2
v .

o0 &
(g

S &
X s
ac oD
— 9
R

John Roberts

>
cmmaad
=
=
b
N
N
<
e
<P
vl
o
Q.
N
-
i
-




Transputer Assembly
Language Programming

John Roberts

ﬁ VAN NOSTRAND REINHOLD
| New York




Copyright © 1992 by Van Nostrand Reinhold

Library of Congress Catalog Card Number 91-32704
ISBN 0-442-00872-4

All rights reserved. No part of this work covered by

the copyright hereon may be reproduced or used in any
form or by any means—graphic, electronic, or
mechanical, including photocopying, recording, taping,
or information storage and retrieval systems—without
written permission of the publisher.

Printed in the United States of America

Van Nostrand Reinhold
115 Fifth Avenue
New York, New York 10003

Chapman and Hall
2-6 Boundary Row
London, SE 1 8HN, England

Thomas Nelson Australia
102 Dodds Street

South Melbourne 3205
Victoria, Australia

Nelson Canada
1120 Birchmount Road
Scarborough, Ontario M1K 5G4, Canada

16 15 14 13 1211 1098 76 54 3 2 1
Library of Congress Cataloging-in-Publication Data

Roberts, John, 1959—

Transputer assembly language programming / John Roberts.

p. cm.
Includes bibliographical references and index.
ISBN 0-442-00872-4
1. Transputers—Programming. 2. Parallel programming (Computer

science) I. Title.
QA76.6.R625 1992 91-32704
005.26—dc20 CIP



Transputer Assembly
Language Programming



Preface

It’s not often that an engineer sits down to write a book out of frustration. However,
after struggling with nonstandard and sometimes cryptic documentation from
Inmos, I set out to do so, hoping at first only to crystalize the information in my
own head, then later realizing that others may be facing the same problem.

For other conventional microprocessors on the market, documentation is plen-
tiful, but the transputer is a strange bird. It is probably the most successful CPU
chip conceived of, designed, and manufactured outside of the United States. Yet it
has not attracted the following of technical writers that the latest chips from
Motorola, Intel, or other American manufacturers have. Let the others follow the
pack. The ability to multitask processes with assembly level instructions or to
connect multiple transputers together like “electronic leggo” sets this CPU chip
apart from the rest. Whether others will follow its lead remains to be seen, but I
believe the transputer has had and will continue to have an important role to play
in the area of computing known as “parallel processing.”

Parallel processing essentially means more than one computing element work-
ing on the same problem. Hopefully, this means the problem can be solved faster
(but not always). Usually, the type of problems that can be solved faster involve
heavy number crunching, the kind of problems scientists sink their teeth into. In
the never-ending search for more computer speed, scientists are rushing headlong
into parallel processing and transputers are there waiting for them.

ACKNOWLEDGMENTS

This book would not have been possible without the assistance of important
individuals. Will Burgett provided great assistance in editing early drafts and
making them human-readable. Philip Goward also reviewed many copies and was

ix



X

PREFACE

mercilessly correct in pointing out technical errors or omissions. Colin Plumb
provided the inspiration with his editorializing, but excellent technical note on the
bizarre nature of transputer assembly language. Wayne Davison cleared the fog
on the IEEE 754 Standard by patient answers to my naive questions. Tom Merrow
let me apprentice with him on some important tasks involving operating system
essentials. And Charles Vollum gave me an extraordinary opportunity to learn
about transputers.

Thank you everybody!



Introduction

Why the transputer? The overwhelming market share of microprocessors today
are either members of the Intel 80x86 or Motorola 680x0 family. These traditional
processors have the numbers behind them, but the transputer reflects an archi-
tecture we're going to see more of in the future. The on-chip floating point unit (in
the T800 transputer) yields performance faster than microprocessors paired with
their coprocessor cousins. Multitasking is the wave of the present as well as the
future, and the transputer provides assembler-level support for multiple processes;
in fact, the transputer has a process scheduler built into it.

The most important feature of the transputer, however, is its support for
communication between processors. From a hardware perspective, the transputer
has four bidirectional serial links that can be connected to other transputers; this
hardware mechanism can be exploited for parallel processing. From a software
perspective, communication to another transputer occurs in the same fashion that
communication occurs between two processes on the same transputer, allowing for
easier software design of parallel programs.

Parallel programming is where computers are going. Personal computers are
still benefiting from the increase in single processor performance, but at the
mainframe and minicomputer level, multiprocessor architectures are starting to
dominate the scene. The problems encountered in single processor architectures
will also eventually arise in personal computers, and parallelism will be used to
increase their performance as well.

When Inmos first introduced the transputer, they decided to insulate program-
mers from the basic instruction set of the transputer. Instead of providing infor-
mation about the native assembly language, they provided a language called
Occam. Occam is a higher level than assember, but lower than most programming

xi



xii

INTRODUCTION

languages (such as Pascal or C). Occam allows a programmer to exploit the
parallelism and special communication features of the transputer in a well-defined
manner, yet it was a new and completely different programming language. Pro-
grammers want to program in the languages they are familar with. Inmos even-
tually relented and began providing information on the underlying instruction set
of the transputer. Now, programming languages in C, C++, Fortran, Pascal,
Modula-2, and Ada are all available for the transputer, and the list is growing.

Inmos originally designed the transputer for the embedded microcontroller
market. There are some features of the transputer that reflect this influence. One
example of this is that if certain flags are set in a certain order the transputer will
shut down. This may be desirable for a coffee maker, but not a general purpose
computer. As more users and designers saw the transputer, however, they began
torealize its inherent power as a computing engine, since it was possible to cascade
multiple transputers together to solve problems in significantly less time than it
would take single processor systems.

So, due to the original product push and the lack of detailed information about
the instruction set, transputer-based computers did not emerge at once. Instead,
add-on accelerator boards consisting of multiple transputers that could be plugged
into existing computers came forth. However, transputer-based computers are
starting to enter the marketplace today.

There are three basic models of the transputer: the T212, the T414, and the T800.
The T212 has a 16-bit wide register length and is not discussed in this book,
although much of what is written about the T414 applies to it as well. By far the
more popular models are the T414 and T800 (both with 32-bit wide registers),
which are discussed in this book. The basic difference between the T414 and T800
is that the T800 has an on-chip floating point arithmetic engine. There are other
minor differences that are noted in the pages that follow.

Most assembly language programmers have already mastered the basics of
binary arithmetic and hexadecimal representation of binary numbers, so these
subjects are not discussed. Hexadecimal numbers are indicated by the prefix “Ox”
as in the C programming language. For example, “OxA” means the hexadecimal
value “A” (which is equivalent to the decimal value 10).

Inmos invented some new terminology when it produced the transputer, perhaps
just to be different. For the sake of consistency, their terminology is used where it
differs with conventional computerese. The most agregious terms are Inmos’s use
of “workspace” for “stack” and “instruction pointer” for “program counter”. There
is also the “workspace pointer,” which everyone else in the computer industry
would call the “stack pointer.”

The basic organization of the book is as follows:

Chapter 1 Parallel processing

Chapter 2 Transputer architecture
Chapter 3 The instruction set

Chapter 4 Programming the transputer
Chapter 5 Newer Transputers

Chapter 6 Instruction Set Reference



INTRODUCTION xiii

Appendixes Miscellaneous useful information
Suggested Readings List of useful references

This book is intended to be useful for reference even after it has been read
thoroughly. The information does not depend on any one operating system or
assembler. Programming examples have sufficient comments to make them easily
portable. It is hoped that the dissemination of this information will generate
further excitement and interest in the transputer.



Contents

Preface ix

ACKNOWLEDGMENTS ix
Introduction xi

Chapter 1 Introduction to Parallel Processing and
the Transputer 1

Chapter 2 Transputer Hardware Architecture 9

REGISTER SET 10
Register Notation and Summary 12

FLAGS 13
T800 FLOATING POINT UNIT 13
INSTRUCTION FORMAT 14

DATA ORGANIZATION IN MEMORY 15
Addresses 15
On-Chip Memory 15

MICROCODE SCHEDULER 16
COMMUNICATION 18



vi CONTENTS

EVENT CHANNEL 20
ON-CHIP TIMERS 20

Chapter 3 Transputer Instruction Set 22

DIRECT INSTRUCTIONS 23
Stack Operations 23
Workspaces 25
Space on the Workspace 33
Prefix Functions 34
Flow Control Instructions 36

Summary of Direct Instructions 41

INDIRECT INSTRUCTIONS 42
General Operation Codes 43
Arithmetic and Logical Operation Codes 44
Long Arithmetic Operation Codes 47
Indexing and Array Operation Codes 48
Control Operation Codes 50
Scheduling Operation Codes 52
Timer Handling Operation Codes 56
Input/Output Operation Codes 57
Alternation 60
Error Handling Operation Codes 65

Processor Initialization Operation Codes 68

T800 SPECIFIC INSTRUCTIONS 70
Block Move Operation Codes 70
Bit Operation Codes 72
CRC Operation Codes 73

Floating Point Numbers 75

IEEE Standard for Binary Floating-Point
Arithmetic 75

Floating Point Errors 80

T414 Floating Point Support 81
T800 Floating Point Support 83
Load and Store Operation Codes 83



CONTENTS

General Operation Codes 85

Arithmetic Operation Codes 85

Rounding Operation Codes 88

Error Operation Codes 89

Comparison Operation Codes 90

Conversion Operation Codes 91

Optimizing Floating Point Calculations 94
Chapter 4 Programming the Transputer 95

BOOTING ATRANSPUTER 95
Booting from ROM 96
Booting from a Link 96

BEHAVIOR OF THE C REGISTER 99

SOFT RESET 99

STARTING MULTIPLE PROCESSES 100
CHANGING THE PRIORITY OF A PROCESS 103
TRANSPUTER TIMER BUG 104
SUBROUTINES 107

THE STATIC LINK 112

TIMER 115

COMMUNICATION 115

ALTERNATION 116

USING THE T800 FLOATING POINT UNIT 120

OPTIMIZING T800 FLOATING POINT INSTRUC-
TIONS 125

Chapter 5 Newer Transputers 127
COMPLAINTS ABOUT TRANSPUTERS 127
T425 AND T805 128
TO000 130

vii



viii CONTENTS
Chapter 6 Instruction Set Reference 132
SYMBOLOGY SUMMARY 136

Appendix A Instructions Sorted by Operation
Code 266

Appendix B Sample Floating Point Number
Representations 270

Appendix C Special Workspace Locations 273
Appendix D Transputer Memory Map 275
Appendix E Instructions Which Can Set Error 278

Appendix F T414 and T800 Instruction Set
Differences 279

Appendix G Summary of Different Models of
Transputers 281

Suggested Readings 283
TRANSPUTER-RELATED ARTICLES 283
FROM INMOS 284
FLOATING POINT ARITHMETIC 284
Index 285



Chapter 1

Introduction to Parallel Processing
and the Transputer

What is parallel processing? Parallel processing is the ability to perform multiple
computations simultaneously. In some multitasking operating environments, it may
appear that you are computing two things at the same time, but in reality the computer
is only doing one thing at a time, switching between tasks so quickly that it appears
to be doing more than one thing at a time when it isn’t. True parallel processing
involves physically separate computing engines, each chewing on some computation.

Since microprocessors were first invented, engineers and hobbyists have been
envisioning a computer system consisting of many processing elements. However,
advances in the performance of single processor units has been so great in such a
short time that many engineers and scientists believe that uniprocessor computers
will always provide the best performance and that higher performing computers
are only a generation away. Yet parallel processing is starting to emerge as a way
of bringing more computing power to bear against problems that even the fastest
computers have found intractable. Essentially, parallel processing is a mechanism
to allow computers to calculate faster.

Although it may seem perfectly rational that two computers working together
on a problem should be able to solve it faster than one, it’s not always the case.
Consider the following C program fragment, which multiplies each element of a
1000 element integer array (called a) by 100:

for 1=0;1i<1000;i++)
a[i] = a[i] * 100;



TRANSPUTER ASSEMBLY LANGUAGE PROGRAMMING

Each element of this array could be multiplied in parallel, and if you had 1000
processors you could parallelize this to all 1000 of them like so:

processor 1 a[l] = a[1] * 100
processor 2 a[2] = a[2] * 100
processor 3 a[3] = a[3] * 100

However, suppose the program loop was:

for i=1;i<1000;i++)
a[i] = a[i] * a[i—1]

This is not so easy to parallelize, since the current computation depends on
the result of the previous one. That is why it is important for programmers to
structure their programs in a manner so it is possible to take advantage of
parallelism.

There are two basic models of parallel processing: shared memory and distrib-
uted memory. Shared memory processing is where multiple processors are con-
nected to the same system memory as illustrated in Figue 1-1. This scheme is used
in many minicomputers and mainframes today. An advantage of shared memory
is that multiple processors can use the shared system memory as a fast way to
communicate and exchange data. The main problem of shared memory is that
several processors can attempt to access the same memory location at the same
time. When this happens, the requests have to be serialized, that is put into a
sequential ordering. The contention that arises due to serializing is referred to as
“memory contention.” This slows down overall performance. Thus, shared memory
systems tend to require faster memory so that processors will not have to wait too
long before having a memory request satisfied. For shared memory in general, the
more processors, the faster the memory required.

The alternate memory model, distributed memory, is where the transputer fits
in. A distributed memory architecture is depicted in Figure 1-2. In a distributed
memory model, each processor has its own local memory. The key question in a
distributed memory model is “What is the nature of the communication between
processors?” There is no common “memory pool” for communication in a distributed
memory environment, so instead the processors must have some other method of
communication. On the transputer, this method is to use serial “links,” which act
very much like serial ports on personal computers. Each transputer has four
bidirectional links that can be connected to links on other transputers. Each link
provides a flow of data from one processor in the system to another. Thus, like
building blocks or leggo, one can connect many transputers together into various
configurations. Such a mechanism is typical of a distributed processing system.



INTRODUCTION TO PARALLEL PROCESSING AND THE TRANSPUTER 3

Processor Processor

System Memory

Processor Processor

Processor Processor

Figure 1-1. An example of a shared memory architecture.

One popular software mechanism for using distributed memory as a kind of
global shared memory is “Linda.” Linda was developed by David Gelernter and
Nicholas Carriero at Yale and is essentially a set of communication primitives that
are added to an ordinary computer language. In a Linda program, a programmer
places data into and reads or removes data from an abstract shared memory area
called “tuple space.” The data objects inside the tuple space are referred to as



TRANSPUTER ASSEMBLY LANGUAGE PROGRAMMING

Local Local
Memory Memory
Local Local
Memory Memory
Processor Processor
Processor Processor
Processor Processor
Processor Processor
Local
Local Memory
Memory
Local
Memory

Figure 1-2. An example of distributed memory.

“tuples.” A tuple space can exist in either shared or distributed memory. This
abstraction has the advantage of portability. In particular, Linda programs can
run on either shared or distributed memory machines. Underlying system
libraries implement the machine-dependent communication functions upon
which Linda relies. Linda programs ignore the underlying processor topology
and aim at a higher level of abstraction for interprocess and interprocessor
communication.

However, for most distributed memory environments, the processor topology
is the main consideration. The next question to ask then is how to connect
multiple transputers. With four links per transputer, there are various topolo-
gies, or network configurations, that are possible. It is possible to configure four
transputers in a “ring,” with each processor connected to two others, much like
children holding hands to form a ring. Figure 1-3 illustrates four processors in



