FORTRAN for Scientists
and Engineers

Second Edition

Gary Bronson

Fairleigh Dickinson University

Scott/Jones Inc. Publishers
P.O. Box 696

El Granada, CA 94018
FAX (415) 726-4693

scotjones2@aol.com

Contributing Editor: Dr. Emil Neu, Stevens Institute of Technology



FORTRAN for Scientists and Engineers, Second Edition (previously Modular Fortran 77)

Gary Bronson

Copyright © 1990, 1995 by Scott/Jones, Inc.
Scott/Jones Inc. Publishers

All Rights Reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without written permission of the publisher.

ISBN 1-881991-39-3

Book Production: Cecelia G. Morales
Book Manufacturing: Data Reproduction
Cover Design: Vicki Lin

Printed in the United States of America

BE4N5 201 VWXYZ

ADDITIONAL TITLES OF INTEREST FROM SCOTT/JONES

The DOS-6 Coursebook Quickstart in Windows
by Forest Lin by Stewart Venit
Quickstart in DOS (120 pages) Quickstart in C++

by Forest Lin by William Jones

The 1-2-3 Coursebook The Visual Basic Coursebook
The 1-2-3 Primer by Forest Lin

both by Forest Lin

The DOS Primer (covers versions 3 and 5)

by Dorothy Calvin

Modern FORTRAN 77/90: Alternate Edition

by Gary Bronson

Assembly Language for the IBM PC Family

by William Jones

C by Discovery, Second Edition (emphasizing ANSI C)
by L. S. Foster

WordPerfect 6.0a for Windows

by Rolayne Day

The Windows Textbook
by Stewart Venit



Preface

The successes of both Modular FORTRAN 77 and Modern FORTRAN 77/90 and
the resulting user feedback from these texts provided invaluable insight into the
needs and diversity of the community of FORTRAN instructors.

On the positive side, there was almost universal agreement that FORTRAN
is still one of the most powerful and easy to use high-level computer languages
available for engineering and scientific applications. Certainly this viewpoint is
significantly enhanced with the addition of pointers and targets in the new FOR-
TRAN 90 standard, which adds to FORTRAN the additional features of dynamic
memory allocation that Pascal and C provide.

The second, almost universally agreed upon point was that FORTRAN should
be taught using the modular programming techniques that have been developed
over the thirty years since FORTRAN was commercially produced. These, of
course, are the same principles emphasized in all structured languages. But there
the agreement seemed to end and widely varying opinions began.

For example, about half of the professors helping in the development of the
previous texts felt that formatting should not be introduced until late in the text;
while the other half insisted that formatting should be introduced early. Simi-
larly, many reviewers indicated that they required the use of the WRITE state-
ment, while just as many insisted that the WRITE statement be avoided in favor
of the PRINT statement, to sidestep the need for explicit output unit numbers.

Yet nowhere was this diversity of opinion more apparent than regarding
how modularity should be introduced. Many FORTRAN instructors seem to
either want, or be willing to tolerate, an introduction of modular concepts as
early as possible in the course, but under a host of conditions. Others insisted
that modular concepts be introduced on “day one” of their course, and sustained
throughout the semester. This lead to two distinct books—Modular FORTRAN
77, which provided a more flexible approach to when modular concepts had to
be introduced, and Modern FORTRAN 77/90, which adhered to a “day one” ap-
proach. This edition is a continuation of the more flexible approach adopted by
Modular FORTRAN 77, but with many new features. Based on this approach, the
introduction of modular concepts was written so that a variety of professors
could mold it to their own way of teaching and to the requirements of each class.

Features Providing Flexibility

Modularity. This book, like its Modular FORTRAN 77 predecessor, was written
to provide a flexible tool to allow each instructor to teach FORTRAN as a modu-
lar language to the extent and at the pace desired. As one reviewer of the first
edition put it, “The book has successfully managed in Chapter One to introduce
the concept of modularity in a painless and effective manner.” After Chapter
One, the book provides a flexible tool that each professor can use in a variety of



Preface

ways, depending on how much modularity they want to introduce, and when they
want to introduce it. The Enrichment Section at the end of Chapter Two pro-
vides the means for introducing the passing of arguments early in the course.

PRINT and WRITE Statements and FORMATTING. The sections on the WRITE
statement, PRINT statement, and formatting provide the means of introducing
these topics early. For more advanced classes, any or all of these topics may be
introduced early in the course. Equally as effective, any or all of these topics may
be skipped until the classroom environment is ready for them. I would not myself
teach the PRINT and WRITE statements “back-to-back,” but I have tried to struc-
ture the text so that those who prefer to cover the WRITE statement early can
omit the PRINT statement, and those who would cover the PRINT statement early
can omit the WRITE statement. And in either case, explicit formatting can either
be initially included or omitted in favor of simple list-directed output.

New and Distinctive Features of this Book

In addition to the prime goal of providing flexibility to each instructor, this
edition contains a number of new and distinct features. These include over 100
new engineering-oriented problems, a section on the importance of libraries, and
a new chapter on matrices and Gaussian Elimination techniques. Additionally,
the following features, some of which have been retained from the first edition,
are contained in this text:

ANSI FORTRAN 90 Features. Unlike the first edition, in which FORTRAN 77
was used throughout the text, FORTRAN 90 features are integrated and high-
" lighted throughout this edition. Although the new standard recommends that,

except for FORTRAN 66 and FORTRAN 77, the name of the language be spelled
as Fortran, we will use the notation FORTRAN 77 and FORTRAN 90 for consistency.

Lab Projects. Chapter 15 contains a set of lab exercises for the prior chapters.
Although some of these projects were contained in Modular FORTRAN 77/90,
most of them are new. All of them require a deeper understanding of FORTRAN
and necessitate an integration of input, processing, and output concepts for their
completion. They require the students to prepare a documented and formatted
report in a professional manner. Both sample data and report structures are provided.

Enrichment Sections. Given the many different emphases that can be applied
in teaching FORTRAN, I have added a number of Enrichment Sections to most
of the chapters in this text. These allow you to provide different emphasis with
different students or different FORTRAN class sections.

Applications. Engineering and scientific examples are used throughout the text
to both motivate and illustrate concepts presented in the text. Additionally, the
majority of the chapters have a section consisting of two specific applications
relating to the material presented in the chapter. I believe the mix of applications
both heighten the interest of students and reinforce software engineering concepts.

Exercises. A wide range of exercises are included at the end of almost every
section, rather than just at the end of each chapter. They range from skill builders,
to programming assignments, to debugging exercises. In addition there are many
program modification assignments and over 100 new engineering oriented problems.



Preface [RYl

Program Testing. Every single FORTRAN program in this text has been suc-
cessfully compiled and executed by myself. The majority of these are included on
the diskette provided with the text..

Comparative Charts for Different Compilers. Throughout this text I have
tried to allow for differences between the different computing environments in
which FORTRAN can be taught. As a result, I have displayed these differences in
a table whenever a significant variation seemed to occur.

Readability. The one thing I have found most important in my own teaching is
regardless of the subject being written about, it must be written so that students can read
it. As a result, I have taken every precaution for this material to be clear, unam-
biguous, and deliberate.

Acknowledgements

FORTRAN for Scientists and Engineers, 2nd Edition, is a direct result of the success
(and the limitations) of Modular FORTRAN 77 and its “sister” edition Modern
FORTRAN 77/90.

Users of these texts who provided feedback from their teaching experiences
made an invaluable contribution to the quality of this text. They include Shui
Lam (Cal State Long Beach); Mary Kay Frohock (University of Kansas); Kris
Froehlke (Indianapolis University/Purdue University); Josef Zurada (University
of Louisville); Robert Kenyon (University of Illinois at Chicago); Terry Thul
(New Mexico State University); Randy Odendahl (SUNY Oswego); Chris Connant
(Broome Community College); Martha Tillman (College of San Mateo); and
Scott Bailey, Peter Smith, and Ginter Trybus (Cal State Northridge).

Personal telephone conversations with five users of Modular FORTRAN 77
also had a profound impact on my preparation of this text. I deeply appreciate the
time and thoughts of Josan Duane (Ohio State University); S. Srinivasan (Univer-
sity of Louisville); Richard Martin (Southwest Missouri State); Neil Sorensen (Weber
State University); and Kent Dunham (University of Idaho). Many of their sugges-
tions for improving Modular FORTRAN 77, which were incorporated into Modern
FORTRAN 77/90, have also been incorporated into this edition.

I was also fortunate to have four consulting editors whose teaching environ-
ments and orientations were different and complimentary to my own. Each of
them contributed trenchant and thoughtful criticisms, as well as original work of
their own, towards completion of this text. It has been a privilege to work with
them: Judy Cain (Tompkins-Cortland Community College); John Lyon (Univer-
sity of Arizona); Wesley Scruggs (Brazoport College); and Howard Silver (Fairleigh
Dickinson University). Additionally, I would like to thank Jerry Wolfe, of Wolfe
and Hurst, Inc., for graciously explaining the technical aspects of his applications.

Perhaps most fortuitous was a reintroduction to an unusually thoughtful,
delightful, and gifted engineer from Stevens Institute of Technology, who gra-
ciously agreed to become a contributing editor to this edition. My education at
Stevens was both professionally and personally rewarding. Over time, however, I
had forgotten how very fortunate I was in having a marvelous group of truly
gifted and talented professors—not only in electrical engineering, but also in
mathematics, the other engineering disciplines, humanities, and even physical
education. My education at Stevens was all I could wish for—an introduction to
a lifetime journey—and I would like to especially thank all of my teachers. I have
the privilege of citing Dr. Emil Neu, my contributing editor, as one example of
the excellence with which I was surrounded. Thank you, Professor Neu.



viii

Preface

It has also been a privilege to work with my friend and publisher Richard
Jones, who has been in spirit what every author wishes a publisher to be: a
partner. Finally, the task of turning the final manuscript into a textbook again
depended on many people other than myself. For this I especially want to thank
the copy editor, Sheryl Strauss, and the compositor, Cecelia Morales. The dedi-
cation of these two people, their attention to detail, and their high standards,
have helped in many ways to improve the quality of this book. Almost from the
moment the book moved to the production stage these two individuals seemed
to take personal ownership of the text, and I am very grateful to them.

No acknowledgement would be complete without also mentioning the di-
rect encouragement and support provided by the Vice President of Academic
Affairs at Fairleigh Dickinson University, Dr. Geoffrey Weinman, my Dean, Dr.
Paul Lerman, and my Chairman Dr. Naadimuthu. Without their support, this
text could not have been written.

Finally, I deeply appreciate the patience, understanding, and love provided
by my friend, wife, and partner, Rochelle.

Gary Bronson

Dedicated to Rochelle, Matthew, Jeremy, David, and Sparky



Contents

Preface v

Fundamentals 1

1.1
12
1.5
I
1.5
1.6
15

Introduction to Programming 1
Introduction to Modularity 7

How Program Units Are Built 13
Wiriting Complete Programs 20
Common Programming Errors 28
Chapter Summary 29

Enrichment Study: Computer Hardware
and Storage 31

Data and Operations 37

2.3
24
2.5
2.6
2.7
2.8
29

Data Types and Arithmetic

Operations 37

Variables and Declaration

Statements 47

Assignment Statements 56

Formatted Output 66

Top-Down Program Development 82
Applications 90

Common Programming Errors 98
Chapter Summary 99

Enrichment Study: Exchanging Data with
Subroutines 101

3.5
3.6
3.7
3.8

Completing the Basics 105
Intrinsic Functions 105
The List-Directed READ Statement 113
The Formatted Read Statementl 126

Named Constants: The PARAMETER
Statement 134

Applications 139

Common Programming Errors
Chapter Summary 149
Enrichment Study: Program Life
Cycle 150

148

| Selection

155

4.1
4.2
3
4.4
#5
4.6
i
4.8

155
161
170

Relational Expressions
The IF-ELSE Structure
The IF-ELSEIF Structure
The CASE Structure 176
Applications 180

Common Programming Errors
Chapter Summary 189
Enrichment Study: A Closer Look at
Errors, Testing, and Debugging 192

188

197

The DO-WHILE Structure 197
READing Within a Loop 206
The DO Statement 216

DO Loop Programming
Techniques 224

Nested Loops 230
REPEAT-UNTIL Loops 234
Common Programming Errors
Chapter Summary 237

237

' One Dimensional Arrays

239

6.1

6.2

6.3
6.4
6.5
6.6

Declaring and Processing One
Dimensional Arrays 239

The DATA Statement and Array
Initialization 249

Applications 253

Common Programming Errors
Chapter Summary 265
Enrichment Study: Sorting and
Searching 266

264



-ﬂiim-fbimensional Arrays 277
7.1 Two Dimensional Arrays 277

7.2 Matrix Operations 283

7.3 Applications 293

7.4 Common Programming Errors 304

7.5 Chapter Summary 305

-Eodularity Using Functions 307

8.1 Subprogram Functions 307

8.2 Statement Functions 318

8.3 Applications 320

8.4 Common Programming Errors 326

8.5 Chapter Summary 327

8.6 Enrichment Study: Programming
Costs 327

9 Modularity Using Subroutines 331

Subroutine Program Units 332
Program Development Using
Subroutines 345

9.3 Arrays as Arguments 357

94 COMMON Blocks 363

9.5 Applications 368

9.6 Common Programming Errors 383
9.7 Chapter Summary 385

9.8 Enrichment Study: Program
Libraries 387

| Data Files 389
10.1 Creating and Using List-Directed Data
Files 389 .

10.2 User-Formatted Files 399

10.3 Applications 407

10.4 Common Programming Errors 415

10.5 Chapter Summary 416

10.6 Enrichment Study: Writing Control
Codes 417

11 Additional Data Types 421

DOUBLE PRECISION Data 421
COMPLEX Data 425

String and Substring Processing 428
Common Programming Errors 436
Chapter Summary 437

m Numerical Techniques

and Applications 439

12.1 Root Finding 439

12.2 Numerical Integration 457

12.3 Common Programming Errors 476
12.4 Chapter Summary 477

13 Additional Data File
Capabilities - 479

13.1 Text (Formatted) Files 479

13.2 Binary (Unformatted) Files1 482
13.3 File Statements 484

13.4 Direct Access Files 490

13.5 Common Programming Errors 496
13.6 Chapter Summary 497

14 Structures 501

14.1 Data Structures 501

14.2 Pointers and Targets 511

14.3 Linked Lists 514

144 Common Programming Errors 521
14.5 Chapter Summary 522

15 Laboratory Assignments 523
Appendices
A Program Entry, Compilation,

and Execution 555

Format Specifications 560

Operator Precedence Table 562
Floating Point Number Storage 563
Additional Statements 566
Instrinsic Furiction Reference 580
ASCII Character Codes 583

AEEHgO®

Solutions 584

Index 642




n Getting Started

Chapter One

1:1
1.2
1.3
1.4
1.5
1.6
1.7

Introduction to Programming
Introduction to Modularity
How Program Units Are Built
Writing Complete Programs
Common Programming Errors
Chapter Summary

Enrichment Study: Computer Hardware and Storage

1.1

Introduction to Programm’..,

or lawn
hsk it was

A computer is a machine and Ifk¢ briy Vmjch !

mower, it must be turned on afld then drlven or

,}k saul
controlled, to othe

meant to do. In an automobile, for examp ntrol provele d by the d§iver, who
sits inside of and directs the calf In a co 1ve a set of infructions,
called a program. More formalfly, a compu 'ogv ence of irftructions
that is used to operate a comp NaiimaRin cagrazzmning is the

process of writing these instructions in a language that the computer can respond
to and that other programmers can understand. The set of instructions that can be
used to construct a program is called a programming language.

On a fundamental level, all computer programs do the same thing; they
direct a computer to accept data (input), to manipulate the data (process), and to
produce reports (output). This implies that all computer programming languages
must provide essentially the same capabilities for performing these operations.
This is indeed the case and the fundamental set of instructions provided by such
high-level procedure-oriented computer languages as FORTRAN, BASIC, COBOL,
and Pascal is listed in Table 1.1. The term high-level refers to the fact that the

Process
- the Data

Figure 1-1 All Programs Perform the Same Operations




3 - Chapter One Getting Started

Table 1-1 Programming Language Insfruction Summary
R E———— S C B S e L e e e ]

statements in these languages resemble English statements. The term procedure-
oriented refers to the fact that these languages are primarily used to describe
procedures for producing specific results.

If all programming languages provide essentially the same features, why are
there so many of them? Simply because there are vast differences in the types of
input data, calculations needed, and required output reports. For example, scien-
tific and engineering applications usually require high-precision numerical outputs,
accurate to many decimal places. In addition, these applications typically use
many algebraic or trigonometric formulae to produce their results. For example,
calculating the bacteria concentration level in a polluted pond, as illustrated in
Figure 1-2, requires evaluation of an exponential equation. For such applications,
the FORTRAN programming language, with its algebra-like instructions, is ideal.
FORTRAN, whose name is an acronym derived from FORmula TRANslation, was
commercially introduced in 1957 and was originally designed for translating
formulae into computer-readable form. It was the first high-level language to be

Figure 1-2 FORTRAN is Ideal for Scientific and Engineering Applications



=]

1.1 Introduction to Programming

developed. The current standard for FORTRAN, commonly referred to as FOR-
TRAN 90, is maintained by the American National Standards Institute (ANSI).

Algorithms

P ——

Before a program is written, the programmer must have a clear understanding of
what the desired result is and how the proposed program is to produce it. In this
regard, it is useful to realize that a computer program describes a computational
procedure.

In computer science, a computational procedure is called an algonthm
More specifically, an algorztbm is j}cﬁned as a step-by-step sequence of instruc-
tions that describes how a computation is to be performed. In essence, an algo-
rithm answers the question, “What method will you use to solve this computa-
tional problem?” Only after we clearly understand the algorithm and know the
specific steps required to produce the desired result can we write the program.
Seen in this light, programming is the translation of the selected algorithm into a
language that the computer can use.

To illustrate an algorithm, we shall consider a simple requirement. Assume
that a program must calculate the sum of all whole numbers from 1 through 100.
Figure 1-3 illustrates three methods we could use to find the required sum. Each
method constitutes an algorithm.

Figure 1-3 - Summing the Numbers 1 Through 100



Chapter One Getting Started

Clearly, most people would not bother to list the possible alternatives in a
detailed step-by-step manner, as is done in Figure 1-3, and then select one of the
algorithms to solve the problem. But then, most people do not think
algorithmically; they tend to think heuristically or intuitively. For example, if
you had to change a flat tire on your car, you would not think of all the steps
required—you would simply change the tire or call someone else to do the job.
This is an example of heuristic thinking.

Unfortunately, computers do not respond to heuristic commands. A gen-
eral statement such as “add the numbers from 1 to 100” means nothing to a
computer, because the computer can only respond to algorithmic commands
written in an acceptable language such as FORTRAN. To program a computer
successfully, you must clearly understand this difference between algorithmic
and heuristic commands. A computer is an “algorithm-responding” machine; it is
not a “heuristic-responding” machine. You cannot tell a computer to change a
tire or to add the numbers from 1 through 100. Instead, you must give the
computer a detailed step-by-step set of instructions that, collectively, forms an
algorithm. For example, the set of instructions

Set n equal to 100

Set a = 1
Set b equal to 100
Calculate sum = (n(a +# b)) / 2

Print the sum

forms a detailed method, or algorithm, for determining the sum of the numbers
from 1 through 100. Notice that these instructions are not a computer program.
Unlike a program, which must be written in a language the computer can re-
spond to, an algorithm can be written or described in various ways. When En-
glish-like phrases are used to describe the algorithm (processing steps), as in this
example, the description is called pseudocode. When mathematical equations are
used, the description is called a formula. When pictures that employ specifically
defined shapes are used, the description is referred to as a flowchart. A flowchart
provides a pictorial representation of the algorithm using the symbols shown in
Figure 1-4. Figure 1-5 illustrates the use of these symbols in depicting an algo-
rithm for determining the average of three numbers.

Because flowcharts are cumbersome to revise, the use of pseudocode to
express the logic of an algorithm has gained increasing acceptance in recent years
among programmers. Unlike flowcharts, where standard symbols are defined,
there are no standard rules for constructing pseudocode. In describing an algo-
rithm using pseudocode, short English phrases are used. For example, acceptable
pseudocode for describing the steps needed to compute the average of three
numbers is:

Input the three numbers into the computer
Calculate the average by adding the numbers and
dividing the sum by three

Display the average

Only after an algorithm has been selected and the programmer understands
the steps required can the algorithm be written using computer-language state-
ments. When computer-language statements are used to describe the algorithm,
the description is called a computer program.

From Algorithms to Programs
—_— e v =

After an algorithm has been selected, it must be converted into a form that can be
used by a computer. The conversion of an algorithm into a computer program,



1.1 Introduction to Programming

Input
Values for
A B, and C

Calculate

‘ Figure 1-5 Flowchart for
: : ' - Calculating the Average
Figure 1-4 Flowchart Symbols of Three Numbers

using a language such as FORTRAN, is called coding the algorithm (see Figure 1-6).
Much of the remainder of this text is devoted to showing you how to code algo-
rithms into FORTRAN.

Program Translation

Once a program is written in FORTRAN it still cannot be executed on a computer
without further translation. This is because the internal language of all computers
consist of a series of 1s and 0s, called the computer’s machine language. To gener-
ate a machine language program that can be executed by the computer requires
that the FORTRAN program, which is referred to as a source program, be trans-
lated into the computer’s machine language (see Figure 1-7).

The translation into machine language can be accomplished in two ways.
When each statement in a high-level-language source program is translated indi-
vidually and executed immediately, the programming language used is called an
interpreted language, and the program doing the translation is called an interpreter.

When all of the statements in a source program are translated before any
one statement is executed, the programming language used is called a compiled
language. In this case, the program doing the translation is called a compiler.



A Translate

into a
Step-by-Step L
Procedure Cl °mp:t;é

Figure 1-6 Coding an Algorithm

Translation

Program

Figure 1-7 Source Programs Must Be Translated

FORTRAN is a compiled language. Here, the source program is translated as a
unit into machine language.

The output produced by the compiler is called an object program. An object
program is simply a translated version of the source program that can be executed
by the computer system with one more processing step. Let us see why this is so.

Most FORTRAN programs contain statements that use prewritten library
routines for finding such quantities as square roots, exponential values, and other
mathematical functions. Additionally, a large FORTRAN program may be stored in
two or more program files. In such a case, each file can be compiled separately.
However, both files must ultimately be combined to form a single program before
the program can be executed. In both of these cases it is the task of a linker
program, which is frequently called automatically by the compiler, to combine all
of the library routines and individual object files into a single program ready for
execution. This final program is called an executable program. (See Appendix A for a
complete description of entering, compiling, and running a FORTRAN program.)

Skill Builder Exercises

1. Determine a step-by-step procedure (list the steps) to do these tasks:
(Note: There is no one single correct answer for each of these tasks. The exercise
is designed is to give you practice in converting beuristic commands into equiva-
lent algorithms and making the shift between the thought processes involved in
the two types of thinking.)

a. Fixa flat tire

b. Make a telephone call
c. Log in to a computer
d. Roast a turkey

2. Are the procedures you developed for Exercise 1 algorithms? Discuss
why or why not.

3. Determine and write an algorithm (list the steps) to interchange the
contents of two cups of liquid. Assume that a third cup is available to hold



1.2 Introduction to Modularity

the contents of either cup temporarily. Each cup should be rinsed before
any new liquid is poured into it.

4. Write a detailed set of instructions, in English, to calculate the resistance
of the following resistors connected in series: n resistors, each having a
resistance of 56 ohms, m resistors, each having a resistance of 33 ohms,
and p resistors, each having a resistance of 15 ohms. Note that the total
resistance of resistors connected in series is the sum of all individual
resistances.

5. Write a set of detailed, step-by-step instructions, in English, to find the
smallest number in a group of three integer numbers.

6. a. Write a set of detailed, step-by-step instructions, in English, to calcu-
late the change remaining from a dollar after a purchase is made.
Assume that the cost of the goods purchased is less than a dollar. The
change received should consist of the smallest number of coins pos-
sible.

b. Repeat Exercise 6a, but assume the change is to be given only in
pennies.

7. a. Write an algorithm to locate the first occurrence of the name JONES
in a list of names arranged in random order.
b. Discuss how you could improve your algorithm for Exercise 7a if the
list of names was arranged in alphabetical order.

8. Write an algorithm to determine the total occurrences of the letter e in
any sentence.

9. Determine and write an algorithm to sort four numbers into ascending
(from lowest to highest) order.

1.2 Introduction to Modularity

A well-designed program is constructed using a design philosophy similar to that
used to construct a well-designed building; it doesn’t just happen, but depends
on careful planning and execution for the final design to accomplish its intended
purpose. Just as an integral part of the design of a building is its structure, the
same is true for a program.

In programming, the term structure has two interrelated meanings. The
first meaning refers to the program’s overall construction, which is the topic of
this section. The second meaning refers to the form used to carry out the indi-
vidual tasks within the program, which is the topic of Chapters 4 and 5. In
relation to its first meaning, programs whose structure consists of interrelated
segments, arranged in a logical and easily understandable order to form an inte-
grated and complete unit, are referred to as modular programs (Figure 1-8). Not
surprisingly, it has been found that modular programs are noticeably easier to
develop, correct, and modify than programs constructed otherwise. In general
programming terminology, the smaller segments used to construct a modular
program are referred to as modules.

In a modular program each module is designed and developed to perform a
clearly defined and specific function. This function can be tested and modified
without disturbing other modules in the program. The final program is then
constructed by connecting as many modules as necessary to produce the desired




1Chopfer One Getting Started

L b

Figure 1-8 A Well-Designed Program Is Built Using Modules

result. Unfortunately, each programming language has its own specific name for
modules. In FORTRAN, a module is referred to as a program unit.

Program Units
| -t

A program unit is essentially a small program in its own right. As such, a pro-
gram unit must be capable of doing what is required of all programs: receive
data, operate on the data, and produce a result (see Figure 1-9). Unlike a larger
program, however, a program unit performs only limited operations. Typically,
each program unit performs a single task required by the larger program of
which it is a part.

A complete program is constructed by combining as many program units as
necessary to produce the desired result. The advantage to this modular construc-
tion is that the overall design of the program can be developed before any single
program unit is written. Once the requirements for each program unit are
finalized, each unit can be programmed and integrated within the overall pro-
gram as it is completed.

Operations
on the Data

Figure 1-9 A Program Unit
Receives Data, Operates

on the Data, and Produces
a Result



1.2 Introduction to Modularity n

FORTRAN provides three common types of program units: the MAIN, SUB-
ROUTINE, and FUNCTION types.! Each of these program unit types performs a
specific type of task. We shall learn and use all of these unit types as we progress.

It is useful to think of a program unit, regardless of its type, as a small
machine that transforms the data it receives into a finished product. For ex-
ample, Figure 1-10 illustrates a program unit that accepts three numbers and
calculates their average to produce an output.

The MAIN Program Unit

A distinct advantage to using program units in FORTRAN is that we can plan in
advance the overall structure of the program, including making provisions for
testing and verifying the operation of individual units. We first determine the
individual tasks required of each unit, and establish how the units will be com-
bined. Only after the overall structure of the program has been designed is each
program unit written to perform its required task.

To provide for the orderly placement and execution of individual program
units, every FORTRAN program must have one, and only one, MAIN program
unit (Figure 1-11). This MAIN unit is frequently referred to as the driver unit,
due to its function of telling all other program units the sequence in which they
are to be executed.

Figure 1-12 illustrates a complete MAIN program unit. The first line in the
program unit, PROGRAM TEST, is called a header line. The word PROGRAM in
the header line identifies the beginning of a MAIN program unit. The word
TEST is a user-selected name for this MAIN unit. The rules for choosing your
own program unit names are presented at the end of this section.

The end of a MAIN unit is always designated by the word END, written on
a line by itself. Both words, PROGRAM and END, are examples of FORTRAN
keywords. A keyword is a word that takes on a special meaning when it is used in a

First Second Third
Number Number Number

Main Unit

You go first

You go next

You go last

Figure 1-10 A Program Unit That Figure 1-11 The MAIN Program Unit
Averages Three Numbers Directs All Other Units

! A fourth type, BLOCK DATA , described in Section 9.3, is rarely used.



