THE MATHEMATICAL
THEORY OF L SYSTEMS

GRZEGORZ ROZENBERG
ARTO SALOMAA



CopPYRIGHT (© 1980, BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THF PUBL ISHER.

ACADEMIC PRESS INC.
111 Fifth Avenue. New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road. London NW1 7DX

Library of Congress Cataloging in Publication Data

Rozenberg, Grzegorz.
The tnathematical theory of L systems.

(Pure and applied mathematics, a series of monographs
and texthooks ; )

Includes bibliographical references and indexes.

1. Lsyvems. 2 Formal languages. 1. Salomaa.
Arto, joint author. 1I. Title. 1. Series.
QA3.P8 |QA267.3] SI10°8s [S117.3] 79-25254
I[SBN 0 12 597140-0

PRINTED IN THE UNITED STATES OF AMERICA

80 81 82 ¥3 987654321



Preface

Formal language theory is by its very essence an interdisciplinary area of
science: the need for a formal grammatical or machine description of specific
languages arises in various scientific disciplines. Therefore, influences from out-
side the mathematical theory itself have often enriched the theory of formal lan-
guages.

Perhaps the most prominent example of such an outside stimulation is pro-
vided by the theory of L systems. L systems were originated by Aristid Linden-
mayer in connection with biological considerations in 1968. Two main novel
features brought about by the theory of L systems from its very beginning are (1)
parallelism in the rewriting process—due originally to the fact that languages
were applied to model biological development in which parts of the developing
organism change simultaneously, and (ii) the notion of a grammar conceived as a
description of a dynamic process (taking place in time), rather than a static one.
The latter feature initiated an intensive study of sequences (in contrast to sets) of
words, as well as of grammars without nonterminal letters. The results obtained
in the very vigorous initial period—up to 1974—were covered in the monograph
“Developmental Systems and Languages” by G. Herman and G. Rozenberg
(North-Holland, 1975).

Since this initial period, research in the area of L systems has continued to be
very active. Indeed, the theory of L systems constitutes today a considerable
body of mathematical knowledge. The purpose of this monograph is to present in
a systematic way the essentials of the mathematical theory of L systems. The
material common to the present monograph and that of Herman and Rozenberg
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quoted above consists only of a few basic notions and results. This 1s an indica-
tion of the dynamic growth in this research area, as well as of the fact that the
present monograph focuses atiention on systems without interactions, 1.¢.. con-
text-independent rewriting.

The organization of this book corresponds to the systematic and mathemati-
cally very. natural structure behind L systems: the main part of the book (the first
five chapters) deals with one or several iterated morphisms and one or several
iterated finite substitutions. The last chapter, written in an overview style, gives
a brief survey of the most tmportant areas within L systems not directly falling
within the basic framework discussed in detail in the first five chapters.

Today, L. systems constitute a theory rich in onginal results and novel tech-
niques, and yet expressible within a very basic mathematical framework. It has
not only enriched the theory of formal languages but has also been able to put the
latter theory in a totally new perspective. This is a point we especially hope to
convince the reader of. It is our firm opinion that nowadays a formal language
theory course that does not present L systems misses some of the very essential
points in the area. Indeed, a course in formal language theory can be based on the
mathematical framework presented in this book because the traditional areas of
the theory, such as context-free languages, have their natural counterparts within
this framework. On the other hand, there is no way of presenting iterated
morphisms or parallel rewriting in a natural way within the framework of sequen-
tiw! rewriting.

No previous knowledge of the subject is required on the part of the reader, and
the book is largely self-contained. However, familiarity with the basics of au-
tomata and formal language theory will be helpful. The results needed from these
areas will be summarized in the introduction. Our level of presentation corre-
sponds to that of graduate or advanced undergraduate work.

Although the book is intended primarily for computer scientists and mdthema-
ticians, students and researchers in other areas applying formal language theory
should find it useful. In particular, theoretical biologists should find it interesting
because a number of the basic notions were originally based on ideas in develop-
mental biology or can be interpreted in terms of developmental biology. How-
ever, more detailed discussion of the biological aspects lies outside the scope of
this book. The interested reader will find some references in connection with the
bibliographical rernarks in this book.

The discussion of the four areas within the basic framework studied in this
book (single or several iterated morphisms or finite substitutions) builds up the
theory starting from the simple and proceeding to more complicated objects.
However, the material is organized in such a way that each of the four areas can
also be studied independently of the others, with the possible exception of a few
results needed in some proofs. In particular, a mathematically minded reader
might tind the study of single iterated morphisms (Chapters I and IlI) a very
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interesting topic in its own right. It is an area where very intriguing and mathe-
matically significant problems can be stated briefly ab ovo.

Exercises form an important part of the book. Many of them survey topics not
included in the text itself. Because some exercises are rather difficult, the reader
may wish to consult the reference works cited. Many open research problems are
also mentioned throughout the text. Finally, the book contains references to the
existing literature both at the end ~nd scattered elsewhere. These references are

intended to aid the reader ratherwthan to credit each result to some specific
author(s).
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Introduction

This introduction gives a summary of the background material from
automata and formal language theory needed in this book. It is suggested
that the introduction be consulted only when need arises and that actual
reading begin with Chapter [.

An alphabet 1s a set of abstract symbols. Unless stated otherwise, the
alphabets considered in this book are always finite nonempty sets. The
elements of an alphabet X are called lerters or symbols. A word over an
alphabet X is a finite string consisting of zero or more letters of X, where-
by the same letter may occur several times. The string consisting of zero
letters is called the empty word, written A. The set of all words (resp. all
nonempty words) over an alphabet Z is denoted by Z* (resp. £*). Thus,
algebraically, £* and " are the free monoid and free semigroup generated
by Z.

For words w, and w,, the juxtaposition w,w, is called the catenation (or
concatenation) of w, and w,. The empty word A is an identity with respect to
catenation. Catenation being associative, the notation w', where i is a
nonnegative integer, is used in the customary sense, and w® denotes the
empty word. The length of a word w, in symbols |w|, means the number of
letters in w when each letter is counted as many times as it occurs. A word w is
a subword of a word u if there are words w, and w, such that u = wyww,. If,
in addition, w # u and w # A, then w is termed a proper subword of u.
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Furthermore, if w, = A (resp. w, = A). then w is called an initial subword
or prefix of u (resp. a final subword or a suffix of u).

Subsets of Z* are referred to as lunguages over Z. Thus, if L is a language
over X, it 1s also a language over Z,, provided £ = Z,. However, when we
speak of the alphabet of a language L. in symbols alph(L), then we mean the
smallest alphabet Z such that L is a language over Z. If L consists of a single
word w, ie, L = {w}, then we write simply alph(w) or alph w instead of
alph({w?}).(In general, we do not make any distinction between elements x and
singleton sets {x}.)

Various unary and binary operations for languages will be considered in
the sequel. Regarding languages as sets, we may immediately define the
Boolean operations of union, intersection, complementation (here it is
essential that alph(L) i1s considered) and difference in the usual fashion. The
catenation (or product) of two languages L, and L, is defined by

L,L, = {wyw,|w,eL, and w,e L,}.

The notation L' is extended to apply to the catenation of languages. By
definition, L" = {A}. The catenation closure or Kleene star (resp. A-free
catenation closure. or Kleene plus or cross) of a language L, in symbols L*
(resp. L) is defined to be the unton of all nonnegative (resp. positive) powers
of L.

We now define the operation of substitution. For each letter a of an alphabet
2, let o(a) be a language (possibly over a different alphabet). Define, further-
more,

a(A) = {A}, a(w,w,) = a(w,)o(w,),
for all w, and w, in £*. For a language L over X, we define
o(L) = {u|ue a(w) for some we L}.

Such a mapping o is called a substitution. Depending on the languages.
_a(a). where a ranges over X, we obtain substitutions of more restricted types.
In particular, if each of the languages o(a) is finite, we call o a finite substitution.
If none of the languages o(a) contains the empty word, we call o a A-free or
nonerasing substitution.

A substitution ¢ such that each a(a) consists of a single word is called a
homomorphism or, briefly, a morphism. If each a(a) 1s a word over Z, we call ¢
also an endomorphism. (Algebraically, a homomorphism of languages is 4
monoid morphism linearly extended to subsets of monoids.) According to the
convention above (identifying elements and their singleton sets), we write
o(a) = wrather than ¢(a) = {w}. A homomorphism g is A-free or nonerasing
il ¢(a) # A for every a. A letter-to-letter homomorphism will often in the
sequel be called a coding. Inverse homomorphisms are inverses of homomor-
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phisms, regarded as mappings. They will be explicitly defined below, in con-
nection with transductions.

The mirror image of a word w, in symbols mir(w), 1s the word obtained by
writing w backward. The mirror image of a language 1s the collection of the
mirror 1images of its words, that is,

mir(L) = {mir(w)|w in L}.

The cardinality of a finite set § is denoted by #(S). Similarly, # ¢(w) or
# yw denotes the number of occurrences of letters from Z in the word w. If £
consists of one letter a,, this notation reads # , w. meaning the number of
occurrences of a, in w. If the alphabet considered is {ay, ..., a,}, we write
simply #,w = #,w. The notation presyw means the word obtained from
w by erasing all letters not in X. (Thus, only letters “present” in X are con-
sidered.) Clearly,

#yw = |presz wl.

Ifwisawordand | < i < |w], then w(i) denotes the ith letter of w.

The main objects of study in formal language theory are finitary specifica-
tions of infinite languages. Most such specifications are obtained as special
cases from the notion of a rewriting system. By definition, a rewriting system
is an ordered pair (X, P), where X is an alphabet and P a finite set of ordered
pairs of words over Z. The elements (w, u) of P are referred to as rewriting
rules or productions and usually denoted w — u. Given a rewriting system, the
(binary) yield relation = on the set £* is defined as follows. For any words
aand f, o = fholdsifand only if there are words x, x,, w, u such that

o= X;WX, and B = x ux,.

and w — u is a production in the system. The reflexive transitive (resp.
transitive) closure of the relation = is denoted =* (resp. = ). If several
rewriting systems G, H, ... are considered simuitaneously. we write = to
avoid confusion when dealing with G.

A phrase structure grammar or, briefly, grammar is an ordered quadruple
G = (X, P, S, A), where X and A are alphabets and A & X (A 1s called the
alphabet of terminals and Z\ A the alphabet of nonterminals), S is in Z\A
(the initial letter), and P is a finite set of ordered pairs (w, u), where wand u are
words over X and w contains at least one nonterminal letter. Again, the ele-
ments of P are referred to as rewriting rules or productions and written
w — u. A grammar G as above defines a rewriting system (Z. P). Let = and
=* be the relations determined by this rewriting system. Then the language
L(G) generated by G is defined by

L(G) = {we A*|S =>* w}.
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Fori=0,1,2,3,agrammar G = (Z, P, S, A) is of type i if the restrictions (i)
on P, as given below, are satisfied:

(0) No restrictions.

(1) Each producion in P is of the form w,; Aw, — w,ww,, where w, and w,
are arbitrary words, 4 is a nonterminal letter, and w is a nonempty word
(with the possible exception of the production S — A whose occurrence in
P implies, however, that § does not occur on the right-hand side of any
production). .

(2) Each production in P is of the form A — w, where 4 is a nonterminal
letter and w is an arbitrary word.

(3) Each production in P is of one of the two forms 4 — Bw or A — w, where
A and B are nonterminal letters and w i1s an arbitrary word over the
terminal alphabet A.

A language is of type i if and only if it is generated by a grammar of type i.
Type 0languages are also called recursively enumerable. Type 1 grammars and
languages are also called context-sensitive. Type 2 grammars and languages
are also called context-free. Type 3 grammars and languages are also referred
to as reqular. The four language families thus defined are denoted by #(RE),
L(CS), Z(CF), (REG). Furthermore, the family of all finite languages is
denoted by Z(FIN). These families form a strictly increasing hierarchy,
usually referred to as the Chomsky hierarchy:

L(FIN) ¢ #(REG) ¢ #(CF) ¢ #(CS) ¢ Z(RE).

(The reader is referred to [S4] for a more-detailed discussion, as well as for
all proofs of the facts listed in this introduction.)

Two grammars G and G, are termed equivalent if L(G) = L(G,). This
notion of equivalence is extended to apply to all devices defining languages:
two devices-are equivalent if they define the same language. To avoid awkward
special cases we make the convention that two languages differing by at most
the empty word A are considered to be equal. We also make the convention
that whenever new letters are introduced n a construction they are distinct
from the letters introduced previously.

For a grammar G, every word w such that § =*w is referred to as a
sentential form of G. Hence, a sentential form need not be over the terminal
alphabet A. A context-free grammar is termed linear if the right-hand side of
every production contains at most one nonterminal. A language is linear if it is
generated by a linear grammar.

The length set of a language L is defined by

length(L) = {lelwe L}.
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Consider the alphabet £ = {a,, ..., a,}. The mapping y of Z* into the set N"
of ordered n-tuples of nonnegative integers defined by

Y(w) = (#,(w), ..., # (W)

is termed the Parikh mapping and its values Parikh vectors. The Parikh set of a
language L over X is defined by

Y(L) = {Y(w)|lwe L}

A subset K of N" is said to be linear if there are finitely many elements c,
Dy vwe; b, of N" such that

¥ |

K = {c + Xrnihi}nr, a nonnegative integer, i = 1,..., r}.
i=1

A subset of N" is said to be semilinear if it is a finite union of linear sets.

The Parikh set of a context-free language is always semilinear. Con-
sequently, the length set of a context-free language, ordered according to
increasing length, constitutes an almost periodic sequence. We often want to
exclude the “initial mess™ from the language we are considering: if L is a
language and r a positive integer, we denote by less (L) the subset of L
consisting of words of length less than r.

The family of regular languages over an alphabet £ equals the family of
languages obtained from “atomic” languages {A} and {a}, where a € Z, by a
finite number of applications of reqular operations: union, catenation, and
catenation closure. The formula expressing how a specific regular language is
obtained from atomic languages by regular operations is termed a regular
expression.

The families of type i languages, i = 0, 1, 2, 3, defined above using gener-
ative devices can be obtained also by recognition devices or automata. A
recognition device defining a language L receives arbitrary words as inputs
and “accepts” exactly the words belonging to L. We now define in detail the
class of automata-accepting regular languages.

A rewriting system (Z, P) is called a finite deterministic automaton if (1) Z is
divided into two disjoint alphabets Q and V (the state and the input alphabet),
(11) an element g, € Q and a subset F < Q are specified (initial state and final
state set), and (ii1) the productions in P are of the form

qa > 4q;, 9i.9;€Q. a¢€V,

and, for each pair (q;, a,), there is exactly one such production in P.
The tanguage accepted or recognized by a finite deterministic automaton
FDA is defined by

L(FDA) = {we V*|qow =* g, for some q, € F}.
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A finite deterministic automaton is usually defined by specifying a quin-
tuple (V, Q, [, qo, F), where f 1s a mapping of Q x V into Q, the other items
beir ; as above. (Clearly, the values of f are obtained from the right-hand
sides of the productions q;a, — g;.)

A finite nondeterministic automaton FNA is defined as a deterministic one
with the following two exceptions. In (11) ¢ is replaced by a subset Q, < Q.
In (i11) the second sentence (*and for each pair...”) is omitted. The language
accepted by an FNA is defined by

L(FNA) = {we V¥ |gow =*g, for some g, € Q, and g, € F}.

A language is regular if and only if it is accepted by some finite deterministic
automaton if and only if it is accepted by some finite nondeterministic
automaton.

We omit the detailed definition of the three classes of automata (pushdown
automata, linearly bounded automata, Turing machines) corresponding to
the language families Z(CF), #(CS), Z(RE). (The reader is referred to
[S4].) In particular, a Turing machine is the most general type of an auto-
maton: it is consfdered to be the formal counterpart of the informal intuitive
notion of an “effective procedure.” (Hence, this applies also to type 0 gram-
mars because they have the same language-accepting capability as Turing
machines.) The addition of new capabilities to a Turing machine does not
increase the computing power of this class of automata. In particular—as in
connection with finite automata-—deterministic and nondeterministic Turing
machines accept che same class of languages. As regards pushdown automata,
deterministic automata accept a strictly smaller class of languages than non-
deterministic ones: #(CF) is accepted by the nondeterministic ones. As
regards linear bounded automata, the relation between deterministic and
nondeterministic ones constitutes a very famous open problem, often referred
to as the LBA problem.

Acceptors have no other output facilities than being or not being in 2 final
state after the computation, i.e., they are capable only of accepting vr rejecting
inputs. Sometimes devices (transducers) capable of having words as outputs,
i.e., capable of translating words into words, are considered. We give next the
formal definition for the transducer corresponding to a finite automaton. In
particular, its simplified version (gsm) will be needed in this book quite often.

A rewriting system (Z, P) is called a sequential transducer if each of the
following conditions (i)-(ii1) is satisfied:

(i) X is Jdivided into two disjoint alphabets Q and Vi, u V,,,. (The sets Q,
V... Vi are called the state, input, and output alphabet, respectively.
The latter two are nonempty but not necessarily disjoint.)

(i1) An element g, € Q and a subset F < Q are specified (initial state and

final state set).
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(i) The productions in P are of the form
q;w = uq;, 4. d; €0, we kg, uwely,.

If, in addition, w # A in all productions, then the rewriting system is called a
generalized sequential machine (gsm). If.in addition, alwaysu # A, we speak of
a A-free gsm.
For a sequential transducer ST, words w, € Vifand w, € V7, and languages
L, < V¥and L, = V¥,. we define
ST(w,) = {w|gyw, =* wyg, for some g, € F}.
ST(L,)
ST !(w,) = {ulw, € ST(u)},

ST YL,) = {ulue ST '(w)for some we L,}.

{u)e ST(w) for some we L},

I

Mappings of languages thus defined are referred to as (rational) transductions
and inverse (rational) transductions. 1f ST is also a gsm, we speak of gsm
mappings and inverse gsm mappings. In what follows, a generalized sequential
machine is usually defined by specifying a sixtuple (Vi,, Vo, O, f, g0, F).
where f is a finite subset of the product set ¢ x V! x V%, x Q, the other
items being as above.

A homomorphism, an inverse homomorphism, and a mapping f(L) =
L n R, where R is a fixed regular language, are all rational transductions, the
first and the last being also gsm mappings. The composition of two rational
transductions (resp. gsm mappings) is again a rational transduction (resp.
gsm mapping). Every rational transduction f can be expressed in the form

f(L) = hy(hy '(L) N R).

where h, and h, are homomorphisms and R is a regular language.

These results show that a language family is closed under rational trans-
ductions if and only if it is closed under homomorphisms, inverse homomor-
phisms, and intersections with regular languages. Such a language family is
referred to as a cone. A cone closed under regular operations is termed a full
AFL. (If only nonerasing homomorphisms are considered in the homo-
morphism closure, we speak of an AFL.) A family of languages is termed an
anti-AFL if it is closed under none of the six operations involved (i.e., union,
catenation, catenation closure, homomorphism, inverse homomorphism,
intersection with regular languages).

Each of the families Z(REG), #(CF), #(CS), and #(RE) is closed under
the following operations: union, catenation, Kleene star, Kleene plus, inter-
section with a regular language, mirror image, A-free substitution, A-free
homomorphism, A-free gsm mapping, A-free regular substitution, inverse
homomorphism, inverse gsm mapping. With the exception of Z(CS), these



