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Preface

This book is a revision and major expansion of Theory of Laminated Plates by
J. E. Ashton and J. M. Whitney published in 1970. In the original book both the
theoretical development and pertinent solutions for plates fabricated of thin layers
of anisotropic material were presented. With the expanded structural use of
advanced composite materials comes a continued need for a textbook which
addresses the structural behavior of laminated plates. Five of the original seven
chapters are contained in the present book with minor revision. The subject
matter of the remaining two chapters is contained in the new book with major
revision. In addition, the new book contains four additional chapters which in-
clude material on laminated beams, expansional strain effects, curved plates, and
free-edge effects.

The objective of this book is to provide a clear foundation in the theory of
laminated anisotropic plates, including the problems of bending under transverse
load, stability, and free-vibration. Although the theoretical development is com-
plete, the principal demonstration of the behavior of laminated plates is made
through the presentation of a large number of actual solutions. In particular, the
effects of bending anisotropy, stacking sequence, and bending-stretching coupling
are illustrated through numerous solutions with comparison to the simpler cases
of orthotropic plates. The solutions presented by J. E. Ashton in Chapters 4 and
5 of the original book are contained in Chapters 5 and 6 of the new book with
some revision, including new material. These solutions have become a classic in
laminated plate analysis and form an important part of the new book.

The book contains eleven chapters. Chapter 1 presents fundamental infor-
mation from anisotropic elasticity; Chapters 2 and 3 provide a development of
the governing partial differential equations and boundary conditions, including
variational forms, for thin laminated anisotropic plates subject to the assumption
of non-deformable normals. Chapter 4 treats one-dimensional theories associated
with cylindrical bending and laminated beams. Chapter 5 treats the simplified
form of the laminated plate equations equivalent to homogeneous orthotropic
plates. This form of the equations is rarely applicable to real laminated plates
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Xii Preface

except as an approximation, and Chapters 6 and 7 indicate the effect of an as-
sumption of orthotropic behavior by comparing solutions, including bending
anisotropy (Chapter 6) and bending-stretching coupling (Chapter 7) to these
orthotropic solutions. In Chapter 8 the effect of expansional strains on the
behavior of laminated plates is presented. Example problems include the effects
of thermal expansion and dimensional changes induced by matrix swelling
associated with moisture absorption. The basic theory is extended to cylindrical
plates in Chapter 9. In Chapter 10 a higher order theory applicable to laminated
anisotropic plates which includes the effects of transverse shear deformation is
developed. Solutions involving the higher order theory are compared to results
obtained from classical laminated plate theory in which transverse shear defor-
mation is neglected. A discussion of sandwich plates is also included in Chapter
10. Free-edge effects are discussed in Chapter 11 along with the development of
a higher order laminated plate theory which includes a thickness-stretch mode in
addition to transverse shear deformation. The new theory is then applied to an
approximate free-edge analysis of cross-ply laminates.

This book is intended to combine theoretical development with solutions to the
governing equations in order to indicate the importance of stacking sequence,
degree of bending anisotropy, bending-extensional coupling, expansional strains,
transverse shear deformation, and free-edge effects. A software program called
LAMPCAL is available with the book to perform many of these calculations. The
appendix of this book provides a full description of LAMPCAL and can serve as
the users’ guide. It is hoped that engineers and materials scientists will find both
the book and software useful in developing an understanding of laminated struc-
tural elements.

JAMES M. WHITNEY
Dayton, Ohio
March 1987
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C HAPTER 1

Theory of an Anisotropic
Elastic Continuum

1.1 INTRODUCTION

ITH THE INCREASED use of composite materials in structural applications
Whas come a need for the analysis of laminated anisotropic plates. This
chapter provides the fundamental principles of anisotropic elasticity from which
laminated plate theory is developed in the following two chapters. Much of the
presentation on anisotropic elasticity is based on the works of Lekhnitskii [1] and
Hearmon [2]. A detailed derivation of the theory of finite deformations can be
found in Fung [3].

1.2 STRESS AND STRAIN IN AN ANISOTROPIC CONTINUUM

Figure 1.1 shows the stress nomenclature in cartesian coordinates. In linear
mechanics little or no distinction is made between the stresses with respect to the
deformed and undeformed coordinates since the difference is a second order ef-
fect. However in the development of a plate theory which includes inplane force
effects it is useful to relate stresses on the deformed body to the initial configura-
tion.

Consider a force vector dF acting on a deformed surface dS and a correspond-
ing force vector dF, acting on the same surface in the undeformed state dS, . The
stress components in the deformed state are given by the Cauchy relationship:

3
dF;, = X r1;ndS (1.D)

where 7, are components of the Eulerian stress tensor and n; are direction
cosines of the outward normal to the deformed surface. The Kirchhoff stress ten-
sor refers to the original configuration and its components are defined as follows:

3 3 ox
dFo,' = E Oijn.,jds,, = E ?dﬂ (1.2)
j=1 F= 1%
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Figure 1.1. Stress nomenclature on body in deformed state.

where o, are the components of the Kirchhoff stress tensor, n,; are direction
cosines of the outward normal to the undeformed surface, x; are coordinates of
the undeformed surface, and X; are coordinates of the deformed surface.

In order to determine the principal stresses in a plate it is often necessary to
consider the stresses with respect to an axis system rotated in the plane of the
plate. Consider a rotation through an angle 6 from x, and x, about the x; axis (see

Figure 1.2). The rotated axes are denoted by x;” and x,’. The transformed
stresses o;;," are given by

011 m? n? 0 o0 0 2mn 011

022 n? m? 0 o0 0 —2mn 022

03" | _ 0 0 1 0 0 0 Oss (1.3)
023 0 0 O :m —n 0 0,

Ois 0 0 0 +n m 0 Oia

012 —mn  mn 0 0 0 (m* — n?®)|| oy

where m = cos 6, n = sin 6.
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3

For finite deformation the Green strain tensor is used. The strain displacement

relations are given by

ou, 1[( ou, \? ou, \? dus \?
“ = Tax, 2 L( ax, ) % ( 9x, ) * ( ax, ) (1.4
u, 1[/{ ou, \? u, \? us; \*|
ta = 3x2 - 2 ( ax;) * ( axZ) o ( a.X2) (15)
3u3 J1E [ aul 2 auz 2 auS 2T
Gan = T 0s 2 ( axg) » ( 6x3) * ( 3x3) (1.9
ous ou, ou, Ou, ou, O0u, ous Ous
e ST T T o | On B il B . O
ous ou, du, Ou, ou, Ju, dus Ous
T b e v il e e e =l L
ou, ou, ou, 0ou, ou, ou, Ous Ous
B R R ™ o o, T o B,
S|
%
X]
////
+8

/

1|8

~_

Figure 1.2. Rotation of axes.
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where ¢, are engineering strains and u, are displacements along the x; coordinate.
For small displacement theory Equations (1.4-1.9) become

u, u, _ Ous
Gy = 'E € = ox, &3 = a_xs
(1.10)
ous du, _ Ous ou, _ Ouy u,
= ox, N ET Il 7 o, T o, * ax,
For a rotation about the x; axis we have the following transformation:
B B i [
€11 m? n? 0 0 0 mn Eat
€1, n? m? 0 0 0 —mn €22
€33 . 0 0 1 0 0 0 €33 (1.11)
€13 0 0 0 m —n 0 €23
€13 0 0 0 n m 0 €13
€1, —2mn 2mn 0 0 0 (m* — n?) Lelz
— - L — -

1.3 EQUATIONS OF MOTION AND COMPATIBILITY

The Kirchhoff stress tensor must satisfy the following nonlinear equations of
motion:

a b ou, ou, N ou,
ox, | ax, + o ox;, 93 o,

N d 1+ ou, " ou, 5 du,
ox, | 7 ax, 922 oy, T YaTH (1.12)
3 aul au1 aul azul
+ F™y [013(1 + Foe ) + 023 x, + 033 %, ] + X, = o, o

a ou, ou, ) du, ]
b {05 San -+ T2 l e + 0,3
ax, (

X1 x, oxs
d ou, ) auz) b ou, ] 1L13)
+—| ou—+ o0 —|+o0 :
O e i ax; ? o,
i) ou, ou, ou, 0%u,
+ T3 -+ 023 I 4 —_— 033 = Xz = Qo
0x;3 ox, 0x, X3 ar?
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a a a du
— | Ou u3+012‘£+0’13(1+'—3)]

ax, ox, 0x, 0x;
+ ) [ dus N dus N - ous
Ty = (0 ) & St g ——
e L ax T ok, ox; (49

a all; ang au3 azu3
+ O3 + 03—+ 03| 1 +— + X; = @,
0x; ox, ox, 0x; or?

where ¢ denotes time, g, is the density, and X; are body forces. For linear small
deformation theory, Equations (1.12-1.14) become

60“ aU|2 6013 azul
+ + 1 = Qo
ox, 0x; 0x; or?
do b} do 0?2
ot oty N = Gyt (L15)

ax, ax, ax; ar?
6013 T 6(723 + 6033 3 - azug
ax, ax, 0xs3 = at?

Given a strain field the question arises as to how Equations (1.10) can be inte-
grated to determine the displacements. Since there are six strain equations in
three unknown displacements, solutions will not be single-valued or continuous
unless certain relations are satisfied. The following compatibility equations from
linear theory of elasticity are well known.

0%y, _ 0%€y, + d%€xn (1.16)
3x,0x, ox3 ox}
62623 _ 62612 # 62633 (117)
3x,0x; Ax3 ax3
626|3 - 62611 62633 (118)
0x,0x; ox3 ox?
62611 = l (—_ afzs % 0€3 + aflz ) (119)
0x,0X3 9x; 0x, 0x, 0x3
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62622 a 3623 6613 aflz
e Ll 2 o + (1.20)
3x13x3 ax; ax, a.X2 a.x;
Feasy | D (af” L ) 1.21)
0x,0x; O0x; \ ox, ax; 0x;

14 GENERALIZED HOOKE’S LAW

Consider the following contracted stresses and strains:
01 = 01 03 = O3 03 = 03304 = O3 05 = 013 O = Os2 (1.22)
€1 = €11 €2 = €33 €3 = €33 €4 = €33 €5 = €13 €¢ = €12 (123)

Using Equations (1.22) and (1.23), the generalized Hooke’s law can be written in
the following matrix form:

_01- —Cu Ciz2 Ciz Cis Cis  Cie 61-
03 Ci2 Cz Ca3 Cqa Cas Cy6| | €2
O3 _|Ciza Ca3 C3z C3a C35 C3| €3 (1.24)
04 Cig Caa C3a Cag Cas Cas €4
Os Cis Cs C3s Cas Css Cse| |E€s
L06 Cie €6 C3ic Cas Cs6 Ces| | €s
2 i i gl =

where c;; is the stiffness matrix. Equation (1.24) can be written in the inverted
form

6
€ = E SijUj (125)

where s;; is the compliance matrix. Obviously the compliance matrix is the in-
verse of the stiffness matrix.

For the general case there are 21 independent elastic constants. If, however,
there are any planes of elastic symmetry this number is reduced. Assume that the
Xs-axis is perpendicular to a plane of elastic symmetry. Then

Cia = Ci5 = C24 = C25 = C34 = C35 = Ca6 = Cs6 = 0



