~ FOUNDATIONS
OF DIFFERENTIAL
- GEOMETRY ¢

VOLUME 11




FOUNDATIONS
OF DIFFERENTIAL
GEOMETRY

VOLUME II

SHOSHICHI KOBAYASHI

University of California, Berkeley, California
and

KATSUMI NOMIZU

Brown University, Providence, Rhode Island

1969
INTERSCIENCE PUBLISHERS
a division of John, Wiley & Sons, New York - London - Sydney



1098 =76 5 4 F0

Copyright © 1969 by John Wiley & Sons, Inc.

All rights reserved. No part of this book may be reproduced
by any means, nor transmitted, nor translated into a machine
language withoui the written permission of the publisher.

Library of Congress Catalog Card Number: 68-19209
SBN 470 496487

Printed in the United States of America




PREFACE

This is a continuation of Volume I of the Foundations of
Differential Geometry. The chapter numbers are continued from
Volume I and the same notations are preserved as much as
possible. The main text, Chapters VII-XII, deals with the topics
that have been promised in the Preface of Volume I. The Notes
include material supplementary to Volume I as well. The
Bibliography duplicates, for the sake of convenience of readers,
all the references in the Bibliography of Volume I in the same
numbering and continues to references for Volume II.

The content of each chapter is now briefly described.

Chapter VII gives the fundamental results and some classical
theorems concerning geometry of an n-dimensional submanifold
M immersed in an (n + p)-dimensional Riemannian manifold
N, in particular, R"*?. In §1, the natural connections in the
orthogonal bundle and the normal bundle over M are derived
from the Riemannian connection in the orthogonal bundle over
N. In §2, where N = R"*?, we show that these connections are
induced from the canonical connections in the Stiefel manifolds
V(n, p) and V(p, n), both over the Grassmann manifold G(z, p),
respectively, by means of the bundle maps associated to the
generalized Gauss map of M into G(n, p). In §§3 and 4, we use
the formalism of covariant differentiation VyY to study the
relationship between the invariants of M and N and obtain the
classical formulas of Weingarten, Gauss and Codazzi. We prove
a result of Chern-Kuiper which generalizes. the theorem of
Tompkins. §§5, 6, and 7 are concerned with the classical notions
and theorems on hypersurfaces in a Euclidean space, including a
result of Thomas-Cartan-Fialkow on Einstein hypersurfaces and
results on the type number and the so-called fundamental
theorem. In the last §8, we discuss auto-parallel submanifolds
and totally geodesic submanifolds of a manifold with an affine
connection and prove, in particular, that these two notions coin-
cide in the case where the connection in the ambient space has
no torsion. The content of Chapter VII is supplemented by
Notes 14,15, 16, 17, 18, 21, and 27.

Chapter VIII is devoted to the study of variational problems

v
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on geodesics. In §1, we define Jacobi fields and conjugate points
for a manifold with an affine connection and discuss their geo-
metric meaning. In §2 and 3, we make a further study of these
notions in a Riemannian manifold and prove the classical result
on the distance between consecutive conjugate points on a
geodesic when the sectional curvature (or, more generally, each
of the eigenvalues of the Ricci tensor) is greater than a certain
positive number everywhere. In §4, we prove Rauch’s comparison
theorem. In §5, we study the first and second variations of the
length integral, considered as a function on the space of all piece-
wise differentiable curves, and obtain, among others, a proof of
- Myers’s Theorem. The Index Theorem of Morse is proved in §6.
In §7, we prove basic properties of cut loci. Although the resuits
of §7 are not used elsewhere in this book, they are basic in the study
of manifolds with positive curvature. In §8, we prove a theorem
of Hadamard and Cartan which says that for a complete
Riemannian space with non-positive curvature the exponential
map is a covering map. Applications are made to a homogeneous
Riemannian manifold with non-positive sectional curvature and
negative definite Ricci tensor. In §9, we prove a theorem to the
effect that on a simply connected complete Riemannian manifold
with non-positive sectional curvature every compact group of
isometries has a fixed point. Applications are given to the case
of a homogeneous Riemannian space. Results of §§8 and 9 are
used in §11 of Chapter XI. Note 22 supplements the content of
this chapter.

In Chapter IX, we provide differential geometric foundations
for almost complex manifolds and Hermitian metrics, in particular,
complex manifolds and Kaehler metrics. The results in this
chapter are essentially of local character. After purely algebraic
preliminaries in §1, we discuss in §2 the notion of an almost
complex structure, its torsion and integrability as well as complex
tangent spaces, operators 9 and 0 for complex differential forms
on an almost complex manifold. Many examples are given,
including complex Lie groups, complex parallelizable spaces,
complex Grassmann manifolds, Hopf manifolds and their gen-
eralizations, and a result of Kirchhoff on almost complex structures
on spheres. In §3, we discuss connections in the bundle of complex
linear frames of an almost complex manifold and relate their
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torsions with the torsion of the almost complex structure. In{4,
Hermitian metrics and the bundle of unitary frames are discussed.
The most interesting cage is that of a Kaehler metric, whose basic
properties are proved here. In §5, we build a bridge between
intrinsic notations and complex tensor notations for Kaehlerian
geometry. In §6, many examples of Kaehler manifolds are dis-
cussed, including the Fubini-Study metric in the complex
projective space and the Bergman metric in the open unit ball
in C". In §7, we give basic local properties of holomorphic
sectional curvature and prove that a simply connected and
complete Kaehler manifold of constant holomorphic sectional
curvature ¢ is a complex projective space, a complex Euclidean
space or an open unit ball in a complex Euclidean space according
as¢ >0, = 0 or < 0. In §8, we discuss the de Rham decomposition
of a Kaehler manifold and the notion of non-degeneracy. §9 is
concerned with holomorphic sectional curvature and the Ricci
tensor of a complex submanifold of a Kaehler manifold. In the
last §10, we study the existence and properties of Hermitian
connection in a Hermitian vector bundle following Chern,
Nakano, and Singer. This chapter is supplemented by §6 of
Chapter X, §10 of Chapter XI (where examples are discussed
. from the viewpoint of symmetric spaces), and Notes 13, 18, 23,
24, and 26.

In Chapter X, we discuss the existence and properties of
invariant affine connections and invariant almost complex
structures on homogeneous spaces (especially, reductive homo-
geneous spaces). In §l1, the results of Wang in §11 of Chapter 11
are specialized to the situation where P is a K-invariant G-structure
on a homogeneous space M = K/H, and K-invariant connections
in P are studied. In §2, we specialize further to the case where
K/H is reductive and obtain the canonical connection and the
natural torsion-free connection of Nomizu. In §3, we study
homogeneous spaces with invariant (possibly indefinite) Rie-
mannian metrics. As an example we provide a differential
geometric proof of Weyl’s theorem that a Lie group G is compact
if the Killing-Cartan form of its Lie algebra is negative-definite.
In §§4 and 5, results of Nomizu and Kostant on the holonomy
group and reducibility of an invariant affine connection are
proved. In §6, following Koszul we give algebraic formulations



viil PREFACE

for an invariant almost complex structure on a homogeneous
space and for its integrability. This chapter serves as a basis for
Chapter XI and is supplemented by Notes 24 and 25.

In Chapter XI, we present the basic results in the theory of
affine, Riemannian, and Hermitian symmetric spaces. We lay
emphasis on the affine case a little more than the standard treat-
ment of the subject. In §1, we consider affine symmetric spaces,
thus giving a geometric motivation to the group-theoretic notion
of symmetric space which is introduced in §2. In §3, we reverse
the process in §1; thus we begin with a symmetric space G/H
and introduce the canonical affine connection on G/H, making
G/H an affine symmetric space. The curvature of the canonical
connection is given an algebraic expression. In §4, we study
totally geodesic submanifolds of a symmetric space G/H (with
canonical connection) from both geometric and algebraic view-
points. The symmetric Lie aigebra introduced in §3 is to a
symmetric space what the Lie algebra is to a Lie group. In §5,
two results on Lie algebras, namely, Levi’s theorem and the
decomposition of a semi-simple Lie algebra into a direct sum of
simple ideals, are extended to the case of symmetric Lie algebras.
The global versions of these results are also given. In §6, we
consider Riemannian symmetric spaces and the corresponding
symmetric spaces. The symmetric Lie algebra corresponding to a
Riemannian symmetric space is called an orthogonal symmetric
Lie algebra. In §7, where orthogonal symmetric Lie algebras
are studied, the decomposition theorems proved in §5 are made
more precise. In §8, the duality between the orthogonal sym-
metric Lie algebras of compact type and those of non-compact
type are studied together with geometric interpretations. In §9,
we discuss geometric properties and an algebraic characterization
of Hermitian symmetric spaces. Many examples cf classical spaces
are studied in §10 from viewpoints of symmetric spaces, including
real space forms originally defined in Chapter V and complex
space forms discussed in Chapter IX. In the last §11, we show,
assuming Weyl’s existence theorem of a compact real form of a
complex simple Lie algebra, that the classification of irreducible
orthogonal symmetric Lie algebras is equivalent to the classifi-
cation of real simple Lie algebras.

In Chapter XII, we present differential geometric aspects of
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characteristic classes. If ¢ 15 the structure group of a prmc1pa1
bundle P over M, then using the curvature of a connection 1n P
we can aggociate to each Ad(G)-invariant homogenecous poly-
nomial f of degree k on the Lie algebra of G a closed 2-form on
the base space M in a natural manner. The cohomology class
represented by this closed 24-form 1s independent of the choice
of connection and is called the characteristic class determined
by f. In §l1, following Chern we prove this basic result of Weil.
In §2, we study the algebra of Ad(G)-invariant polynomials on
the Lie algebra of G and determine the algebra explicitly when
G is a classical group. In §3, adopting the axiomatic definition
of Chern classes by Hirzebruch, we express the Chern classes of a
complex vector bundle in terms of the curvature form of a
connection in the bundle. The formula for the Chern character
in terms of the curvature form is also given. In §4, using Hirze-
bruch’s definition of the Pontrjagin classes of a real vector bundle,
we derive differential geometric formulas for the Pontrjagin classes.
In §5, we characterize the real Euler class of a vector bundle in a
simple axiomatic manner and derive the general Gauss-Bonnet
formula. This chapter, particularly §5, is supplemented by Notes
20 and 21.

We wish to note specifically that we do not go into the following
subjects: the theory of (2-dimensional) minimal surfaces; the
theory of global convex surfaces developed by A. D. Aleksandrov
and his school; Finsler geometry and its generalizations; the
general theory of conformal and projective connections; a deeper
study of differential systems. On the subjects of complex manifolds,
homogeneous spaces (especially symmetric homogeneous spaces),
vector bundles, G-structures and so on, our treatment is limited
to the foundational material in differential geometric aspects that
does not require deeper knowledge from algebra, analysis or
topology. Neither do we treat the harmonic theory nor a gener-
alized Morse theory, although these theories have many important
applications to Riemannian geometry. The Bibliography of
Volume II contains some basic references in these areas. In
particular, for the global theory of compact Kaehler manifolds
which requires the theory of harmonic integrals, the reader is
advised to read Weil’s book: Introduction & ’Etude des Variétés
Kdhleériennes.
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During the preparations of this volume, we have been most
encouraged by the reactions to Volume I of many readers who
wanted to find self-contained and complete proofs of the standard
results in the field. We sincerely hope that the present volume
will continue to meet the needs of these readers.

We should also like to acknowledge the grants of the National
Science Foundation which supported part of the work included

in this book.
SuosHICHI KOBAYASHI

September, 1968 Katsumi Nowmizu
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CHAPTER VII

Submanifolds

1. Frame bundles of a submanifold

Let ¢y, . . . , €,,, be the natural basis for R"+?. We shall denote
by R™ and R? the subspaces of R"*” spanned by ¢;, .. ., ¢, and
€,i1> +++ 5 €nip Tespectively. Similarly, we identify O(n) (resp.

0(p)) with the subgroup of O(n -+ p) consisting of all elements
which induce the identity transformation on the subspace R?
(resp. R*) of R"*?, In other words,

O(n) 0 5 8
O(n) ~< v ) and O(p) m( 0 o) ),

where I, and I, denote the identity matrices of order n and p,
respectively. Let o(n + p), o(n) and o(p) be the Lie algebras of
O(n + p), O(n) and O(p), respectively, and let g(n, p) be the
orthogonal complement to o(z) + o(p) in o(n + p) with respect
to the Killing-Cartan form of o(n + p) (cf. Volume I, p. 155 and

also Appendix 9). Then g(n, p) consists of matrices of the form

0 |
=y S
where A is a matrix with z rows and p columns and ‘4 denotes the
transpose of 4.

Let N be a Riemannian manifold of dimension n + p and let f
be an immersion of an n-dimensional differentiable manifold M
into N. We denote by g the metric of N as well as the metric
induced on M (cf. Example 1.2 of Chapter IV). For any point x

of M we shall denote f(x) € N by the same letter x if there is no
danger of confusion. Thus the tangent space 7,(M) is a subspace

1



2 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

of thestangent space 7,(N). Let T,(M)* be the orthogonal
complement of 7,(M) in T,(N); it is called the normal space to M
at x.

Let O(M) and O(N) be the bundles of orthonormal frames over
M and N, respectively. Then O(N) | M= {v € O(N); n(v) € M},
where 7: O(N) — N is the projection,ﬂ?s a principal fibre bundle
over M with structure group O(n + p). A frame v € O(N) | M at
x € M is said to be adapted if v is of the form (Y;,..., Y, ¥, .4, ..

¥o vwith ¥ .. .. ¥, tangentto M (and hence ¥, .y, ..., %,

n+p
normal to M). Thus, considered as a linear isomorphism R"+? —
T,(N), v is adapted if and only if » maps the subspace R" onto
T,(M) (and hence the subspace R” onto T,(M)*). It is easy to
verify that the set of adapted frames forms a principal fibre bundle
over M with group O(n) x O(p); it is a subbundle of O(N) | M
in a natural manner. We shall denote the bundle of adapted
frames by O(N, M). We define a homomorphism 4#': O(N, M) —
O(M) corresponding to the natural homomorphism O(n) x

- O(p) — O(n) as follows:
/Z’(Z)) = (¥ ..., Yn) forv = (Y,,..., Yn+n) € O<N: M).

If we consider v as a linear transformation R"*? — T, (N), then
h'(v) is the restriction of v to the subspace R". Hence, O(M) is
naturally isomorphic to O(N, M)/O( p). Similarly, denoting by
h"(v) the restriction of v € O(N, M) to the subspace R? of R"*%,
we obtain a homomorphism A”: O(N, M) — O(N, M)[O(n) cor-
responding to the natural homomorphism O(n) x O(p) — O(p).
By a normal frame at x € M, we mean an orthonormal basis
(€ - ¢ & B the normal spaceé. 7T,(M)L. If (Y &ii5 7,
il ier s 1., 18 an adapted framie at x, thetefFoesss ., ¥, )
is a normal frame at x. Since every normal frame is thus obtained
and since two adapted frames give rise to the same normal frame
if and only if they are congruent modulo O(n), the bundle
O(N, M)|O(n) can be considered as the bundle of normal frames
over M. Then 4": O(N, M) — O(N, M)[O(n) maps an adapted
frame v = (¥y, ..., Y,,,) upon the normal frame (¥,.,, ..,
Y,:,)- We denote by T(M)+ th€set U, T,(M)*. It is then a
vector bundle over M associated to the bundle of normal frames
O(N, M)[0(n) by letting the structure group O(p) act naturally
on the standard fibre R? (cf. §1 of Chapter III). We shall call

AP

sy
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this vector bundle the normal bundle of M (for the given immersion
finto N). The following diagrams illustrate these bundles:

’

O(M) = O(N, M)[O(p) <— O(N, M) i O(N, M)[O(n)
0‘"’l”" 0(n) x o<p)lw O“’)l"”
M <> M <> M

O(N, M) —> O(N) | M 2> O(N)
0(n) x O(p)lﬂ O(n +p)lﬂ O(n +p)lﬂ
M <> M — N,

where both 7 and j are injections.

Let 6 and ¢ be the canonical forms of M and N, respectively
(cf. §2 of Chapter III); 6 is an R"-valued 1-form on O(M) and
@ is an R**?-valued 1-form on O(N). Then we have

Proposition 1.1.  A'*(0) coincides with the restriction of @ to
O(N, M). In particular, the restriction of the R"+?-valued form ¢ to
O(N, M) is R"-valued.

Proof. By definition of ¢ we have

(YY) =o-3w(Y)) for Y € T,(O(N, M)).
Since #(Y) € T,(M), where x = m(v), and since v~! maps T,(M)
onto R”, ¢(Y) isin R”. Since #'(v) = v | R*and since 7’ o #'(Y) =
m(Y), we have
@(¥) = v (a(Y)) = k' (0)7' (=" ° K (Y)) = O(R'(Y))
= (A*(0))(Y)-
: QED.

Let v be the Riemannian connection form on O(N). Its restric-
tion to O(N) | M, that is, j*y, defines a connection in the bundle
O(N) | M. But its restriction to O(N, M), that is, 1*j*y, is not, in
general, a connection form on O(N, M).

ProposiTiON 1.2.  Let y be the Riemannian connection form on O(N)
and let w be the o(n) + o(p)-component of i*j*y with respect to the
decomposition o(n + p) = o(n) + o(p) + a(n, p). Then w defines a
connection in the bundle O(N, M).
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Proof. Since ad(0(n) x O(p)) maps g(n, p) onto itself, we see
from Proposition 6.4 of Chapter II that the form o defines a
connection in O(N, M). QED:

PropostTioN 1.3. The homomorphism k':-O(N, M) — O(M) =
O(N, M)|O(p) maps the connection in O(N, M) defined by w into the
Riemannian connection of M. The Riemannian connection form ' on
O(M) s determined by TR

h (CO) == Wo(n)»

where wy,y denotes the o(n)-component of the o(n) + o( p)-valued form w.

Proof. By Proposition 6.1 of Chapter IT we know that 4" maps
the connection defined by  into the connection in O(M) defined
by a form ' such that '*(’) = w,(,. To show that ' defines
the Riemannian connection of A we have only to show that the
torsion form of ' is zero. Restricting the first structure equation
of p to O(N, M), we obtain

d(i**g) = —(*y) A ((Y*).
Since 1**¢ is equal to 4'*(0) and is R"-valued by Proposition 1.1,
comparing the R”-components of the both sides we obtain

d(h'*(0)) = —h"*(0") A R'*(0).
Since &' maps O(N, M) onto O(M), this implies d0 = —o" A 0.
: QED.

Similarly, by Proposition 6.1 of Chapter IT we see that there is
a unique connection form o” on the bundle O(N, M)/O(n) such

that ”n 4
h"*(w ) = Wy(p)>

where w,,) denotes the o{p)-component of the o(n) + o(p)-valued
form w. Geometrically speaking, »” defines the parallel displace-
ment of the normal space 7T,(M)* onto the normal space T,(M)*
along any curve 7 in M from x to y.

The bundles O(N, M), O(M) = O(N, M)]O(p), and O(N, M)/
O(n), and their connection form w, o', and " are related as
follows:

Proposition 1.4. The mapping (h', h"): O(N, M) — O(M) <
(O(N, M)[O(n)) induces a bundle isomorphism O(N, M) ~ O(M) +
(O(N, M)|O(n)). The connection form w coincides with h'*(w") +
h”*(w”)'

The proof is trivial (see p. 82 of Volume I).
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Finally, we say a few words about the special case of a hyper-
surface, By a hypersurface in an (n 4 1)-dimensional manifold N
we mean a (generally connected) n=dimensional manifold M with
an immersion f. For cach x € M, there 15 a coordinate neighbor-
hood U of # in M and a differentiable field, say, &, of unit normal
vectors defined on U. Such a & can be, easily constructed by
choosing a coordinate system x', ..., x" around x in U and a
coordinate system %, . . ., »"*! around x (= f(x)) in N;in fact, a
unit normal vector field on U is determined uniquely up to sign.
For a fixed choice of & on U, it is obvious that £ is parallel along
all closed curves in U (with respect to the connection in the normal
bundle). Assume that N is orientable and is oriented. Then we
can choose a differensiable field of unit normal vectors over M
if and only if M is also orientable. Indeed, for a fixed orientation
on M, there is a unique choice of the field of unit normal vectors
£ such that, for an oriented basis {X;, . .., X,} of T,(M) at each
xeM,{&, Xy, ..., X,}is an oriented basis of T,(N). Conversely,
if a field & of unit normal vectors exists globally on A, then a
basis {X;, ..., X,} of T,(M) such that {&, X;, ..., X,}is an
oriented basis of T,(N) determines an orientation of M. If we
forget about the particular orientations of N and M, then again a
differentiable field of unit vectors on M is unique up to sign. For
a choice of &, it is obvious that £ is parallel along all curves in M.

Without assuming that N and M are orientable, let us choose a
unit normal vector &; at a point x, on M. The parallel displacement
along all closed curves at x, on M will map &, either upon £, or
upon —&,. In other words, the holonomy group of the linear
connection in the normal bundle is a subgroup of the group
{1, —1}. (This is also clear from the fact that the bundle
O(N, M)|O(n) of normal frames over M has structure group
0(1) = {1, —1}.) If the ‘holonomy group is trivial (and this is
the case if M is simply connected), then &, is invariant by
parallel displacement along all closed curves at x,. In this case,
we may define a differentiable unit normal vector field & on M by
translating &, parallelly to each point x of M, the result being
independent of the choice of a curve from x, to x in M. We may
thus conclude that if M is a simply connected, connected hypersurface
immersed in a Riemannian manifold N, then M admits a differentiable
field of unit normal vectors defined on M.



