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Preface

This volume contains the papers presented at the 8th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX 2005) and the 9th International Workshop on Randomization and
Computation (RANDOM 2005), which took place concurrently at the University
of California in Berkeley, on August 22-24, 2005. APPROX focuses on algorith-
mic and complexity issues surrounding the development of efficient approximate
solutions to computationally hard problems, and APPROX 2005 was the eighth
in the series after Aalborg (1998), Berkeley (1999), Saarbriicken (2000), Berke-
ley (2001), Rome (2002), Princeton (2003), and Cambridge (2004). RANDOM is
concerned with applications of randomness to computational and combinatorial
problems, and RANDOM 2005 was the ninth workshop in the series follow-
ing Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva (2000), Berkeley
(2001), Harvard (2002), Princeton (2003), and Cambridge (2004).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space and data
streaming algorithms, sub-linear time algorithms, embeddings and metric space
methods, mathematical programming methods, coloring and partitioning, cuts
and connectivity, geometric problems, game theory and applications, network
design and routing, packing and covering, scheduling, design and analysis of ran-
domized algorithms, randomized complexity theory, pseudorandomness and de-
randomization, random combinatorial structures, random walks/Markov chains,
expander graphs and randomness extractors, probabilistic proof systems, ran-
dom projections and embeddings, error-correcting codes, average-case analysis,
property testing, computational learning theory, and other applications of ap-
proximation and randomness.

The volume contains 20 contributed papers selected by the APPROX Pro-
gram Committee out of 50 submissions, and 21 contributed papers selected by
the RANDOM Program Committee out of 51 submissions.

We would like to thank all of the authors who submitted papers, the members
of the program committees
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The Network as a Storage Device:
Dynamic Routing with Bounded Buffers

Stanislav Angelov*, Sanjeev Khanna**, and Keshav Kunal***

University of Pennsylvania, Philadelphia, PA 19104, USA
{angelov,sanjeev,kkunal}@cis.upenn.edu

Abstract. We study dynamic routing in store-and-forward packet net-
works where each network link has bounded buffer capacity for receiving
incoming packets and is capable of transmitting a fixed number of pack-
ets per unit of time. At any moment in time, packets are injected at
various network nodes with each packet specifying its destination node.
The goal is to maximize the throughput, defined as the number of packets
delivered to their destinations.

In this paper, we make some progress in understanding what is achievable
on various network topologies. For line networks, Nearest-to-Go (NTG),
a natural greedy algorithm, was shown to be O(nz/ 3)-competitive by
Aiello et al [1]. We show that NTG is O(/n)-competitive, essentially
matching an identical lower bound known on the performance of any
greedy algorithm shown in [1]. We show that if we allow the online routing
algorithm to make centralized decisions, there is indeed a randomized
polylog(n)-competitive algorithm for line networks as well as rooted tree
networks, where each packet is destined for the root of the tree. For grid
graphs, we show that NTG has a performance ratio of ©(n?/) while no
greedy algorithm can achieve a ratio better than £2(y/n). Finally, for an
arbitrary network with m edges, we show that NTG is é(m)-competitive,
improving upon an earlier bound of O(mn) [1].

1 Introduction

The problem of dynamically routing packets is central to traffic management
on large scale data networks. Packet data networks typically employ store-and-
forward routing where network links (or routers) store incoming packets and
schedule them to be forwarded in a suitable manner. Internet is a well-known
example of such a network. In this paper, we consider routing algorithms for
store-and-forward networks in a dynamic setting where packets continuously ar-
rive in an arbitrary manner over a period of time and each packet specifies its
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destination. The goal is to maximize the throughput, defined as the number of
packets that are delivered to their destinations. This model, known as the Com-
petitive Network Throughput (CNT) model, was introduced by Aiello et al [1].
The model allows for both adaptive and non-adaptive routing of packets, where
in the latter case each packet also specifies a path to its destination node. Note
that there is no distinction between the two settings on line and tree networks.
Aiello et al analyzed greedy algorithms, which are characterized as ones that
accept and forward packets whenever possible. For the non-adaptive setting,
they showed that Nearest-to-Go (NTG), a natural greedy algorithm that favors
packets whose remaining distance is the shortest, is O(mn)-competitive! on any
network with n nodes and m edges. On line networks, NTG was shown to be
O(n?/3)-competitive provided each link has buffer capacity at least 2.

Our Results. Designing routing algorithms in the CNT model is challenging
since buffer space is limited at any individual node and a good algorithm should
use all nodes to buffer packets and not just nodes where packets are injected.
It is like viewing the entire network as a storage device where new information
is injected at locations chosen by the adversary. Regions in the network with
high injection rate need to continuously move packets to intermediate network
regions with low activity. However, if many nodes simultaneously send packets to
the same region, the resulting congestion would lead to buffer overflows. Worse
still, the adversary may suddenly raise the packet injection rate in the region of
low activity. In general, an adversary can employ different attack strategies in
different parts of the network. How should a routing algorithm coordinate the
movement of packets in presence of buffer constraints? This turns out to be a
difficult question even on simple networks such as lines and trees.

In this paper, we continue the thread of research started in [1]. Throughout
the remainder of this paper, we will assume that all network links have a uniform
buffer size B and bandwidth 1. We obtain the following results:

Line Networks: For line networks with B > 1, we show that NTG is O(y/n)-
competitive, essentially matching an £2(y/n) lower bound of [1]. A natural ques-
tion is whether non-greedy algorithms can perform better. For B = 1, we show
that any deterministic algorithm is §2(n)-competitive, strengthening a result
of [1], and give a randomized O(y/n)-competitive algorithm. For B > 1, how-
ever, no super-constant lower bounds are known leaving a large gap between
known lower bounds and what is achievable by greedy algorithms. We show
that centralized decisions can improve performance exponentially by designing a
randomized O(log3 n)-competitive algorithm, referred to as Merge and Deliver.

Tree Networks: For tree networks of height h, it was shown in [1] that any
greedy algorithm has a competitive ratio of £2(n/h). Building on the ideas used

! The exact bound shown in [1] is O(mD) where D is the maximum length of any
given path in the network. We state here the worst-case bound with D = 2(n).
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Table 1. Summary of results; the bounds obtained in this paper are in boldface.

IXlgorithm | Line I Tree Grid | General ]
Greedy 2(vn) 1| 2(n) 1] |2(v/n)| 2(m)
NTG O(v/n) O(n) |B(n*3)| O(m)
Previous bounds |0O(n??) [1]| O(nh) [1] - O(mn) (1]
Merge and Deliver (M&D)| O (log®n) [O(h log® n) - -

in the line algorithm, we give a O(log® n)-competitive algorithm when all pack-
ets are destined for the root. Such tree networks are motivated by the work on
buffer overflows of merging streams of packets by Kesselman et al [2] and the
work on information gathering by Kothapalli and Scheideler [3] and Azar and
Zachut [4]. The result extends to a randomized O(hlog? n)-competitive algo-
rithm when packet destinations are arbitrary.

Grid Networks: For adaptive setting in grid networks, we show that NTG with
one-bend routing is ©(n?/3)-competitive. We establish a lower bound of £2(,/n)
on the competitive ratio for greedy algorithms with shortest path routing.

General Networks: Finally, for arbitrary network topologies, we show that any
greedy algorithm is 2(m)-competitive and prove that NTG is, in fact, é(m)—
competitive. These results hold for both adaptive and non-adaptive settings,
where NT'G routes on a shortest path in the adaptive case.

Related Work. Dynamic store-and-forward routing networks have been stud-
ied extensively. An excellent survey of packet drop policies in communication
networks can be found in [5]. Much of the earlier work has focused on the is-
sue of stability with packets being injected in either probabilistic or adversarial
manner. In stability analysis the goal is to understand how the buffer size at
each link needs to grow as a function of the packet injection rate so that packets
are never dropped. A stable protocol is one where the maximum buffer size does
not grow with time. For work in the probabilistic setting, see [6-10]. Adversarial
queuing theory introduced by Borodin et al [11] has also been used to study
the stability of protocols and it has been shown in [11, 12] that certain greedy
algorithms are unstable, that is, require unbounded buffer sizes. In particular,
NTG is unstable.

The idea of using the entire network to store packets effectively has been
used in [13] but in their model, packets can not be buffered while in transit and
the performance measure is the time required to deliver all packets. Moreover,
packets never get dropped because there is no limit on the number of packets
which can be stored at their respective source nodes.

Throughput competitiveness was highlighted as a network performance mea-
sure by Awerbuch et al in [14]. They used adversarial traffic to analyze store-
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and-forward routing algorithms in [15], but they compared their throughput to
an adversary restricted to a certain class of strategies and with smaller buffers.

Kesselman et al [2] study the throughput competitiveness of work-conserving
algorithms on line and tree networks when the adversary is a work-conserving
algorithm too. Work-conserving algorithms always forward a packet if possible
but unlike greedy, they need not accept packets when there is space in the
buffer. However, they do not make assumptions about uniform link bandwidths
or buffer sizes as in [1] and our model. They also consider the case when packets
have different weights. Non-preemptive policies for packets with different values
but with unit sized buffers have been analyzed in [16, 17].

In a recent parallel work, Azar and Zachut [4] also obtain centralized algo-
rithms with polylog(n) competitive ratios on lines. They first obtain a O(logn)-
competitive deterministic algorithm for the special case when all packets have
the same destination (which is termed information gathering) and then show that
it can be extended to a randomized algorithm with O(log? n)-competitive ratio
for the general case. Their result can be extended to get O(hlogn)-competitive
ratio on trees. Information gathering problem is similar to our notion of balanced
instances (see Section 2.3) though their techniques are very different from ours
— they construct an online reduction from the fractional buffers packet routing
with bounded delay problem to fractional information gathering and the former
is solved by an extension of the work of Awerbuch et al [14] for the discrete
version. The fractional algorithm for information gathering is then transformed
to a discrete one.

2 Preliminaries

2.1 Model and Problem Statement

We model the network as a directed graph on n nodes and m links. A node has
at most I traffic ports where new packets can be injected, at most one at each
port. Each link has an output port at its tail with a capacity B > 0 buffer, and
an input port at its head that can store 1 packet. We assume uniform buffer size
B at each link and bandwidth of each link to be 1.

Time is synchronous and each time step consists of forwarding and switching
sub-steps. During the forwarding phase, each link selects at most one packet
from its output buffer according to an output scheduling policy and forwards it
to its input buffer. During the switching phase, a node clears all packets from
its traffic ports and input ports at its incoming link(s). It delivers packets if the
node is their destination or assigns them to the output port of the outgoing link
on their respective paths. When more than B packets are assigned to a link’s
output buffer, packets are discarded based on a contention-resolution policy.
We consider preemptive contention-resolution policies that can replace packets
already stored at the buffer with new packets. A routing protocol specifies the
output scheduling and contention-resolution policy. We are interested in online
policies which make decisions with no knowledge of future packet arrivals.

Each injected packet comes with a specified destination. We assume that
the destination is different from the source, otherwise the packet is routed opti-
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mally by any algorithm and does not interfere with other packets. The goal of
the routing algorithm is to maximize throughput, that is, the total number of
packets delivered by it. We distinguish between two types of algorithms, namely
centralized and distributed. A centralized algorithm makes coordinated decisions
at each node taking into account the state of the entire network while a dis-
tributed algorithm requires that each node make its decisions based on local
information only. Distributed algorithms are of great practical interest for large
networks. Centralized algorithms, on the other hand, give us insight into the
inherent complexity of the problem due to the online nature of the input.

2.2 Useful Background Results and Definitions

The following lemma which gives an upper bound on the packets that can be
absorbed over a time interval, will be a recurrent idea while analyzing algorithms.

Lemma 1. [1] In a network with m links, the number of packets that can be
delivered and buffered in a time interval of length 7" units by any algorithm is
O(mT/d + mB), where d > 0 is a lower bound on the number of links in the
shortest path to the destination for each injected packet.

The proof bounds the available bandwidth on all links and compares it
against the minimum bandwidth required to deliver a packet injected during the
time interval. The O(mB) term accounts for packets buffered at the beginning
and the end of the interval, which can be arbitrarily close to their destination.

An important class of distributed algorithms is greedy algorithms where each
link always accepts an incoming packet if there is available buffer space and
always forwards a packet if its buffer is non-empty. Based on how contention
is resolved when receiving/forwarding packets, we obtain different algorithms.
Nearest-To-Go (NTG) is a natural greedy algorithm which always selects a short-
est path to route a packet and prefers a packet that has shortest remaining
distance to travel, in both choosing packets to accept or forward.

Line and tree networks are of special interest to us, where there is a unique
path between every source and destination pair. A line network on n nodes is a
directed path with nodes labeled 1,2,...,n and a link from node 7 to 7 + 1, for
i € [1,n). A tree network is a rooted tree with links directed towards the root.
Note that there is a one-to-one correspondence between links and nodes (for all
but one node) on lines and trees. For simplicity, whenever we refer to a node’s
buffer, we mean the output buffer of its unique outgoing link.

A simple useful property of any greedy algorithm is as follows:

Lemma 2. [1] If at some time t, a greedy algorithm on a line network has
buffered k < nB packets, then it delivers at least k packets by time t+ (n—1)B.

At times it will be useful to geometrically group packets into classes in the
following manner. A packet belongs to class j if the length of the path on which
it is routed by the optimal algorithm is in the range [27,27%!). In the case when
paths are unique or specified the class of a packet can be determined exactly.



