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Editor’'s Statement

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely
to survive changes of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in
no particular order, but will be organized into sections, each one compris-
ing a recognizable branch of present-day mathematics. Numbers of volumes
and sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied -
but where it has not yet penetrated because of insufficient information. -

GiaN-CARLO ROTA



Foreword

Entropy is a subject which has played a central role in a number of
areas such as statistical mechanics and information theory. The connec-
tions between the various applications of entropy have become clearer in
recent years by the introduction of probability theory into its foundations.
It is now possible to see a number of what were previously isolated results
in various disciplines as part of a more general mathematical theory of
entropy.

This volume presents a self-contained exposition of the mathematical
theory of entropy. Those parts of probability theory which are necessary
for an understanding of the central topics concerning entropy have been
included. In addition, carefully chosen examples are given in order that the
reader may omit proofs of some of the theorems and yet by studying these
examples and discussion obtain insight into the theorems.

The last four chapters give a description of those parts of information
theory, ergodic theory, statistical mechanics, and topological dynamics
which are most affected by entropy. These chapters may be read indepen-
dently of each other. The examples show how ideas originating in one area
have influenced other areas. Chapter III contains a brief description of
how entropy as a measure of information flow has affected information
theory and complements the first part of The Theory of Information and
Coding by R. J. McEliece (volume 3 of this ENCYCLOPEDIA). Recent
applications of entropy to statistical mechanics and topological dynamics
are given in chapters V and VI. These two chapters provide a good
introduction to Thermodynamic Formalism by D. Ruelle (volume 5 of this
ENCYCLOPEDIA). The chapter on ergodic theory describes the develop-
ment of Kolmogorov’s adoption of Shannon entropy to the study of
automorphisms on a finite measure space. It contains the culmiration of
this work in the proof of the Isomorphism Theoreia of Kolmogorov and
Ornstein. The mathematical treatment presented here of the major proper-
ties of entropy and the various applications to other fields make this
volume a valuable addition to the ENCYCLOPEDIA.

~ James K. Brooks
General Editor, Section on Real Variables



Preface

Thirty years ago, Claude Shannon published a paper with the title “A
mathematical theory of communication”. In this paper, he defined a quan-
tity, which he called entropy, that measures the uncertainty associated with
random phenomena. The effects of this paper on communications in both
theory and practice are still being felt, and his entropy function has been
applied very successfully to several areas of mathematics. In particular, an
extension of it to dynamic situations by A. N. Kolmogorov and Ja. G. Sinai
led to a complete solution of a long-unsolved problem in ergodic theory, to a
new invariant for differentiable dynamic systems, and to more precision in
certain concepts in classical statistical mechanics.

Our intent in this book is to give a rather complete and self-contained
development of the entropy function and its extension that is understand-
able to a reader with a knowledge of abstract measure theory as it is taught
in most first-year graduate courses and to indicate how it has been applied
to the subjects of information theory, ergodic theory, and topological
dynamics. We have made no attempt to give a comprehensive treatment of
these subjects; rather we have restricted ourselves to just those parts of the
subject which have been influenced by Shannon’s entropy and the
Kolmogorov-Sinai extension of it. Thus, our purpose is twofold: first, to
give a self-contained treatment of all the major properties of entropy and its
extension, with rather detailed proofs, and second, to give an exposition of
its uses in those areas of mathematics where it has been applied with some
success. Our most extensive treatment is given to ergodic theory, since this is
where the most spectacular results have been obtained.

The word entropy was first used in 1864 by Rudolph Clausius, in his
book Abhandlungen iiber die Wirmetheorie, to describe a quantity accompa-
nying a change from thermal to mechanical energy, and it has continued to
have this meaning in thermodynamics. The connection between entropy as a
measure of uncertainty and thermodynamic entropy was unclear for a
number of years. With the introduction of measures, called Gibbs states, on
infinite systems, this connection has been made clear. In the last chapter, we
discuss this connection in the context of classical lattice systems.

In this connection we cannot resist repeating a remark made by Claude
Shannon to Myron Tribus that Tribus reports in his and Edward
Mclrvine’s article “Energy and information™ (Scientific American.' 1971).
Tribus was speaking to Shannon about his measure of uncertainty and

Xvii



Xviii Preface

Shannon said, “My greatest concern was what to call it. I thought of calling
it ‘information,” but the ‘'word was overly used, so I decided to call it
‘uncertainty.” When 1 discussed it with John von Neumann, he had a better
idea. Von Neumann told me, You should call it entropy, for two reasons. Ir¢
the first place, your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the second place,
and more important, no one knows what entropy really is, so in a debate
you will always have the advantage.” We hope our reader will also have the
advantage after reading this book.

The preparation of our manuscript would have been much more difficult
without the generous suprert of the Mathematics Departments at the
University of Virginia and Swarthmore College, and the careful and accu-
rate typing of Beverley Watson, whose care and patience in typing the bulk
of the manuscript and whose facility for accurately translating the first
author’s tiny, sometimes illegible, scrawl are most gratefully acknowledged.
Our thanks also go to Janis Babbitt, Barbara Smith, and Jo Fields, who
typed portions of the first chapter, and to Marie Brown, who typed the
revisions. Finally, our thanks go to Alan Saleski for his careful reading of
the first three chapters.

NATHANIEL F. G. MARTIN
JAMES W. ENGLAND
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CHAPTER 1

Topics from Probability Theory

In this preliminary chapter we shall give an exposition of certain topics
in probability theory which are necessary to understand and interpret the
definition and properties of entropy. We have tried to write the chapter in
such a way that a reader with a knowledge of measure theory as given in
Ash [15], Halmos [55], or any other basic measure theory text can follow
the arguments and understand the examples. We introduce just those parts
of probability theory which are necessary for the subsequent chapters and
attempt to make them meaningful by use of very simple examples. We also
restrict the discussion to “nice” probability spaces, so that conditional
expectation and conditional probability are more intuitive and hopefully
easier to understand. These “nice” spaces also make it possible to use
partitions as models for random experiments, even those experiments
which are limits of sequences of experiments.

1.1 Probability Spaces

Entropy is a quantitative measurement of uncertainty associated with
random phenomena. In order to define this.quantity precisely, it is neces-
sary to have a mathematical model for random phenomena which is
general enough to include many different physical situations and which
has enough structure to allow us to use mathematical reasoning to answer
questions about the phenomena. ‘

Such a model is given by a mathematical structure called a probability
space, which is nothing more than a measure space in which the measure
of the universe set is 1. Thus, a probability space is a triple (2, %, P) where
Q is a set, ¥ is a collection of subsets of Q,and P is a nonnegative real
valued function defined on % such that
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