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GENERAL REMARKS AND PREREQUISITES

1.1 Introduction

1.2 Differentiable manifolds

1.3 Riemannian manifolds
Metrics, connections and curvatures
Particular spaces

1- Int ction

Physical motivations

It is nowadays believed that it is possible and useful to describe
physics in an "extended” space-time. Events that we see and that we
measure are usually described by 3+1 numbers labelling the position
and the time. Forces acting on objects and influencing their
trajectories have also been described in the past in term of various
tensor fields defined on a four dimensional manifold modelising the
"space of events". It happens that, in many cases,the theory takes a
simpler form if we assume that what we observe is just a shadow
(projection) of something that takes place in space-time which has
more than 4 dimensions. As an example, it has been recognised long
ago that coupled gravitational and electromagnetic fields respectively
described by a (4 dimensional) hyperbolic metric and a Maxwell field
(a U(1) connection), could be also described by a U(1) invariant
metric on a five-dimensional space. It is very possible (and it is the
belief of the authors) that a correct formalization of the physics of
"our universe" should involve an infinite dimensional manifold, and
that for reasons which are still unknown, what we see classically
looks four -dimensional. The fact that we do not see the extra
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dimensions (those of the so called "internal space” ) can be described,
if not explained,by the fact that the metric of our multidimensional
universe singles out some directions along which it is invariant or at
least equivariant (in some sense).

Many papers have been published recently in the physical
literature presenting many different constructions,sometimes under
the same headings (Kaluza-Klein theories, Dimensional reduction,
Symmetries of gravitational and gauge fields , etc.); very often the
generality of the described situation was not studied. One of the aims
of the present book is to present the geometrical and analytical
aspects of "dimensional reduction” and to discuss with more generality
several situations which have been considered in the past.

Content of the book

What the book is really about is Riemannian geometry of those
spaces on which a group action is given (with a view on applications
to physical theories -"unified theories"-). This study involves in
particular the geometry of group manifolds, homogeneous spaces,
principal bundles, non principal bundles (with group action),.., but
also, in order to study the different kinds of “fields" defined on those
spaces, it requires an appropriate generalization of (non abelian)
harmonic analysis.

Each chapter of the book begins with a summary section which
stresses the main ideas jn plain terms ; the reader willing to make his
knowledge more precise should then read the rest of the chapter
where a more detailed discussion (using a more precise mathematical
language) is given. The summary introductions do not usually require
any knowledge of fiber bundles; however,we use freely the
corresponding terminology and results in the core of each chapter.
Indeed, although the summary section usually describes everything in
a "local” way (e.g. using coordinates ), we always want to render our
considerations global.

The remaining sections of this first chapter recall some standard
definitions of differential (Riemannian) geometry and has also the



purpose of setting our conventions. Most of the results discussed here
will be used freely in all chapters of the book; however, we should
mention that the reader who wants to recast Riemannian geometry in
the general framework of the theory of connections should jump
directly to Ch.6, where these notions are developed from scratch.
Anybody willing to construct physical models generalizing the
"old" Kaluza-Klein ideas should be first acquainted with some basic
facts about the Riemannian structure(s) of Lie groups (Ch.2) and
homogeneous spaces (Ch.3). The study of G-invariant metrics on
groups and homogeneous spaces is also compulsory if one wants to
analyse the situation when the space is a (generally only local)
product of some manifold M times a group G or a homogeneous space
G/H. G-invariant metrics on principal bundles and non-principal
bundles carrying a G action are discussed respectively in Ch.4 and
Ch.S5. A general study of the Riemannian geometry of "matter fields”,
i.e., vector valued functions (or forms) defined on a manifold (in
particular the covariant derivative acting on tensors, spinors, p-forms
valued in some vector space...) is made in Ch.6 (this chapter could be
read independently of the rest of the book). It is well known that,
when a real (or complex) valued function is defined on a group or on a
homogeneous space, it is possible to "expand” it (think of the usual
spherical harmonics); however, when the underlying space is only a
(local) product of some manifold M by G or G/H, the formalism has to
be generalised and this is done in Ch.7. The particular case where such
matter fields are usual tensors or spinors is studied in Ch.8 (G-spin-
structures are naturally obtained there as a result of a process of
“dimensional reduction”). The techniques described in particular in
chapters 5, 7 and 8 provide us with a "general-purpose-tool” that we
may use in several situations; as an example of such a use, we study
in Ch.9 the dimensional reduction of Einstein-Yang-Mills systems i.e.
analyse the geometry of a manifold on which both metric and
connection are given, along with the action of a symmetry group. We
will study this case by showing how it can be reduced to the situation
studied in Ch.S. Finally, in Ch.10, we consider a more general situation
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where there is no global action of a finite dimensional Lie group G but
where we can nevertheless define "interesting metrics' which are
invariant under a "bundle of groups" (infinite dimensional groups of
automorphisms of bundles are defined and studied in section 4.11).

Each main section of the book ends with a paragraph entitled
"Pointers to the literature”; indeed, references are usually not given
within each chapter but collected at the end.

New results

Before ending this introduction, we should maybe mention what
is "original” in this book and what can be found elsewhere. It is clear
that the whole discussion of homogeneous metrics on Lie groups and
coset spaces can be found in a scattered way inside many papers of
the mathematical literature. However the general discussion of
metrics leading to "dimensionnal reduction”, and in particular the
general study of metrics on bundles with homogeneous fibers is
probably new: although known "in principle”, many explicit
constructions and calculations carried out here do not seem to have
been discussed elsewhere in the mathematical or in the physical
literature (but by the authors themselves).

Also, let us mention a few other mathematical (or physical)
constructions hardly to be found elsewhere: generalization of
Frobenius and Peter-Weyl theorems (in Ch.7), intrinsic definition of
the Lichnerowicz operator (in Ch.6), non-standard discussion of
Einstein-Cartan theory with spinors (in Ch.6), link between G-spin
structures and dimensional reduction (in Ch.8), generalization of the
Wang theorem on G-invariant connections (in Ch.9), definition and
study of "local" action of groups (bundle of groups, in Ch.4.11 and
Ch.10).



How toread the book?
Method 1: from the beginning to the end.
Method 2: read only the summary sections.

The following diagram illustrates the interdependency of the
chapters:

—> denotes a compulsory logical link
— denotes an optional logical link

Start

|

O
A

v



1.2 Diff iat ifold

For this,we refer to the standard literature. Notice that a
topological space is not necessarily a differentiabte manifold (it has to
be smooth !). Also, a given topological manifold may be endowed with
none or several differentiable structures. For example, the number of
inequivalent differentiable structures for spheres is 1 for SP (p<6), 28
for 87, 8 for $9, 2 for S10, 992 for §11, while R4, being truly
exceptional, is believed to have even uncountably many different
differentiable structures. The concept of differentiable structure
should not be confused with that of metric structure (the later beeing
defined after the former). Unless otherwise specified, by "manifold"
we will always mean here "differentiable manifold with a given
smooth structure”. Many concrete manifolds we shall deal with will be
homogeneous spaces; unless otherwise specified, by a homogeneous
space we will always mean here homogeneous space with the smooth
structure induced by the quotient space definition. In most examples
of low dimensionality, the smooth structure is unique, anyway.
Notice in particular that when we discuss "non standard” metrics on
some spheres -as in sect.3.4-3.6-, we will assume that the sphere has
a fixed differentiable structure.

Since there exists several conventions in the definitions of
exterijor deivative and exterior products, we give here those that we
will follow.

f being a function on the manifold M, (a zero-form), we write its
differential as df = 9,f dx¥ in the coordinate basis {dx*). Let now w
be a k-form, we write it as w =1/Kk! wj;
differential dw (a k+1-form ) is given by

dw = 1/7k! dwj i dxila. . adxik,

ik dxila..adxik  and its



Observe that we know what dwj; ;, is since w;;  isa

function. The exterior differential d is the unique operator such that,
for all forms wq, Woy,

d(wj+wy) = dw + dw,,
dwiawsz) =dwi AWy + (-1)XW; A dw,; (W] being a k-form)
d2=0

Moreover, if £y, E.....E¢,| are vector fields on M, we have
dw(E ), E2onkret) = Ticg kot (FDILE (B, B Egar)
+ leisjsn (-1)i+j w([gi,gj],gl, ..,Ei,..,Ej,..,Ek+1)

The group of permutations I, acts as follows on k-upples of
vectors

cer : 0(V1.Vz,---,Vk)=(Vc(1)-Vc(z),--~,Vc(k))

Let T be a covariant tensor of rank k; then we get a fully
antisymmetrised tensor Alt T via the equation

At T = 1/kl Egerk €6, T.0

This equation also defines the operator Alt. Notice that thanks to
the presence of 1/k!, we have AIt((Alt we¢PleB) = Alt(weveB)

= Alt(weAlt(eB)),
w,$ and B being covariant tensors.

Let us now take w a k-form (completely antisymmetric tensor of
rank k) and a a |-form; then we define their exterior product as
follows

waa = (k+DI/kI'D Alt{wea)

In particular, if W and « are 1-forms, we get WAd = WRA-ABW.
Notice that if w is a k-form, then Alt(w)=w and that a has the
following properties (call Qk the space of k-forms)

i) a is distributive over + from the left and from the right

ii) a(waa) = awaa = Waaa  with aelR.

iii)  waa = (-1)klaarw where w e QK a € Q,



(in particular, if w is odd waw = 0).

If ¢ denotes a smooth map from a manifold M to a manifold N, we
will write ¢ (sometimes d¢) for the tangent map (locally it can be
written as the Jacobian matrix of partial derivatives) and ¢* for the
cotangent map. Notice that vectors can be pushed forward in the
direction of the map but forms are pulled back (if vH are the
components of a vector of M, then agw. vH are those of its push-
forward in N, whereas if a;are the components of a 1-form in N, then
agxpi. a; are those of its pull back in M). Finally, if «w and t© are forms
in N, we have ¢ (wat)=9-(w)ap=(t).

1.3 Ri . ifold

We now give some notations and state without much discussion
some well known formulae of Riemannian geometry. This serves
mainly the purpose of setting our conventions (for a more precise
definition of the concepts involved, the reader may consult chapt. 6).

1.3.1 Metrics, connections and curvatures

Metrics
The metric g(y) at the point y describes a scalar product g( , )
in the tangent space at y and can be represented as a matrix (gyy(y))

or as
g(y)=guy(y) dy¥ e dyV
in a coordinate basis {dyH}. It can also be represented as a matrix
gij or as
g(y)=gij(y) wi(y) e wily)
in a moving frame of forms {wi(y))}.
Calling (gHV(y)) the inverse of the matrix (gy,(y)), we may

consider the following object which defines a scalar product in the
cotangent space at 'y



