% I &R 3\
o8 A EE R0 B

(R3ZhR)

<
<

Design Patterns

Elements of Reusable
Object-Oriept€dsSoftware

Erich Gamufia™
Richard Helm
Ralph |éhi son
John Vhss es

SIS ONLLAIWOD TVYNOISSTIO¥d ATTSIM-NOSIAady

Escher / Cordon Art - Baam - Holland. AH righes rese

%) Erich Gamma Richard Helm =
Ralph Johnson John Vlissides

L Tl KR it

China Machine Press

R B ¥ &K

B

MhR)

TR R

(&

13
TE A AR RS

English reprint edition copyright © 2002 by PEARSON
EDUCATION ASIA LIMITED and CHINA MACHINE PRESS.

0r1g1nal Enghsh language title:Design Patterns:Elements of
Reusable Object-Oriented Software, Ist ed. by Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides, Copyright © 1995.

All rights reserved.

Published by arrangement with the original publisher,Pearson
Education, Inc., publishing as Addison Wesley.

This edition is authorized for sale only in People's Republic of China
(excluding the Special Administrative Region of Hong Kong and Macau).

2 535 30 PR B 28 M Pearson Education North Asia Ltd.

BRART W AP E AR AR E BT, REHK
T, FEUMEAFRDE. EHBRTREHPHEMED .
7 435 WA Pearson Education$ 4= 3 tH AR H BOL B thin

%, TREENRHE.
AT, RAUGH.

ABEREIZS: B¥: 01-2001-5020

BRER&EE (CIP) #iE

Wite. WA AE X RPN (FO0R) / (R) M5
(Gamma, E.) %3 - Jb50: HURTLHREL, 20023

(ZHFRAE) ‘

ISBN 7-111-09507-3

[T4 I ERREE-BFRT-2EX V. TP12

A B CTPHUE %7 (2001) 55081806

BUM T IR (LR oMK T EAR22S WSRGH 100037)
FEp: 1)

e BEFEREENRI ENR - BB AL RATH R A7
2002453 HZ 1K - 2004481 A 245 ENRI

850mm x 1168mm 1/32 - 13.25E18k

Ei%: 11 001-13 00O

EH: 38.0057%

FulAS, WAEMT. BR. BT, hARERTHESR

AR HYE

XZEEXURE, BERKHRAERAZELTERWERRLE, TR
KA BABENEANTBBE T 2HEWRE; hERXFERES, HXE
EREEEARKBHATEERIARKEY . MEANE, FEbMHES, £
R LA SHERERBEFLE S, iTEVER SR FEZR I} F e
BB FIBENRATL, RPN E BRI EEE, MU THRY
g, RBETERNED, HEERARME, NAaFEEME, ENEH
AEREA BT TEGER .

4, ELRERAKHANHENT, REMNHEN=LEBRE, WM&
WAFHTRE B, XXHBVNHEFRANHRKAREREIE, w2k
i MEWEMHBRABETRE L BEXEEE., EREGSRERR RN
EEE. MEARBLHERT, ZEFLZAERELITENRZRZRHIL
TERIBIENZ BB AT SEBELEZL, Bit, 5E—-#EIMFIT
BENBAEMNBREHENHETE LR BERROENER, 2SR
B, BIREEMHR—FXENLHZH,

PR Dok th At ESE B A R A RAE R E RS “HRENERS
H19984E1f, E AR TIEE SME T #E . BEEIMIFHEM L. £
SIVERARESS J1, F]5Prentice Hall, Addison-Wesley, McGraw-Hill,
Morgan Kaufmann® it R EZ HIEARESY T RFHEIEXR, NETIHAEN
A FhEUbr P B) Tanenbaum, Stroustrup, Kernighan, Jim Gray% KJfiZ &K
F—HZHER, U “HENMREAE” HEFREKR, HEEET. IRE
Bk, KEAYENHE, WEARTXEABHROAFEE,

“SEUREAR MHERIESR TENMEENS 1B, BAN®
EABRETHENEEERS, SAEFEHEMET BEMFLHNTE; M
FHREE WA S R EHAE R ERNEE, ANET iy B iE4sE
Fo &84, “THENBFAE EEHMRTEE NS, XEREEZE TN
MTREFAOR, FHFZRBRANERBMNSEBE, wit—FH
HERBITT TRELMER,

LR B R S R S B BRI, HE AN BN
BB E R RIS RS A— N F OB, ik, EEAREMAS | HEM
HEE, fE EERE HEAENZ THEEARAGTTENEAM . fXFH
H LGOI, BHAMESATIR “Es B 25 REERRIEM,
WEMFRE “SRERBE" ; ENERAHBMLLSHFY HHEIE
2B FRHR B ECRA RN, ks RFTI R, AT RIEX=FEAFI
W, RIS T BRI IRS, SEARBET FREBE
B JLErAk. WHkd, HpREAE, REA¥. LEKERE. BH
FoR W mERHEAE. BMRETAY. BEZERE. FEA
Rk, JEEMSMEKRSE, ERERB AR, PIAY, BRERTRE,
M2 . WAL TR . FEEREAZSUEAET CSENERKFEM
B TE BN Z AR E 22N, “EREIRRE”, ARNE
HERE AR AN AR .

“o i IR BT RMMHE RS NERERENSMNSE, NEA
ERH AN BTN T RN RN “EREFRRR
HEILE, BiERAEET0SMEIENAER . HRERARNER, XK
RS ELZBMLT. . Stanford, U.C. Berkley. C.M.U St 4 MRAER A
MBS TRFRIE. SIESN ., BRERS. HHENKRREH ., BHEE.
ERREE . WATR. B, BE5M%. BEEFSENAEITENTL
LRI OER, MESASe—ANBABRSIITEZT. A0=
HETIAZE ., HHEHES R UG FRRAR . TE b E R 54 AR
HHEE| 2 T, B MEETTENAENERPRHBETAZ,

WRMEE . 2REH . —RKFE . FPREEE ., BHENHE, X
WEEFRNOEHE TREWRE, BROMBFEIERE, MRERH
= FRRITAEX—L% DR EE . SRR BRI G 5MR
SR E, HEATVEZIMARESRIG THEREENIATHEE, R
(i) Eyp-3 T

B TR : hzedu@hzbook.com
BERETE: (010) 68995265

BEMN: ERHERXEAERES
HRB ZRES: 100037

EXREFERE

(Fett REHEIFT)

ER
= 3
FHE
R 7
ke &3
A8 i
¥

E-S

2 ¥

ER S
INEF
EJh o
&k
FoE
VRN

£ /8

¥ AR
%
FET
e B
A
iR
A2 3%

¥ EH
Z o &
e
Adak

WA A=

To Karin
—EG.

To Sylvie
—R.H.

To Faith
—R/J.

To Dru Ann and Matthew
Joshua 24:15b
—JV.

Praise for Design Patterns: Elements of Reusable
Object-Oriented Software

“This is one of the best written and wonderfully insightful books that I have read in a great long while...this
book establishes the legitimacy of patterns in the best way: not by argument but by example.”
— Stan Lippman, C++ Report

*..this new book by Gamma, Helm, Johnson, and Vlissides promises to have an important and lasting

impact on the discipline of software design. Because Design Patterns bills itself as being concerned with

object-oriented software alone, I fear that software developers outside the object community may ignore it.

This would be a shame. This book has something for everyone who designs software. All software design-

ers use patterns; understanding better the reusable abstractions of our work can only make us better at it.”
— Tom DeMarco, IEEE Software

“QOverall, [think this book represents an extremely valuable and unique contribution to the field because
it captures a wealth of object-oriented design experience in a compact and reusable form. This book is
certainly one that I shall turn to often in search of powerful object-oriented design ideas; after all, that’s
what reuse is all about, isn’t it?”

— Sanjiv Gossain, Journal of Object-Oriented Programming

“This much-anticipated book lives up to its full year of advance buzz. The metaphor is of an architect’s
pattern book filled with time-tested, usable designs. The authors have chosen 23 patterns from decades of
object-oriented experience. The brilliance of the book lies in the discipline represented by that number.
Give a copy of Design Patterns to every good programmer you know who waats to be better.”

— Larry O’Brien, Software Development

“The simple fact of the matter is that patterns have the potential to permanently alter the software
engineering field, catapulting it into the realm of true elegant design. Of the books to date on this subject,
Design Patterns is far and away the best. It is a book to be read, studied, internalized, and loved. The book
will forever change the way you view software.”

— Steve Bilow, Journal of Object-Oriented Programming

“Design Patterns is a powerful book. After a modest investment of time with it, most C++ programmers
will be able to start applying its “patterns™ to produce better software. This book delivers intellectual
leverage: concrete tools that help us think and express ourselves more effectively. It may fundamentally
change the way you think about programming.

— Tom Cargill, C++ Report

Preface

This book isn’t an introduction to object-oriented technology or design. Many books
already do a good job of that. This book assumes you are reasonably proficient in at least
one object-oriented programming language, and you should have some experience in
object-oriented design as well. You definitely shouldn’t have to rush to the nearest
dictionary the moment we mention “types” and “polymorphism,” or “interface” as
opposed to “implementation” inheritance.

On the other hand, this isn't an advanced technical treatise either. It's a book of design
patterns that describes simple and elegant solutions to specific problems in object-
oriented software design. Design patterns capture solutions that have developed and
evolved over time. Hence they aren’t the designs people tend to generate initially. They
reflect untold redesign and recoding as developers have struggled for greater reuse
and flexibility in their software. Design patterns capture these solutions in a succinct
and easily applied form.

The design patterns require neither unusual language features nor amazing program-
ming tricks with which to astound your friends and managers. All can be implemented
in standard object-oriented languages, though they might take a little more work than
ad hoc solutions. But the extra effort invariably pays dividends in increased flexibility
and reusability.

Once you understand the design patterns and have had an “Aha!” (and not just a
“Huh?”) experience with them, you won’t ever think about object-oriented’ design in
the same way. You'll have insights that can make your own designs more flexible,
modular, reusable, and understandable—which is why you're interested in object-
oriented technology in the first place, right?

A word of warning and encouragement: Don’t worry if you don’t understand this
book completely on the first reading. We didn’t understand it all on the first writing!
Remember that this isn’t a book to read once and put on a shelf. We hope you'll find
yourself referring to it again and again for design insights and for inspiration.

This book has had a long gestation. It has seen four countries, three of its-authors’
marriages, and the birth of two (unrelated) offspring. Many people have had a part
in its development. Special thanks are due Bruce Anderson, Kent Beck, and André
Weinand for their inspiration and advice. We also thank those who reviewed drafts

X

Xiv PREFACE

of the manuscript: Roger Bielefeld, Grady Booch, Tom Cargill, Marshall Cline, Ralph
Hyre, Brian Kernighan, Thomas Laliberty, Mark Lorenz, Arthur Riel, Doug Schmidt,
Clovis Tondo, Steve Vinoski, and Rebecca Wirfs-Brock. We are also grateful to the
team at Addison-Wesley for their help and patience: Kate Habib, Tiffany Moore, Lisa
Raffaele, Pradeepa Siva, and John Wait. Special thanks to Carl Kessler, Danny Sabbah,
and Mark Wegman at [BM Research for their unflagging support of this work.

Last but certainly not least, we thank everyone on the Internet and points beyond who
commented on versions of the patterns, offered encouraging words, and told us that
what we were doing was worthwhile. These people include but are not limited to -
Jon Avotins, Steve Berczuk, Julian Berdych, Matthias Bohlen, John Brant, Allan Clarke,
Paul Chisholm, Jens Coldewey, Dave Collins, Jim Coplien, Don Dwiggins, Gabriele Elia,
Doug Felt, Brian Foote, Denis Fortin, Ward Harold, Hermann Hueni, Nayeem Islam,
Bikramjit Kalra, Paul Keefer, Thomas Kofler, Doug Lea, Dan LaLiberte, James Long,
Ann Louise Luu, Pundi Madhavan, Brian Marick, Robert Martin, Dave McComb, Carl
McConnell, Christine Mingins, Hanspeter Méssenbock, Eric Newton, Marianne Ozkan,
Roxsan Payette, Larry Podmolik, George Radin, Sita Ramakrishnan, Russ Ramirez,
Alexander Ran, Dirk Riehle, Bryan Rosenburg, Aamod Sane, Duri Schmidt, Robert
Seidl, Xin Shu, and Bill Walker.

We don't consider this collection of design patterns complete and static; it's more a
recording of our current thoughts on design. We welcome comments on it, whether
criticisms of our examples, references and known uses we've missed, or design pat-
terns we should have included. You can write us care of Addison-Wesley, or send
electronic mail to design-patterns@cs.uiuc.edu. You can also obtain softcopy
for the code in the Sample Code sections by sending the message “send design pattern
source” to design-patterns-source@cs.uiuc.edu And now there’sa Web page
athttp://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook. html for
late-breaking information and updates.

Mountain View, California EG.
Montreal, Quebec RH.
Urbana, Wlinois RJ.
Hawthorne, New York I A'A

August 1994

Foreword

All well-structured object-oriented architectures are full of patterns. Indeed, one of the
ways that [measure the quality of an object-oriented system is to judge whether or
not its developers have paid careful attention to the common collaborations among its
objects. Focusing on such mechanisms during a system’s development can yield an
architecture that is smaller, simpler, and far more understandable than if these patterns
are ignored.

The importance of patterns in crafting complex systems has been long recognized in
other disciplines. In particular, Christopher Alexander and his colleagues were perhaps
the first to propose the idea of using a pattern language to architect buildings and cities.
His ideas and the contributions of others have now taken root in the object-oriented
software community. In short, the concept of the design pattern in software provides a
key to helping developers leverage the expertise of other skilled architects.

In this book, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides introduce
the principles of design patterns and then offer a catalog of such patterns. Thus, this
book makes two important contributions. First, it shows the role that patterns can play
in architecting complex systems. Second, it provides a very pragmatic reference toa set
of well-engineered patterns that the practicing developer can apply to crafting his or
her own specific applications.

I'm honored to have had the opportunity to work directly with some of the authors of
this book in architectural design efforts. I have learned much from them, and I'suspect
that in reading this book, you will also.

Grady Booch
Chief Scientist, Rational Software Corporation

Guide to Readers

This book has two main parts. The first part (Chapters 1 and 2) describes what design
patterns are and how they help you design object-oriented software. It includes a design
case study that demonstrates how design patterns apply in practice. The second part
of the book (Chapters 3, 4, and 5) is a catalog of the actual design patterns.

The catalog makes up the majority of the book. Its chapters divide the design patterns
into three types: creational, structural, and behavioral. You can use the catalog in several
ways. You can read the catalog from start to finish, or you can just browse from pattern
to pattern. Another approach is to study one of the chapters. That will help you see
how closely related patterns distinguish themselves.

You can use the references between the patterns as a logical route through the catalog,
This approach will give you insight into how patterns relate to each other, how they can
be combined with other patterns, and which patterns work well together. Figure 1.1
(page 12) depicts these references graphically.

Yet another way to read the catalog is to use a more problem-directed approach. Skip
to Section 1.6 (page 24} to read about some common problems in designing reusable
object-oriented software; then read the patterns that address these problems. Some
people read the catalog through first and then use a problem-directed approach to
apply the patterns to their projects.

If you aren’t an experienced object-oriented designer, then start with the simplest and
most common patterns:

o Abstract Factory (page 87) o Factory Method (107)

o Adapter (139) ¢ Observer (293)
o Composite (163) o Strategy (315)
» Decorator (175) ¢ Template Method (325)

It’s hard to find an object-oriented system that doesn’t use at least a couple of these
patterns, and large systemsuse nearly all of them. This subset will help you understand
design patterns in particular and good object-oriented design in general.

Xvi

Contents

Preface

Foreword

Guide to Readers

1 Introduction 1
1.1 WhatlsaDesignPattern? e 2
12 Design Patterns in Smalltalk MVC 4
1.3 Describing DesignPatterns 6
14 TheCatalogof DesignPatterns 8
15 OrganizingtheCatalogo 9
1.6 How Design Patterns Solve Design Problems 11
17 HowtoSelectaDesignPattern 28
18 HowtoUseaDesignPattern 29
2 A Case Study: Designing a Document Editor 33
21 DesignProblems 33
22 DocumentStructure oottt 35
23 Formattingot 40
24 Embellishing the User Interface 43
25 Supporting Multiple Look-and-Feel Standards 47
26 Supporting Multiple Window Systems 51
27 UserOperations oo tonunnee s 58
28 Spelling Checking and Hyphenation 64

ix

Design Pattern Catalog

3 Creational Patterns
AbstractFactory
Builder i e e
FactoryMethod v
PrOtOLYPe . . . o oot

SINGleton . .. v v ot e
Discussion of Creational Patterns« v v v v v oo

4 Structural Patterns

5 Behavioral Patterns
Chain of Responsibility
Command. e e e
Interpreterot
S 2 1 o) TP
Mediator v oot e e

79

81
87
97
107
117
127

135

137
139
151
163
175
185
195
207

219

CONTENTS xi

TemplateMethod. L., 325
Visitor R T 331
Discussion of Behavioral Patterns. 345

6 Conclusion 351
6.1 What to Expect from DesignPatterns 351
62 ABriefHistory 355
6.3 The Pattern Community I T 356
64 Anlnvitation 358
65 APartingThought 358

A Glossary 359
B Guide to Notation 363
Bl ClassDiagramu..... 363
B2 ObjectDiagram, 364
B3 InteractionDiagram 366

C Foundation Classes 369
Cl List ..o 369
C2 Tterator oo 372
C3 Listlterator i 372
C4 Point. 373
C5 Rect 374
Bibliography 375

Index 383

Chapter 1

Introduction

Designing object-oriented softwareis hard, and designing reusable object-oriented soft-
ware is even harder. You must find pertinent objects, factor them into classes at the
right granularity, define class interfaces and inheritance hierarchies, and establish key
relationships among them. Your design should be specific to the problem at hand but
also general enough to address future problems and requirements. You also want to
avoid redesign, or at least minimize it. Experienced object-oriented designers will tell
you that a reusable and flexible design is difficult if not impossible to get “right” the first
time. Before a design is finished, they usually try to reuse it several times, modifying it
each time.

Yet experienced object-oriented designers do make good designs. Meanwhile new
designers are overwhelmed by the options available and tend to fall back on non-
object-oriented techniques they’ve used before. It takes a long time for novices to learn
what good object-oriented design is all about. Experienced designers evidently know
something inexperienced ones don’t. What is it?

One thing expert designers know not to do is solve every problem from first principles.
Rather, they reuse solutions that have worked for them in the past. When they find a
good solution, they use it again and again. Such experience is part of what makes them
experts. Consequently, you’ll find recurring patterns of classes and communicating
objects in many object-oriented systems. These patterns solve specific design problems
and make object-oriented designs more flexible, elegant, and ultimately reusable. They
help designers reuse successful designs by basing new designs on prior experience.
A designer who is familiar with such patterns can apply them immediately to design
problems without having to rediscover them.

An analogy will help illustrate the point. Novelists and playwrights rarely design
their plots from scratch. Instead, they follow patterns like “Tragically Flawed Hero”
{Macbeth, Hamlet, etc.) or “The Romantic Novel” (countless romance novels). In the
same way, object-oriented designers follow patterns like “represent states with objects”

2 INTRODUCTION CHAPTER 1

and “decorate objects so you can easily add/remove features.” Once you know the
pattern, a lot of design decisions follow automatically.

We all know the value of design experience. How many times have you had design déja-
vu—that feeling that you’ve solved a problem before but not knowing exactly where or
how? If you could remember the details of the previous problem and how you solved
it, then you could reuse the experience instead of rediscovering it. However, we don’t
do a good job of recording experience in software design for others to use.

The purpose of this book is to record experience in designing object-oriented software as
design patterns. Each design pattern systematically names, explains, and evaluates an
important and recurring design in object-oriented systems. Our goal is to capture design
experience in a form that people can use effectively. To this end we have documented
some of the most important design patterns and present them as a catalog.

Design patterns make it easier to reuse successful designs and architectures. Expressing
proven techniques as design patterns makes them more accessible to developers of
new systems. Design patterns help you choose design alternatives that make a system
reusable and avoid alternatives that compromise reusability. Design patterns can even
improve the documentation and maintenance of existing systems by furnishing an
explicit specification of class and object interactions and their underlying intent. Put
simply, design patterns help a designer get a design “right” faster.

None of the design patterns in this book describes new or unproven designs. We have
included only designs that have been applied more than once in different systems. Most
of these designs have never been documented before. They are either part of the folklore
of the object-oriented community or are elements of some successful object-oriented
systems—neither of which is easy for novice designers to learn from. So although these
designs aren’t new, we capture them in a new and accessible way: as a catalog of design
patterns having a consistent format.

Despite the book’s size, the design patterns in it capture only a fraction of what an expert
might know. It doesn’t have any patterns dealing with concurrency or distributed pro-
gramming or real-time programming. It doesn’t have any application domain-specific
patterns. It doesn’t tell you how to build user interfaces, how to write device drivers,
or how to use an object-oriented database. Each of these areas has its own patterns, and
it would be worthwhile for someone to catalog those too.

1.1 What Is a Design Pattern?

Christopher Alexander says, “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over, without ever
doing it the same way twice” [AIS*77, page x]. Even though Alexander was talking
about patterns in buildings and towns, what he says is true about object-oriented design
patterns. Our solutions are expressed in terms of objects and interfaces instead of walls

