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Introduction

The aim of this book is to provide a survey of algebraic methods useful in the
investigation of the structure of graded rings and their modules. The concept
of gradation is strongly linked to the notion of degree; for example, graded
rings may be viewed as rings generated by certain elements having a “degree”
and this degree is a natural number or an integer.

The mother of all graded rings, a polynomial ring in one variable over a
field, is graded by Z. But when considering polynomials in more than one,
say n variables one has the choice of using the total degree in Z, or a new
multi-degree in Z" extending the idea of exponent of a variable. In modern
language this multi-degree is an element of the ordered group Z™ with the
lexicographical order; this concept plays an essential role in the proof of the
fundamental theorem for symmetric polynomials. The concept of degree then
extends to other classes of rings, commutative but even noncommutative, and
in fact it also underlies the modern treatment of projective varieties in Al-
gebraic Geometry. Another important generalization consists in allowing the
degree to take values in abstract groups, for example finite groups, usually not
embeddeable into groups of numbers. Then group theory and representation
theory of groups enter the picture.

You do not have to know a group to see it act. Perhaps this statement
summarizes adequately one of the basic principles of representation theory of
groups. Indeed, even before the definition of abstract group had been given,
arguments in classical geometry often referred to actions of specific groups,
usually symmetry groups of a geometric configuration. The best testament of
the faith mathematicians had in the power of group theory within geometry
is worded in Klein’s “Erlangen Programm”. But group actions continued to
be successful even on the more abstract side, e.g. Galois Theory featured
group actions on abstract algebraic structures in terms of automorphism just
to solve down to earth problems related to polynomial equations. The success
of the abstract approach induced new ideas concerning continuous groups or
Lie groups, and since then the devil of abstract algebra, as in A. Weil’s famous
quote, is indeed invading the soul of many disciplines in mathematics, most
often using group theory to open the door ! The formal treatment of group
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theory and group representations allowed other algebraic methods to enter the
picture, e.g. Ring Theory. Indeed the representation theory of finite groups
amounts to the study of modules over the group algebra KG of the group G
over the field K. The KG-module structure allows to encode precisely most
properties of a G-action on a K-vector space in ring theoretical data. The
fact that K G is graded by the group G may be omnipresent in representation
theory, the basic theory can be developed completely without stressing that
point ... up to a point. That happens when a subgroup H of G is being
considered and representations of H and G have to be compared. Hence,
in Clifford Theory, certain aspects of graded algebra are more dominantly
present. In particular, when H is not normal in G and passing from G to
G/H does not really fit into the framework of group theory, then the graded
objects e.g. gradation by G-sets etc ..., turn out to be useful exactly because of
their generality. It is even possible to keep the philosophy of “action” because
a gradation by G may be viewed as an action of the dual algebra (KG)*,
a Hopf algebra dual to the Hopf algebra KG for a finite group G. Hence a
G-action will be a KG-action and a G-gradation will be a (K G)*-action, or
equivalently, a KG-coaction. In the shadow of “Quantum Groups”, abstract
Hopf algebras also gained popularity in recent years and therefore several
techniques developed in Hopf algebra theory, independent of their equivalent
in graded ring theory. A clear case is presented by the use of smash products,
originating in a Hopf algebra setting but most effective for the graded theory
because the presence of a group allows more concrete interpretations.

Chapter 7 is devoted to the introduction of smash product constructions in-
spired by the general concept of smash product associated to a Hopf module
algebra. In our case the Hopf algebra considered will be the group algebra
k[G] over a commutative ring k with respect to an arbitrary group G. Several
constructions of the smash product exist, for example depending on the fact
whether G is a finite group or not. We have chosen to follow the approach
of M. Cohen, S. Montgomery in the first case and D. Quin’s in the second,
cf. [43], [174] resp. The main idea behind the introduction of smash products
associated to graded rings is that the smash product defines a new ring such
that the category of graded modules over the graded ring becomes isomorphic
to a closed subcategory of modules over the smash product.

At this point let us state that the philosophy underlying graded ring theory is
almost contrary to the one of representation theory. Indeed a polynomial ring
over a field, is graded by Z but what will this tell us about Z ? The graded
methods are not aiming to obtain information about the grading group G, on
the contrary the existence of a gradation is used to relate R and R., e the
unit element of G, or graded to ungraded properties of R. Where possible,
knowledge about the structure of G is used.
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We may formulate the basic problems in graded algebra as the relational
problems between a trio of categories. Indeed, for a graded ring R with respect
to a group GG we consider the three important categories

i. R-gr, the category of graded left modules
ii. R-mod, the category of left modules

iii. R.-mod, the category of left modules over the subring R. of R consisting
of the homogeneous elements of degree e where e is the neutral element
of G.

These categories are connected by several functors :
Ind : R.-mod — R-gr, the induction
Coind : R-gr — R.-mod, the coindiction
U : R-gr — R-mod, the forgetful functor
F : R-mod — R-gr, the right adjoint of U

Observe that the functors Ind and Coind stem from representation theory;
the induction functor Ind is a left adjoint of the functor (=), : R-gr — R,-
mod, associating to a graded odule M then R.-module M. which is the part
of M consisting of elements of degree e, the coinduction functor is a right
adjoint adjoint to the same functor. A large part of this book deals with
problems relating to the “transfer of structure” via the functors introduced
alone. A typical example is presented by the problem of identifying properties
of ungraded nature implied by similar (or slightly modified) graded properties.

The material in this book is aimed to have a general applicability and therefore
we stress “methods” and avoid specific technical structure theory. Since we
strove to make the presentation as self contained as possible, this should make
the text particularly useful for graduate students or beginning researchers;
however, it should be an asset if some knowledge of a graduate course on
general algebra is present e.g. several chapters in P. Cohn’s book [45]. For
full detail on the category theoretical aspects of Ring Theory we refer to
the book by B. Stenstrom, Rings of Quotients, Springer-Verlag, Berlin, 1975,
[181]. For classical notions concerning riings and modules we recommend the
reading of F. W. Anderson, K. R. Fuller, Rings and Categories of Modules,
Springer-Verlag, Berlin, 1992, [6].

We have chosen to present these methods in suitable category theoretical
settings, more specific applications have often been listed as exercises (but
with extensive hints of how to solve them, or even with complete solution in-
cluded). Typical topics include: category of graded rings and graded modules,
the structure of simple or injective objects in the category of graded modules,
Green theory for strongly graded rings, graded Clifford theory, internal and
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external homogenization, smash products and related functors, localization
theory for graded rings, ...

For more detail on the contents of each separate chapter, we refer to the extra
section “Comments and References” at the end of each chapter.
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Chapter 1

The Category of Graded
Rings

1.1 Graded Rings

Unless otherwise stated, all rings are assumed to be associative rings and any
ring R has an identity 1 € R. If X and Y are nonempty subsets of a ring R
then XY denotes the set of all finite sums of elements of the form zy with
r € X and y € Y. The group of multiplication invertible elements of R will
be denoted by U(R).

Consider a multiplicatively written group G with identity element e € G.
A ring R is graded of type G or R, is G-graded, if there is a family {R,,c €
G} of additive subgroups R, of R such that R = ®,eq Ry and R, R, C Ry,
for every o,7 € G. For a G-graded ring R such that R, R, = R,, for all
o,7 € G, we say that R is strongly graded by G.

The set h(R) = Uyeq R, is the set of homogeneous elements of R;
a nonzero element r € R, is said to be homogeneous of degree o and
we write : deg(r) = 0. An element r of R has a unique decomposition as
F= Zne(; ro with r, € R, for all ¢ € GG, but the sum being a finite sum i.e.
almost all r, zero. The set sup(r) = {0 € G,r, # 0} is the support of r in
G. By sup(R) = {0 € G, R, # 0} we denote the support of the graded
ring R. In case sup(R) is a finite set we will write sup(R) < oo and then R
is said to be a G-graded ring of finite support.

If X is a nontrivial additive subgroup of R then we write X, = X N R,
for o € G. We say that X is graded (or homogeneous) if : X =3 _~ X,. In
particular, when X is a subring, respectively : a left ideal, a right ideal, an
ideal, then we obtain the notions of graded subring, respectively : a graded
left ideal, a graded right ideal, graded ideal. In case I is a graded ideal
of R then the factor ring R/I is a graded ring with gradation defined by :
(R/I)g = Ry +1I/I, R/l = ®oecc;(R/1),.
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1.1.1 Proposition

Let R = @,c R, be a G-graded ring. Then the following assertions hold :

1. 1 € R, and R, is a subring of R.

2. The inverse r~! of a homogeneous element r € U(R) is also homoge-
neous.

3. R is a strongly graded ring if and only if 1 € R, R,-1 for any o € G.

Proof

1. Since R.R. C R.. we only have to prove that 1 € R.. Let 1 =) r, be
the decomposition of 1 with 7, € R,. Then for any sy € Rx(A € G),
we have that sy = s).1 = Zne(; S$\To, and syr, € Ry,. Consequently
sxTe = 0 for any o # e, so we have that sr, = 0 for any s € R.
In particular for s = 1 we obtain that r, = 0 for any ¢ # e. Hence
l=r.€R,.

2. Assume that r € U(R)N Ry. If r= ! =3 _(r71), with (r™ '), € Ry,
then 1 =rr~1 =3 __,r(r'),. Since 1 € R and r(r™'), € Ryy, We
have that r(r=1), = 0 for any ¢ # A~!. Since r € U(R) we get that
(r~Y), # 0 for ¢ # A71, therefore r=! = (r~!),-1 € Ry-1.

3. Suppose that 1 € R, R,-1 for any o € . Then for 0,7 € G we have:

er’r = R(’R(TT = (RaRn“l)RnT = Ra(RgflRar) c RURT

therefore R, = Ry, R,, which means that R is strongly graded. The
converse is clear. O

1.1.2 Remark

The previous proposition shows that R.R, = R,R. = R,, proving that R,
is an R.-bimodule.

If R is a G-graded ring, we denote by U8"(R) = U,ea(U(R) N R,) the set of
the invertible homogeneous elements. It follows from Proposition 1.1.1 that
U®e'(R) is a subgroup of U(R). Clearly the degree map deg : Us"(R) — G is
a group morphism with Ker(deg) = U(R,).

A G-graded ring R is called a crossed product if U(R)NR, # () for any 0 € G,
which is equivalent to the map deg being surjective. Note that a G-crossed
product R = @&,eqR, is a strongly graded ring. Indeed, if u, € U(R) N R,,
then u;' € R, 1 (by Proposition 1.1.1), and 1 = u,u;' € RyR,-1.
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1.2 The Category of Graded Rings

The category of all rings is denoted by RING. If G is a group, the category
of G-graded rings, denoted by G-RING, is obtained by taking the G-graded
rings for the objects and for the morphisms between G-graded rings R and S
we take the ring morphisms ¢ : R — S such that p(R,) C S, for any o € G.

Note that for G = {1} we have G-RING=RING. If R is a G-graded ring,
and X is a non-empty subset of GG, we denote Rx = @,¢x R,. In particular,
if H < G is a subgroup, Ry = ®pey Ry is a subring of R. In fact Ry is
an H-graded ring. If H = {e}, then Ry = R.. Clearly the correspondence
R +— Ry defines a functor (=) : G — RING — H — RING.

1.2.1 Proposition

The functor (—)y has a left adjoint.

Proof I:et S e H— RING,_S = ®OnenSn. We defin_e a G-graded ring S as
follows: S = S as rings, and S, = S, if o € H, and S, = 0 elsewhere. Then
the correspondence S +— S defines a functor which is a left adjoint of (—)p.

O

We note that if S € RING = H — RING for H = {1}, then the G-graded ring
S is said to have the trivial G-grading. Let H < G be a normal subgroup.
Then we can consider the factor group G/H. If R € G — RING, then for
any class C € G/H let us consider the set Rc = @®zecRs. Clearly R =
®cea/uRe, and RoRer € Reocr for any C,C" € G/H. Therefore R has
a natural G'/H-grading, and we can define a functor Ug,y + G — RING —
G/H — RING, associating to the G-graded ring R the same ring with the
G/ H-grading described above. If H = G, then G/G — RING = RING, and
the functor Ug,q is exactly the forgetful functor U : G — RING — RING,
which associates to the G-graded ring R the underlying ring R.

1.2.2 Proposition
The functor U/ : G — RING — G//H — RING has a right adjoint.

Proof Let S € G/H — RING. We consider the group ring S[G], which is a
G-graded ring with the natural grading S[G], = Sg for any g € G. Since S =
®ceea/uSc, we define the subset A of S[G] by A = ©oeq/uSc[C]. If g € G,
there exists a unique C' € G/H such that g € C; define A; = Scg. Clearly
the A,’s define a G-grading on A, in such a way that A becomes a G-graded
subring of S[G]. We have defined a functor F' : G/H — RING — G — RING,
associating to S the G-graded ring A. This functor is a right adjoint of the
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functor U,y Indeed, if R € G — RING and S € G/H — RING, we define a
map
¢ : Homg/g_rina(Ug/u(R), S) — Homg _rinc (R, FI(S5))

in the following way: if u € Homg,y_rine(Ua u(R),S), then o(u)(ry) =
u(ry)g for any r, € R,. Then ¢ is a natural bijection; its inverse is defined by
o 1(v) =eo0iow for any v € Homg_gring (R, A), where i : A — S[G] is the
inclusion map, and ¢ : S[G] — S'is the augmentation map, i.e. €(3_ c; $49) =
de(: sg. In case S is a strongly graded ring (resp. a crossed product, then
the ring A, constructed in the foregoing proof, is also strongly graded (resp.
a crossed product). O

Clearly if H < G and R is a G-strongly graded ring (respectively a crossed
product), then Ry is an H-strongly graded ring (respectively a crossed prod-
uct). Moreover, if H < G is a normal subgroup, then Ug, gy (R) is a G/H-
strongly graded ring (respectively a crossed product). O

1.2.3 Remark

The category G-RING has arbitrary direct products. Indeed, if (R;)ics is

a family of G-graded rings, then R = @yeq([][;(Ri)s) is a G-graded ring,

which is the product of the family (R;);cs in the category G-RING. Note that

R is a subring of [],.; R;, the product of the family in the category RING.

The ring R is denoted by [[%, Ri. If G is finite or I is a finite set, we have
?é[ R = Hiel R;.

1.2.4 Remark

Let R = @,cq Ry, be a G-graded ring. We denote by R the opposite ring of
R, i.e. R° has the same underlying additive group as R, and the multiplication
defined by r o7’ = r'r for 7,7’ € R. The assignment (R°), = R,-1 makes
R into a G-graded ring. The association R — R° defines an isomorphism
between the categories G — RING and G — RING.

1.3 Examples

1.3.1 Example The polynomial ring

If A is a ring, then the polynomial ring R = A[X] is a Z-graded ring with
the standard grading R,, = AX™ for 0 < n, and R,, =0 for n < 0. Clearly R
is not strongly graded.

1.3.2 Example The Laurent polynomial ring

If Ais aring, let R = A[X, X '] be the ring of Laurent polynomials with the
indeterminate X. An element of R is of the form 3, a; X" withm € Z
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and finitely many non-zero a;’s. Then R has the standard Z-grading R, =
AX" n e Z. Clearly R is a crossed product.

1.3.3 Example Semitrivial extension

Let A be a ring and 4 M4 a bimodule. Assume that ¢ = [—, =] : M ®4 M —
A is an A — A-bilinear map such that [my, maJms = mq[mg,ms] for any
my,mo,m3 € M. Then we can define a multiplication on the abelian group
A x M by

(a,m)(a’,m’) = (aa’ + [m,m'],am’ + ma’)

which makes A x M a ring called the semi-trivial extension of A by M and
¢, and is denoted by A x, M. The ring R = A x, M can be regarded as
a Z,-graded ring with Ry = A x {0} and R, = {0} x M. We have that
Ry Ry = Imyp x {0}, so if ¢ is surjective then R is a Z,-strongly graded ring.

1.3.4 Example The “Morita Ring”

Let (A, B,a Mp,p Na,p,?) be a Morita context, where ¢ : M @wp N — A'is
an A — A-bimodule morphism, and ) : N ©4 M — B is a B — B-bimodule
morphism such that p(m@n)m’ = my(n@m’) and Y(n@m)n’ = np(men’)
for all m,m’ € M,n,n’ € N. With this set-up we can form the Morita ring

A M
(v %)

where the multiplication is defined by means of ¢ and 3. Moreover, R is a
Z-graded ring with the grading given by:

A0 0 M 00
R“:(o B) R':(o 0) R—“(N o)

and R; =0 for i # —1,0, 1.

Since RR_| = ( ]"(3 v 8 ) and R 1Ry = ( 8 177(1) " ) then R is not

strongly graded.

1.3.5 Example The matrix rings

Let A be a ring, and R = M,,(A) the matrix ring. Let {e;;|1 < i,j < n} be
the set of matrix units, i.e. €;; is the matrix having 1 on the (i, j)-position
and 0 elsewhere. We have that e;jex = 0,xe; for any 4, j, k, 1, where ¢ is
Kronecker’s symbol. Fort € Z set Ry = 0if |t| >n, Ry =3, ,_, Rei iy if
O0<t<mn,and Ry =%, _, ., Reiipt if —n <t <0. Clearly R = @&z R,
and this defines a Z-grading on R.
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On the other hand we can define various gradings on the matrix ring. We
mention an example of a Zs-grading on R = M3(A), defined by :

A A 0 0 0 A
Ry = A A 0 and R, = 0o 0 A
0 0 A A A 0

Since R1 Ry = Ry, R is a strongly Z,-graded ring; however R is not a crossed
product, since there is no invertible element in R;. It is possible to define
such “block-gradings” on every M, (A).

1.3.6 Example The G x G-matriz ring

Let G be a finite group and let A be an arbitrary ring. We denote by R =
M¢(A) the set of all G x G-matrices with entries in A. We view such a matrix
asamap « : G x G — A. Then R is a ring with the multiplication defined
by:
(af)(x,y) = Z a(x,z)3(z,y)
2€G
fora,f € R, z,y € G. If

R, = {a € Mg(R)|a(x,y) =0 forevery z,y€ G withz 'y +# g}

for g € G, then R is a G-graded ring with g-homogeneous component R,.
Indeed, let & € R,,3 € R,. Then for every r,y € G such that 7'y #
gg¢’, and any z € G, we have either 27 'z # g or z7 'y # ¢, therefore
(af)(x.y) = > .cqalx.2)B(z,y) = 0, which means that a3 € Ry, . If for
x,y € G we consider e, , the matrix having 1 on the (z,y)-position, and 0
elsewhere, then e, e, = dyu€s0. Clearly e, .4 € Ry, €44, € Ry—1, and
(Xseq €rag) (2o e €ygy) = 1, hence R is a crossed product.

1.3.7 Example FExtensions of fields

Let K C FE be a field extension, and suppose that E = K(«), where a is
algebraic over K, and has minimal polynomial of the form X" —a, a €
K (this means that E is a radical extension of K). Then the elements
Lo, a?,...,a™ ! form a basis of F over K. Hence F = ®;—¢.,,—1Ka, and this
yields a Z,-grading of E, with Ey = K. Moreover E is a crossed product
with this grading.

As particular examples of the above example we obtain two very interesting
ones:

1.3.8 Example

Let k(X) be the field of rational fractions with the indeterminate X over
the field k. Then the conditions in the previous example are satisfied by the



