' tewts

ESigma Technical Press

Operating Systems:
a user-friendly
guide

Alan Trevennor

Copyright © Alan Trevennor

All Rights Reserved. No part of this book shall be reproduced by any
means without the written permission of the copyright holder, except
for the use of short extracts used in reviews, or for scholarly research
and for any other purposes as defined by current laws as they affect
photocopying practices.

Notice: Some material contained in this book has been adapted in part
from publications of Digital Equipment Corporation. The material so
published herein is the sole responsibility of the author of this book.

ISBN:0905104 668

Published by: Sigma Technical Press
5 Alton Road
Wilmslow
Cheshire SK95DY, UK.

Distributed by John Wiley and Sons Ltd
Baffins Lane
Chichester
SussexP0191UD

Printed and bound in Great Britain by
J. W. Arrowsmith Ltd., Bristol

This book is dedicated with love to my wife Wendy, who suspended
herincomprehension long enough to translate and type the text.

PREFACE

| wrote this book because, three years ago when | looked forit, 1 could
not find it.

This book is all about computer operating systems, from the non-
software person’s viewpoint. The really unusual thing about it,
however, is that | have used the three Digital Equipment Corporation
operating systems, RSTS, RSX and VMS as sources for examples.
Every book | could lay my hands on three years ago used IBM or ICL
or some other company’s operating systems in examples. Since that
point three years ago, | have conducted a lot of practical, hands-on
research into these particular DEC operating systems; notata MACRO
decoding level, but by daily usage of them and by probing into the way
they implement the facilities they provide. All this time | have been
(and am) a working hardware engineer and an enthusiastic —through
struggling—BASIC programmer.

I have often heard it said that DEC RSTS (pronounced Ristus and short
for Resource Sharing Time Sharing) is the most widely installed
minicomputer operating system in the world. How true this is | cannot
say, but it must surely be close to it. There will, therefore, be many
thousands of people using it every day in many parts of the world. In
addition to those systems running RSTS, the number of machines
running RSX (Resource Sharing eXecutive) is also large, especially in
the scientific and educational fields. The newer VMS operating
system, running on DEC’s range of VAX processors, will surely
overhaul RSTS in the popularity stakes at some stage.

The number of people involved with these three operating systems is
therefore large. It is to these people that this book is offered as a
crystallisation of the things they already know, or suspect, about
operating systems.

This is what | meant when | said | could not find this book. | make no
claim to being the ultimate expert on the subject, but merely pass on
what | have learned as an appetite whetter for the reader to use as a
springboard to more academic and detailed works, after reading what
is, in effect, my written-up notes.

A.Trevennor

CONTENTS

INTRODUCTION e

Sources forexampleso Lo
Assumptions aboutthereader
Reading Order i i

CHAPTER1
MEET THE SYSTEM

1.1 Major Operating System Components
1.2 Hardware Interface and Management
1.3 Operating System Users

—the major groups and theirneeds
1.4 Operating System ‘Musts’

CHAPTER 2
MAJOR OPERATING SYSTEM COMPONENTS DESCRIBED

21 TheFileProcessor. i i i i i i ii i i
221/0DriVers o e e e e e e e e e e e e
23 The Memory Manager
24 Language Support. a e e e
25 The Job Scheduler
26 Command Interpreter

CHAPTER3
BREATHING LIFE INTO THE BEAST

31ATugattheBootstraps
3.2 How VMS is bootstrapped
3.3 How RSX is bootstrapped
3.4 How RTS is bootstrapped
3.5Some general points about bootstrap

or initialisation failure
3.6 Methods for isolating boot failures

CHAPTER 4
INTRODUCTION TO AND REASONS FOR HAVING FILE STRUCTURE

4.1 RSTS File Structure inDetail 52
4.2 Other Methods of File Structuring 68
4.3 File Structure Maintenance 69
44 CIusters. i e e e e e e e e e 76
CHAPTERS
THE ERROR OFOURWAYS
5.1 Error Logging — How it functions 80
5.2 ErrorLogExamples oL 83
5.3 Analysing system crashes

determining theircauses 88
CHAPTERG6
“ON MY LEFT, THE SOFTWARE...ON MY RIGHT, THE HARDWARE"
6.1 Buffering of Information 99
6.2 Cacheing—Its effect on System Throughput

and Hardware Usage 103
6.3 Spool Programs e 106
6.4 Setting Up the Job Priorities 108
6.5 Language Support. oo e 110
CHAPTER?7
THEMYSTERIOUS CASE OF THE SLOW SYSTEM
7.1 System Monitoring 112
7.2 The System Monitor Programs 113
7.3 Using the system monitor and statistical programs

totunesystemst 121
7.4 Case Study: RSTSQSTATS 125
7.5 Altering systems to make them

run more efficiently, 130
7.6 System alterations: other considerations 139
CHAPTERS
GETTINGPERSONAL 142
APPENDIX 1 it e et et e148

APPENDIX2 Sy m 150

APPENDIX3

APPENDIX 4

GLOSSARY OF TERMS

INTRODUCTION

This text is intended as a guide to the simpler aspects of computer
operating systems, and is biased towards the non-software oriented
computer person. The book will give an insight into the internal
workings of the operating systems —without going into the fine details
or getting down to the actual program listings for any one operating
system. Many examples are used to illustrate the general information
presented, and the actual operating systems from which these
examples are drawn are listed in the next paragraph. So why do non-
software people need to know about operating systems? Anybody
who uses a computer uses an operating system of some kind. As most
failures on systems occur when they are running an operating system
it is of great value to have a clear idea of how the operating system
works. This will enable the reader to talk on a higher level to system
managers, who are very often heavily software oriented. The reader
will also find it easier to talk about operating systems to software
people. And last but certainly not least, the subject is a very interesting
one and, at this level, not too difficult to understand.

Sources For Examples

The examples throughout the text are drawn from the following
operating systems, all of which are products of DEC (Digital
Equipment Corporation):

1. RSTS/E = Resource Sharing Time Sharing / Extended. (Examples
use version 7)
2.RSX = Resource Sharing Executive. (Examples use version 4)

3.VMS = Virtual Memory System. (Examples use version 3)

The reader should not infer, except where specific attributed
examples are given, that the text describes exactly any or all of these
operating systems; nor, in the case of the “average” hardware
described, should it be thought to be an average solely of DEC
hardware. Rather, an average of many operating systems and many

manufacturers’ hardware has been attempted with examples to clarify
the information presented, being given from the above sources. These
three operating systems were chosen because of the author's
familiarity with them, and because of their very widespread use
throughout the world.

Assumptions About The Reader

Obviously you should be used to using an operating system,
preferably one of the three used in the examples. You should be
familiar with computer hardware terminology, although a glossary is
included of the general computer terms used in the text. The only
other assumption made is that you have a need to learn more about
operating systems.

Reading Order

It would probably be best for readers with anything less than a
rudimentary knowledge of operating systems to begin at the
beginning and work through. Readers who do not fall into this
category can probably skip chapters one and two, and start at chapter
three, as they may already be familiar with the ideas introduced in the
first two chapters, and can in any case refer back to them if, in the rest
of the book, they discover some concept which they do not fully
understand.

CHAPTER 1
Meet the System

So now we arrive at the inevitable question, “What is an operating
system?” It may be defined as a set of software routines for the
management of a computer’s hardware resources and the orderly and
effecient storage of its user’s data. But perhaps for our purposes a
better definition is as follows: An operating system is something
which enables us to type in, “run edit”, instead of this kind of thing:
“Load disk 0, cylinder 10, sector 0, for 19 blocks, and load it into
memory, starting at memory address 27344, unless that would
involve overwriting somebody else’s data, in which case try location
454435, unless...” A frivolous example, since any operating system
which could understand natural English would be very clever indeed!
But the example is valid, as it indicates the amount of “behind the
scenes” work which an operating system must do, in order that we can
use a computer with concise, predefined commands instead of
worrying about how they are implemented.

As computer users we use many operating system functions. For
example, its 1/0 handling capabilities, its various management
facilities and its statistical gathering capabilities (error counting, and
soon).

Let us now do a short list of the things inside the modern operating
system. If the names mean little or nothing to you, do not worry. They
will all be elaborated upon in chapter two, and the relationship of each
tothe hardware explained.

1.1 Major Operating System Components

1) I/O Section — the actual routines which make the hardware
peripherals do what is required of them.

2) File processor — the body of software which controls and vets

information held on the system, the format in which it is held, and the
general flow of information to and from storage.

3) Memory manager — on more recent systems some of this task is
delegated to hardware which is external, and thus transparent to the
operating system, but traditionally the memory manager allocates
parts of memory to various parts of the operating system on an as-
needed basis.

4) Language support — provides support from the operating system to
high level programming languages like Pascal, BASIC, FORTRAN, C,
etc.

5) The job scheduler —this component varies from system to system,
but basically decides which one of all the users currently connected
to the system is going to have the next brief period onthe processor.

6) Command interpreter—interprets commands from user.

Everybody you ask will give you a different list, but the above cover
the major areas of the typical operating system.

1.2 Hardware Interface and Management

The section of the operating system which deals with hardware
resource management will obviously vary greatly from machine to
machine, partly because of the difference between the machines they
run on, and partly because of the degree of control required. An
example of the hardware interface and management section of any
operating system running on DEC’s 11/34 processor, such as RSX or
RSTS, is the software to run the memory segmentation hardware
which is used to increase the memory size above that which could
normally be addressed with a 16 bit address bus. The hardware
interface and management section depends upon the methods used
to run the hardware. An example of this is hardware-interrupts; RSX
being a non-interrupts driven system, would require less of this kind
of software than RSTS, which is interrupt-driven. If the definition of the
hardware management section of the operating systems is extended
to include things like the hardware clock or the power fail detect
mechanisms, then there is a fairly wide spectrum of operations
covered by it. Broadly speaking, controllable bits of hardware which
are not ruled by an I/0 driver will probably fall under the control of the
hardware management and interface software.

Facilities Provided

A modern multi-user operating system takes a huge amount of time,
money and effort to produce. It costs more of the same to maintain,
extend and update to new versions. Accordingly, at the early stages
in planning a system, there must be a fairly good idea of what type
of computer users are likely to buy it. There are many categories of
users, all with different, often conflicting, requirements. Some of the
major groups are listed below, along with the sorts of things they are
likely to need from the operating system they buy.

1.3 Operating System Users — The Major Groups
And Their Needs

1) Commercial users —fast access to large bodies of simple statistical
and textual information, plain, easy to understand system commands
and procedures and error messages, easy modification of programs
written in high level languages, as little involvement as possible in
machine specific details, maximum assistance to hardware
maintenance engineers to obtain fast repair times, information
security between users and outsiders.

2) Scientific users — easy attachment to the operating system of
specialist devices, easy interchange of information between users,
great mathematical precision, good handling capability of large array
types of data, easy modification of the operating system code, mostly:
speed of processing secondary to absolute accuracy.

3) Educational users — good small file handling (10 classes of 20
students, all with a ten-line program!), on-line help messages, error
messages must be clear and concise, good support of the more
popular high level languages, must be good at terminal I/0 and
provide fast response times under a heavy terminal load, must have
good security between users to prevent student experiments or
mishaps seriously jeopardising other users’ data or the operating
system itself.

It should be obvious from the list that no one operating system can
hope to satisfy all these requirements; for example, RSTS may satisfy
1 and 3, RSX may fulfill 1 and 2, but in general no one system will be
totally satisfactory for ANY application. Listed below are the kind of
things which will decide the customer to whom it will be attractive.

1.4 Operating System ‘Musts’:

Terminal handling.

Hard copy print-out capability (i.e. must provide an ability to drive
printer).

Asetoferror messages.
A set of predefined commands.
Some kind of documentation for use in training —the fuller the better.

A set of minimum utility support programs to implement these
functions.

Most important to the vast majority of users is the ability to store and
retrieve information from attached peripheral storage devices.

Market deciding factors: operating system additions.

Statistics gathering (a great help in obtaining and maintaining system
efficiency —see chapter seven).

Ease of expansion of hardware (a lot of people discover to their cost
that the operating system they bought a year ago is only able to run
fiveterminals, and that they now need seven).

The degree to which the system may be tailored to specific
installations requirements.

Support for very large file sizes (data base users would be attracted
by this feature).

A foolproof data protection system between users, or between users
and the outside world.

Command style — an operating system where the command syntax is
variable may not be a good selling point to the inexperienced or
infrequent user.

User friendliness — this is the industry term for the quality of the
terminal user-to-operating system interface; where this is good an
operating system is said to be “user friendly”.

Simplicity (or otherwise) of system procedures.

Good mechanisms for passing messages between user terminals (e.g.
the MAIL utility of VMS orthe TALK program of RSTS).

Comprehensive logging of hardware errors — this factor decides to a
large extent how long a system takes to fix for all but the most obvious
faults.

A cacheing capability (see chapter six).

Portability — it is nice (though not common) to have an operating
system which can be translated between different manufacturers’
machines, and look reasonably similar once this is done. Operating
systems like UNIX are the exception to this rule.

This list is not complete, since a whole range of decisions need to be
made about the high level language support: to what degree should
the language system do its own I/O, what measure of autonomy, as
regards access to system facilities, shall the language systems be
allowed, and so on. As | have already stated, an operating system is
a very complex and expensive thing to produce, and must be aimed
carefully at its market. The brief history of the computer industry is
littered with the corpses of expensively produced operating systems
which aimed for the mass market by pleasing everybody and ended
by pleasing nobody, as in the fable. The decisions taken at the design
stage are thus very important with regard to its success — along with
other factors such as which machines the product is to run on,
marketing and publicity efforts, after-sale support, and so forth.

CHAPTER 2
Major Operating
system
components
Described

2.1 Thefile processor.

A file processor performs a great many functions, almost all of them
highly complex. Its primary purpose is to process the retrieval and the
storage of information (files). And indeed this is the component which
imposes and maintains the file structure. (File structures are
introduced in chapterfour.)

The operations of the file processor cover a wide range, but let us start
with an example drawn from RSTS. Any user who types a command
to run a program, or perhaps load a file from disk for listing or
modification, or any other operation which requires transit of
information from the file storage to the user’s area of memory will
have his request formatted into an entry in the file processor’s request
queue. After all other entries in the queue above it (or with higher
priority) have been serviced, it will be serviced itself. First the file
processor will decode the operation to be performed, and break its
execution up into a number of steps for completing it. For our
example: the loading of a file into memory. The steps would look like
this:

a) Perform a verification of the file-name supplied. For various reasons
most operating systems disallow certain characters in file names. As
an example, try typing the command “old FIL?23" to RSTS. The result
is, because the question mark character — ? — is not allowable in an
RSTS file-name, the error “illegal file-name” is given in response. This

occurs before the file processor even accesses the directory to see if
the file exists.

b) The directory belonging to the user (or an alternative one which he
may have included in his command) is located and searched for a file
whose name matches the one in the command. If the file processor
finds the match it is looking for, then the information about the file
which is stored in the directory along with its name is passed on to
the next stage. If the file does not exist in the specified or default
lirectory the user is informed that the file processor “Can't find file or
account”. Note that this error also occurs as its text says if the
specified account directory cannot be found.

¢) Using the information about the file passed on from the previous
stage the file processor now sets about converting the information
into a parameter block for an /O operation, subject to the proviso that
the user has not tried to load a file which he has no access rights to,
or that another user has not already got the file open for writing new
information into it. If either of these conditions are met the error
“Protection Violation” occurs, the file processor goes on to its next
request and our user must remedy the situation, perhaps by logging
into another account from which he can access the file or by waiting
until the current access to the fileis completed, then try again.

The format which I/0O drivers require for their parameters is usually
quite strict. It has to be, otherwise the I/O driver would be far bigger
than it needs to be. The file processor knows this format and converts
the information from the directory into a set of or maybe several sets
of parameter lists to be put in the /0O driver’'s parameter area or queue.
The descriptor information contained in the RSTS directory is listed
and explained in chapterfour.

d) When the file has been loaded into memory by the I/O driver the
driver signals the file processor that the job is done and the file
processor then ceases its involvement. The user’s statistics must be
updated to show what he isrunning. The program is now ready to run.

The same kind of sequence will be executed when a user program
requests some data to work on, or requests that a file be updated are
encountered —though, of course, when a file is to be updated then the
directory information must also be changed.

| have grossly simplified the steps in the example above, since it
makes no mention of the run time system interaction which occurs in
almost every case, nor does it take account of any cacheing schemes

