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PREFACE

S. Ferrara J. G. Taylor
CERN-Geneva Dept. of Mathematics
Switzerland King’s College, London

P. van Nieuwenhuizen

Institute for Theoretical Physics
State University of New York at Stony Brook

These are the Proceedings of the 1982 school on supergravity and supersymmetry
which was held at the International Centre for Theoretical Physics at Trieste, Ttaly from
6-15 September.

The lecturers at this school are all leading experts in the world of supersymmetry and
supergravity. We would like to thank them for having accepted to lecture and to write
these proceedings so soon that they can appear within six months of the school. The field
is moving so fast at the present time that for students as well as experts, a regular meeting
place where new developments are discussed and explained in a broader context is essential.
A school of this kind has become a regular event every one or two years, and the large
number of participants clearly shows an ever-growing interest in the fields of supersymmetry
and supergravity. This reflects the fact that these subjects have become among the most
active and popular in modern theoretical physics.

After the school was concluded, a workshop on supersymmetry and supergravity was
held from Thursday, 16 September until Saturday, 18 September. The list of speakers and
contributions reads:

F. ENGLERT: Spontaneous Compactification in 11-dimensional Supergravity.

P. WEST: The N =4 Supersymmetric Theory and Coset Space Dimensional Reduction.

C. ORZALESI: Generalized Kaluza-Klein Theories.

B. DE WIT: On N = 2 Supergravity Theories.

D. NANOPOQULOS: Supercosmology, Grand Unification and Supergravity.

P. TOWNSEND: Spinors and Hurwitz Algebras.

E. BERGSHOEFF: Conformal Supergravity in 10 Dimensions.

J. LUKIERSKI: Composite Gravity and Supergravity.

C. ARAGONE: The 3-Dimensional Topologically Massive Super Yang-Mills.

B. MILEWSKI: Superfield Formulation of N=2 and N =4 Super Yang-Mills Models with
Central Charge.

E. SEZGIN: Maximally Extended Supergravity Theory in 7 Dimensions.

M. SOHNIUS: Open Gauge Algebras Revisited.

A. VAN PROEYEN: Matter coupling in N = 1 supergravity.

S. FERRARA: Spontaneously Broken Local Supersymmetry.
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L. GIRARDELLO; Non-perturbative Aspects of Supersymmetry.

M. GRISARU: Super Higgs Effects in Superspace.

P. NATH: Locally Supersymmetric Grand Unification.

C. SAVOY: Proton Decay in Supersymmetric GUTS.

S. RAJPOOT: Mass Scale of Supersymmetry Breaking.

M. QUIROS: Spontaneously Broken SUSY Guts Free of Fine-Tuned Parameters and A B,
AL Troubles.

K. STELLE: N =2 Superfields and the Finiteness of N =4 Yang-Mills Theory.

N. K. NIELSEN: Zeta Function Regularization of Supergravity.

K. SIBOLD: Renormalization of N=1 SUSY Yang-Mills

O. PIGUET: Non-Renormalization of ABBJ anomaly in SUSY Yang-Mills.

J. DE AZCARRAGA: Super Fields from Quantization of a New Supersymmetric Particle

Model.

Our deep gratitude goes out to the local organizer, Professor R. Iengo, and the secretary
of the school, Louisa Sossi, for the immense amount of work which made an event of this
kind possible. Finally, we thank the Director of the Centre at Trieste, Abdus Salam, for
his enthusiastic support.
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INTRODUCTION

A. Salam
Director, International Centre for Theoretical Physics, Trieste

In 1961 R. P. Feynman was asked to summarize the Aix-en Provence Conference
on Particle Physics. This is how he started his summary.

“At each meeting it always scems to me that very little progress is made. Nevertheless, if
you look over any reasonable length of time, a few years say, you find a fantastic progress
and it is hard to understand how that can happen at the same time that nothing is happening
in any one moment (zeno's paradox).

I think that it is something like the way clouds change in the sky — they gradually fade out
here and build up there and if you look later it is different. What happens in a meeting is
that certain things which were brought up in the last meeting as suggestions come into
focus as realities. They drag along with them other things about which a great deal is dis-
cussed and which will become realities in focus at the next meeting”.

The 1982 Trieste School on Supersymmetry and Supergravity was not a meeting in
the sense of Feynman. However, the above quote from him conveys the flavour of the
situation in this subject. Thus even though the twin problems of giving a field theoretic
formulation of off-shell supergravity as well as the problem of its (and global supersymme-
try’s) physical relevance still remain with us, there has been a “sharpening of focus” since
the 1981 Trieste School. This is reflected in the present Proceedings where (even though,
in the choice of the area covered, the pattern of the 1981 School is followed) the treat-
ment of the subject is more extended, more relaxed and more didactic.

To be specific, the topics covered are: an introduction to supersymmetry by M.
Sohnius; an introduction to supergravity by P. van Nieuwenhuizen; supergraphs by M.
Grisaru, multiplet calculus by B. de Wit, gauge theories by J. Wess; extended supergravity
by J. G. Taylor and hidden symmetries in extended supergravity by E. Cremmer. The
new ground (relative to 1981) lies in the Kaluza-Klein domain and its compactification
discussed by J. Strathdee and M. Duff, with related discussions by H. Nicolai on N= 38
supergravity, and a contribution from P. Fre on supergravity in 11 dimensions in the
context of Cartan integrable systems. Finally there is the discussion of the crucial subjects
of positive energy in supergravity by D. Freedman and of the relevance of supersymmetric
grand unified theories to particle physics by S. Raby.

The School was followed by the traditional Workshop where exciting discussions
centered on spontaneous compactification and breaking of higher dimensional theories,
on N = 1 supergravity inducing breakdown of supersymmetry and superHiggs effect, on
index theorems giving criteria of supersymmetry breaking, and on the finiteness of &/ =
4 supersymmetry using light cone gauge techniques. In Feynman’s phrase these will no
doubt become the ‘“realities in focus’ at the next School and Workshop schedules for
early 1984.



Our deep appreciation for the success of the School and for the spirit which pervaded
it, goes to its Directors; Sergio Ferrara, John Taylor and Peter van Nieuwenhuizen.

Abdus Salam
7 February, 1983



Supersymmetry for Beginners

Martin F. Sohnius
Department of Applied Mathematics and Theoretical Physics
University of Cambridge, Cambridge, England

Abstract:

These lectures are an introduction to the <fundamentals of
supersymmetric field theories. They do not comprehensively
cover the subject; rather they are supposed to provide a
starting platform for the beginner who then wants to go on
and learn the subject.

1. Generators of supersymmetry and their algebra

A supersymmetry, in a wide sense of the word, is a symmetry that
relates physical properties of particles which have different spin.
Thus the "non-relativistic SU(6)" of the 1960's which attempted to
combine, for instance, spin - 3/2 resonances and spin - 1/2 baryons in
single multiplets of SU(6), was a supersymmetry in this wide sense.
Yet longer ago, Wigner's SU(4) related properties of nuclei with dif-
ferent spins., All these earlier attempts at "supersymmetry" had in
common that they could not be incorporated into relativistic field
theory: the SU(6) is a low-energy symmetry which describes the parti-
cle spectrum fairly well, but it does not describe the high-energy
dynamics, since it is not relativistically covariant. Every attempt
to "boost" the SU(6)-theory failed, and these failures finally
prompted a series of papers which culminated in a proof by S. Coleman
and J. Mandula that under certain well-gspecified conditions there is
no such thing as a supersymmetry which is consistent with relativistic

field theory.

In 1973, however, J. Wess and B. Zumino [1)] were able to write
down a mcdel field theory which was supersymmetric and satisfied all
but one of the requirements in the no-go theorem: the generators of

the supersymmetry did not generate a Lie group, as had been assumed



before, since they did not obey commutator relations but rather
anticommutator relations. The earliest paper in which such anticommuta-
tor relations were suggested was by Gol'fand and Likhtman [2], and the
first field theory with such a symmetry (in a non-linear realization
and with non~-renomalizable coupling) was developed by Volkov and Aku-
lov [3].

In this section, I shall present a framework in which to describe
Coleman and Mandula's no-go theorems [4], and I then go on to discuss
the additional possibilities that arise if statistics-changing sym—
metries are admitted {5]. These are the supersymmetries in the nar-
rower modern sense of the word, and we shall see that they necessarily

must obey anticommutator relations with each other.

1.1 Generators of symmetries

Let me first introduce the concept of a generator of a symmetry.
This is an operator in Hilbert space that replaces one incoming or
outgoing multiparticle state with another and furthermore "leaves the
physics unchanged”. The operator should act additively on direct pro-—
ducts of states, and this implies that it can be written as the pro-
duct of an annihilation operator a. ( d), which picks a part1c1e out of
a state and annihilates it, and a creatlon operator a ( B), which then
creates another particle in its stead with d1EEerent properties
(denoted by the index) and different 3-momentum. The most general

operator which is bilinear in & and a+ is
3 3 + - -
= ¢ fdpd’q a(B) K, B3 a;(F) ., (1)
i

which is detexrmined completely by the integral kernel Kli( p.3d), a c-
number function of the momenta § and § and the particle specifications
{ and /. Using the symbol ¥ for the convolutions in (1), we can write
G in the suggestive form

G =a+xKxa . (2)



The operator G will replace some incoming quantum state | in) by
another, G |/n>. We call G a generator of a symmetry if, in addi-
tion, it commutes with the S-matrix, i.e. if it does not matter

whether we "reshuffle" the state before or after an interaction has

taken place:

SG|in>=GS |In> (3)
or

(§,.G1 =0 . ()

This is a formal expreassion for what above I have called "leaving the

physics unchanged”.

The sums in (1), which in (2) are included in the * symbol, run
over all particle quantum numbers and thus also over all spin values.
There are terms which replace bosons by bosons, and others which
replace fermions by fermions, bosons by fermions and fermions by

bosons. Any G can be decomposed into an even and an odd part,
G=8+F , (5)

where the even part B is defined to always replace bosons by bosons
and fermions by fermions, while the odd part F replaces bosons by fer-

mions and fermions by bosons. Symbolically, we can write

b + FH ek, %t

+
B =b %K, ff

(6)

F = f+fobxb # bV, xr

bf
where b annihilates an integer spin particle and f a half-odd spin par-
ticle*). The symbols ¥ now of course imply summations only over the
appropriate spin values. We shall continue to use & as a generic name
for both b and f.

%) throughout, we assume validity of the spin-statistics theorem



while B's may change spin only by integer amounts (or not at
all), the F's must change the total spin of a state by a half-odd

amount, and thus are necessarily supersymmetry generators.

Henceforth we assume that our G's are either even or odd, but use

G as a generic name for both B and F.

1.2 Canonical quantisation

We assume that the particle operators obey canonical quantisation
rules. These are anticommutator relations for fermionic operators

with each other and commutator relations in all other cases:

(B, 1)@} = 8, 8%B -3)

(7)
(r.f) = ¢f,t" = o
[b(B). b(d)] = 8, 8B -7)

(8)
tb,b1=t(b, 071 =0
(b, f1 =(b,. 1 =(b5r1=(bhrty =0 . (9)

These relations can be written more elegantly: we observe that
O” O?(b’—a) is the unit element of the convolution product ¥, and we
introduce the "graded"” commutator symbol [ , } which denotes the
anticbmmutator if both operators are fermionic and the commutator in
all other cases. The canonical quantisation rules then read

[a,a+}=1 [a,a)=[a+,a } =0 . (10)

~

1.3 Algebra of generators

Let us now try to concoct a third symmetry generator 63 from two
known ones G1 and Gz. If both commute with the S-matrix, then so does
their product G:L Gz. This product, however, is not a generator of a

symmetry in the sense defined above since it is quadrilinear in



particle operators a and a+. The canonical quantisation rules suggest
1 2
that we try the commutator [G ,G ].

We first do this for two bosonic generators B1 and Bz. We can

use the quantisation rules together with the identities
(eb,c] = a({b,c] + [a,c]b = a{b,c} - {a,c}b ., (11)

which hold for any three associative objects abc, and we get after a
bit of algebra

(B ,B ] =28 ’ (12)

3 2 2 1

K = K, , XK - K, , XK
bb bb bb bb bb (13)
3 1

The commutator has turned out to be bilinear in particle opera—
tors, and is thus another generator of a symmetry. It was the quanti-
sation rules that got rid of two of the four particle operators origi~

nally present in the product.

In a very similar way, we can show that the commutator of an F

with a B gives another F:

1
(Fh. 8%y = F (14)
with

3 1 2 2 1

K> = k- xk?® - kixk

b fo *Kpp it * Kep (15)
3 1l 2 2 1

Kot = Kot X Keg = Kpp ¥ Kpg

There is, however, no way to decompose a commutator [b+f ’ I+b]

in such a way that only the proper combinations { , } appear and that



therefore the canonical quantisation rules can be used to eliminate
two of the four particle operators. Such terms appear in [Fl,Fz], and
we conclude that the commutator of two odd generators is not bilinear

in particle operators and hence not a symmetry generator.

Oon the other hand, we find that we can use the identities
{ab,c} = a{b,c} - [a,c]lb = a[b,c] + {a,c}b (16)

as well as the ones of eq. (11), and then evaluate the anticommutator

of two F's, which turns out to be the generator of an even symmetry:

1 2 3
{ F ,F } = B (17)
with
3 1 2 1
K= koK o+ K xk
bb bt * Ky bf ¥ Kep (18)
3 1 2 2 1
Kep = Kip ¥ Kpp + Ky X Kpg

The B's and the F's thus satisfy the following relations characteris-

tic of a graded Lie algebra:

c8', 8% - 8’
(F,8%) = F (19)
S -

In this subsection we have seen how the grading of the canonical
quantisation rules, i.e. that the fermions obey anticommutation rela-
tions, induces a similar grading for the bilinear combinations, the
symmetry generators. Those generators which so far we have called
"odd" behave like fermionic objects, the even ones 1like bosonic

cbjects., We can, of course, now summnarily write the algebra (19) as

(G .G } =G . (20)



if we augment our definition of [ , } by defining the grading property
of the result to be as in (19).

1.4 Graded Lie algebras

Let us explore some fundamental properties of graded Lie alge-
bras. These are defined by algebraic relations between a number of BI
and a number of Fa 3

k

[BI'B/] = icll Bk

B
al Fﬁ (20)

i
{Fa'FB} = 7013 Bl

[FalB|]=s

k i
The structure constants cll and 'ya 8 have symmetry properties,

ck=—ck y|=,yl
Ba '

if 1 H a8 (21)

and all structure constants are subject to consistency conditions

which follow from the graded Jacobi Identities
1 2 3 .
f{tG ,G},G ] + graded cyclic = 0 . (22)

The graded cyclic sum which appears here is defined just as the cyclic

sum,
6'6%G> + gr.eyel. = 6'6%6° + 626t6? + 62676t
except if two of the operators are fermionic and one is bosonic:
FFF28® + grieyer. = FFF28° + 82 F F - g F

That (22) is an identity for any three associative objects Gl, Gz and
63 is easily checked.

The requirement that the Jacobi identities be fulfilled turns out



to be equivalent to demanding that certain matrices constructed from
the structure constants should form a representation of the algebra,

the adjoint representation. These matrices are

CI o] (o} Za
B = F F = (23)
i (o] Si a r‘a ]
with
k _ . k . 8 _ B8
(Cl)l = .LclI ] (sl)a S i (24)
o i . 8 _ 8
Todg = Ygq ; (L), Sia

The requirement that these matrices should form a representation is

equivalent to the following four conditions:

(a) the matrices Cl represent the lle subalgebra of the B's (this is

the subalgebra's adjoint representation);

(b) the matrices Si also represent the Lie subalgebra of the B's
(this is the representation of the subalgebra under which the F's

transform and which need not be irreducible);

i
(c) the 'yaB

subalgebra of the B's:

are a numerically invariant tensor under the Lie

o] f
(Sl)a 'yOB

+ (SI)BG "aoi - "’aﬁk €y =0 (25)

(d) there is a cyclic identity involving § and 7:

'yaﬁ s + cyclic (a-B8-yv) = 0 . (26)

i

1.5 The Coleman-Mandula theorem
S. Coleman and J, Mandula [4] have studied the properties of all
bosonic generators of symmetries in the mathematical framework of

relativistic field theory. The assumptions they made (non-trivial S-

matrix, etc.) can hardly be questioned from the point of view of
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physics, except perhaps for the "strong spectral assumption” that
there should be only one zero-mass state, the unique vacuum. That
assumption, however, is introduced mainly to avoid infrared problems,
and relaxing it - with the hope that infrared problems will somehow
take care of themselves - alters their result only in that the confor-
mal group may be admitted as symmetry group in place of the Poincare

group if all one-particle states are massless [5].

The fact that their investigation was limited to Lie groups of
symmetries excluded fermionic generators, and thus supersymmetry as we
know it, from the beginning, since these do not generate Lie groups.
Nevertheless, their results still hold for the bosonic subset of all
our generators and, through the conditions of the previous subsection,

severely restrict the fermionic subset as well.

They found that any group of bosonic symmetries of the S-matrix
in relativistic field theory is the direct product of the Poincaré
group with an internal symmetry group. The latter must furthermore be
compact and itself be the direct product of a semisimple group with
U(1) factors,

The bosonic generators are thus the four momenta Pll- and the six
Lorentz generators M‘w, plus a certain number of internal symmetry
generators, which I now want to call Br' The algebra is that of the

Poincareé group

P .M = i P -n P
[P, Mool = i(n, Po=m, P (27

(M Moo = 1M MM " oMo P ueMup)

plus that of the internal symmetry group

. t

and the direct-product structure manifests itself in the vanishing of

the commutators

(Pu.Blﬂ(M B 1 =0 . (29)
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In other words, the Br must be translationally invariant Lorentz

scalars.

The Casimir operators of the Poincaré group are the mass—-square*)

operator P = P P”' and the generalised spin operator W WALW# , where
W is tne Pauh—Lubansk:. vector®*¥)

wh =

Platdad P, M (30)

[Nl

feXe]

In the rest frame of a massive state we have P =(m, 0,0,0) and

2
w m M with M =(M23,M31, 12)
These Casimir operators commute with the entire Poincareé group

and also with all internal symmetry generators:
2
(8,.,Ww'1=o0 (31)
2
[Br’P]=° . (33)

The first of these equations means that all members of an irreducible
multiplet of the internal symmetry group must have the same spin, i.e.
that there are no bosonic generators of supersymmelries. The second
equation says that they all must have the same mass. This latter

result is somewhat older and known as O’Ralfeartalgh’s theorem ([6].

In the case that all states are massless and have discrete spin,
we have W”’= )\P”' (A half-integer) and P2 =W2 =0, Again, no Br can
change the helicity A since [Br , Pﬂ-] = [Br R Wll-] = 0, and the above
theorem about the absence of bosonic supersymmetries still holds. Let
me state the Coleman-Mandula no-go theorem in a positive way:

All generators of supersymmetries must be fermionic, I.e. they

must change the spin by a half-odd amount and change the
statistics of the state.

¥) my metric is ‘noo = —17“ =1,

¥¥) the totally antisymmetric tensor is normalised to 60123 = 1
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