q.

The quadratic forms on E form the vector space of sections in SZ(EX). If qis
degenerate everywhere , A equals X, but in general A will be a surface. A can
be empty only if E = £* and q is constant. The vector bundle SZ(EX) with typical
fibre the space of symmetric r x r matrices contains as sub-fibre bundles the
bundles

D(E), C(E), and B(E),
the associated bundles with typical fibre D,C, and B. s € SZ(EX) belongs to these
subvarieties if rank s < r-1, r-2, and r-3 respectively.

For a quadratic form q € F(SZEX), A is the projection into X of q N D(E).

Lemma 3 : (transversality) : Assume that g

- does not intersect B(E),

- Infersects C(E) transversally (in finitely many points),

- infersects D(E) transversally outside of C(E).

Then A is a surface representing the class 2c1(Ex). It is nonsingular except for

finitely many nodes, the points x where rank q(x) = r-2.

Proof : a) Let X € X be a point with rank q(xo) = r-1. By assumption q intersects
D(E) transversally near Xor SO N D(E) is nonsingular there. The projection
g—X being biregular, & will also be nonsingular near Xo The equation det g=o

vanishes to the first order on A in all but the finitely many point x € A with



rank q(x) = r-2. So the surface A represents in Pic X the class

det EX - det E = 2c]<E").

b) Let %5 € X be a point with rank q(xo) =r-2. There is a neighborhood U C X of

X, and a trivialization E|U = U x ¢" inducing trivializations
Ziy K _ _
ST(EM|U = U xS, D(E)|[U =U x D, C(E)|U = U x G.

Let m = SxU — S and p = SxU -—— U be the projections. The trivialization can be

chosen such that q(xo) = s'".

Now the equation for A near X5 is
det(m gq(x)) = 0.

By assumption, q intersects C(E) transversally at q(xo), so mq(U) intersects C
transversally at s" and m : q(U) — mq(U) is biregular near q(xo). Lemma 2 shows
that q(U) N D(E) is a surface with an ordinary node at q(xo). So A, the biregular

image of this surface under p , will have an ordinary node at Xo® o

Lemma 4 (Bertini): Assume that SZ(EX) is generated by global sections. Then there

is some Zariski-open subset of sections q € F(SZ(EX)) satisfying the conditions

in Lemma 3.

Proof : Put T :=F(SZ(EX)) and consider the evaluation map 7y : XxI' — Sz(Ex).
This map Yy is regular everywhere, so the subvarieties

1

B-vyom, ¥-ylom, ¥ -y T8

of XxI' have codimension 1,3 and 6 respectively. Denote by m : Xx I'—T the

(proper) projection and define subvarieties of T' as follows :

i) I‘1 s ﬂ(%). This is a subvariety of T with codimension > 3, because

dim X = 3.

1) Let C'C & be the subvariety of points where d(nla) is not surjective. Then

PZ : = m(C') is a subvariety of codimension > 1.

1) Let D' C BT be the subvariety of points where d(n|B\&) is not surjective
and let D be its closure in XxT' . Then F3: = m(D) again is a subvariety

of T' of codimension > 1.



Now the Zariski-open subset can be taken as the complement of I‘1 U F2 U Fj =

Combining lemmas 3 and 4 one obtains :

Proposition 1 : |f Sz(Ex) is spanned by global sections, then for general

q € T(SZ(Ex)) the discriminant A € X is a nonsingular surface except for fini-

tely many nodes. |t represents the class 2c1(Ex).

3. THE COKERNEL OF q
Now let q = E — £* be a quadratic form which is general in the sense of propo-
sition 1. Outside of A , the morphism q is an isomorphism.
So there is an exact sequence
o —E L * 5 ¥ oo
with an c&—sheaf @& supported on A . Next we shall analyze the cokernel ¥ .

Denote by {xi} the finite set of nodes of A .

Lemma 5 : Outside of {xi} , the sheaf ¥ is an invertible 0Oy-sheaf.

Proof : Fix some point x € A\{xi} and let f be a local equation for A near x_.
Since rank (q|A) = r-1 near X5» there is a section e, in E, without zeroes, such
that q(e1)|A = o. This section e, can be extented to a basis CIPEREPL . for E near

Xo In the basis for E and an arbitrary one for EX write

1 0 Qe

Ar Arr

then q(e1) is the vector (q11,...,qr1). Since it vanishes on A , we can write

qJ.1 = f.qj.1 and q = q' o¢ with
KA RERERRL I : °
1
q' = : : p = 5
A\l
1 -0 9pr 0 1

Since cetq=f det q' vanishes on A to the first order only, det q' cannot vanish

near X and q' is an isomorphism of E onto E™,



The diagram

(4
o —» E — E — GZ — o

q
o —m E — B> € — o

ql

e

then shows that € = GZ near x_.

To understand the situation near the singularities Xi, we shall blow them up :

Fix some X and let o, %i — X be the monoidal transform with center X The

surface Zi : = 0?1 X; then is a copy of P, with self-infersection Z? = -hi, h;

the positive generator of HZ( PZ,Z). Since X; was an ordinary node of A, the
proper transform Xi s %i of A is nonsingular near Zi' It intersects Zi ina
curve Ci’ which is a non-degenerate conic on Zi and has on Ki self-intersection
=2

Additionally, it is no loss of generality to assume r = 2 (locally near Xi)'

In fact, there is a basis for Ex. such that q(xi) looks |ike s". There is a
rank-(r-2) subbundle G C E near ;i restricting in X4 to the subsp?ce of Exi
spanned by the last r-2 basis vectors. So q|G is non-degenerate near Xies Define

.
F CE as the subbundle G , i.e. the kernel of g 35 EX — G*. Then local-

ly near X1 E is an orthogonal direct sum F & G and

with respect to this decomposition. a4 being an isomorphism, the original coker-

nel € is isomorphic to the cokernel of G * F — Fx, with rank F = 2.

So replace E by F = 20 and write

a {of
q =
c b

with functions a,b,c vanishing at X Let %,E,E,E be the pullbacks of a,b,c,q



to Xi' On %i there is near Zi a diagram of exact sequences

l l
o __)ZILI9>\(] E_) Zj'ﬁzi _— |\'4| —> O
" 2
o — 26§‘ q_a 29%. — ‘gl — ©°
l l
ZGEi = ZGEi
l
o o

Now ZJE. is locally free, and p, the map induced by a, is given by a matfrix
i

a/g c/g
c/g b/g s

g a local equation for Zi' Also det a vanishes on Zi outside of Ci only to
order 2. So det p does not vanish there at all. Since det p vanishes only along
Xi’ and there of order one, a modification of "lemma 5 shows that Mi is an inver-

tible ax -sheaf. Outside of Ci’ the morphism MI-—A %ﬂ = o"¢is an isomorphism.
i

To formulate the result, let o : X — x be the simultaneous blow up of all X
vy X :

let q : — t” be the pullback of g, let I =U Zi be the union of the excep-

tional planes, X the proper transform of A , and C = U Ci = nd the union of the

conics.

Proposition 2 : Qﬂ.% the quadratic form q induces an exact sequence

v
(1 o_)'é/i)’é:x_)% — o ,

",
and the cokernel % is an extension

(2) O._)M_)(}_)Z(DZ—)O

with an invertible OK—sheaf M.




=g =
Proof : Outside of £ , M is the sheaf q*%’. Over each conic Ci’ it extends by

the sheaf Mi constructed above.
The next proposition is a reformulation of the symmetry of g.
Proposition 3 : There is an isomorphism

1 Y
€ :%’—*ﬁdﬁy(%ﬂdy)

inducing an isomorphism

(3) e - O (X - 1.

Proof : By virtue of a = 3+, there is a commutative diagram

d— 2 oA B ¥,

T

o — b & ¥ —asu @0y —
%
inducing the isomorphism e .

Now the dual sequence of (2) is

o s &t (20,09 —s d’u@(%’,(o;() S é"xt(;%(M,(');() —

H I

A
o — 20D — € —s Mro0 @& —

Since the map
n
26%(2) — ¢ — 26%
is injective on I outside of C, it induces an exact sequence

o — 26%(2) — 26% — C% — o

and a diagram

[e]

[e]

(e]

_



- 10 -

Cé— = &«— O
— B e— = €& o

0o — 20.(1) — € (92(&) m—
o — 20%(2) — 26&——4 j? = ©
(o] o]
The righthand column implies
v a 0% -Ma 0 J
X X
Corollary : For N : = M & o*(det E) @ @X(ZC) one_has
2 -0 ©),
X
i.e., the divisor class C on s divisible by 2.
Proof : (DX(X) - o¥(2¢,E%) ® (92((-20) and M¥ = o*(det %2 g @ (-30). _I
A

4. APPLICATION OF GROTHENDIECK-RIEMANN-ROCH.
This section gives the number of singularities X, in terms of the Chern-classes
ci = CI(EX). In fact, all one has to do is to compute 23, because of

g = zz?
i

and Z? =1 for all i. (We shall denote by ¢, also the pull-back o* c, € Hz(y,ZO).
Consider the two exact sequences (1) and (2). The additivity of the Chern-charac-

ter [j, Appendix A-] shows.

(4) ch(E®) - ch(E) = ch@) = ch(M) + ch(2@,).

E* being locally free, one has the well-known formula [7, p. 4327]

eh(EX) = r + ¢, + % (cf-cz) . % (c?—3c1c2+3c3).



Because of ci(E) = (-1) ci(Ex) we find for the codimension -3 component of

Y
ch(®)
"N

3
(5) chs(%ﬁ =z C] - ¢yt

1 1 3

W[ —

The computation of ch(ZGE) =2 ch(@z) is easy too : Because of the exact sequence

o — (0.(-Z) —m @ — 02 — o0

X X
one has
it 1 2 13
ch@y) = ch(O,;() = ch(@,;(l(—Z))=l (3 o+ 555 - 237
and
3
(6) chy (20 =3 I
The complicated part is to compute ch(M) by ¢r RR for the embedding i : X ——*Y,
v
chiM) = i, [chM|A). td(-N_  7].
X XX
Here (intersections are taken in HX(X,Q))
chmlB) = 1w L
cN. Yy =1+0®
X/ X
. )
c-N. ) =1=-0% + b
X/ X X
1 1,2
FA(-N. ) =1 +=c (=N ) + == (c5 + c,)(-N, ) =
XX 270 Ty TR T2 TRl
S, 1 2
=1 - (DX(X) ‘g (DK(X)
ch (M) =i fehem|B) . td(-N, ], =
3 X K/% 2
131 1
-z X - (M.(OK(’K)) + (MM,
Now using @, (K) = 2c, - 26, () and
X X
1 .3
M=% (2, - 3(9x<2)> sc -3 QX(Z)

by formula (3), we compute



— 12 -

P -3 c? ~§ E2

(M.G%(X)) -dcl-61°

(M.M) -2¢-25°
2 chy) =1 - L3R,

Then substituting (5), (6), and (7) in formula (4), one obtains finally

- c3 = By # gy = ) c3 = ;1-23 ok E
3 S T %% V&3 T35 Tz 3 “e
or
3 = -
L7 = 4(c102 c3)
Theorem : In the situation of proposition 1, the number of nodes of A equals
- X 1 -
4(c1c2 - c3). Here ci = ci(E Vo T B 12,3,
Remark : If rank E = 2, then ¢z = o and the formula gives 4 ¢yc, for the number

of nodes. In fact, in this case the nodes are exactly the points where

q € T%E) vanishes and o, 15%E%) = 4e, (E¥)e, (E%) is well-known.

5. GENERALISATIONS.
Next two possible generalisations of the formula in the theorem above are given

without proofs.

a) Of course, it is not necessary to assume that dim X = 3. Also if dim X > 35
the discriminant hypersurface of a sufficiently general quadratic form
q: E — X is nonsingular in codimension 1, it represents the class 2c1(Ex),

and ifs singularities form a cycle representing the class 4(c1(EX)c2(Ex)-c3(Ex)).

b) Very often one meets twisted quadratic forms : A quadratic form on E with

values in L, some line bundle on X, is a linear morphism
q=EFE — X gL,
which is symmetric in the sense that

9=q & id, .



