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This book is a self-contained introduction to key topics in ad-
vanced general relativity. The opening chapter reviews the
subject, with strong emphasis on the geometric structures un-
derlying the theory. The second chapter discusses 2-component
spinor theory, its usefulness for describing zero-mass fields and
its practical application via Newman-Penrose formalism, together
with examples and applications. There follows an account of
the asymptotic theory far from a strong gravitational source, de-
scribing the mathematical theory by which measurements of the
far-field and gravitational radiation emanating from a source can
be used to describe the source itself. Finally, the characteristic
initial value problem is described, first in general terms, and then
with particular reference to relativity, concluding with its relation
to Arnol’d’s singularity theory. Exercises are included throughout.



CAMBRIDGE MONOGRAPHS ON
MATHEMATICAL PHYSICS

General editors: P. V. Landshoff, D. R. Nelson, D. W. Sciarea, S. Weinberg

ADVANCED GENERAL RELATIVITY



Cambridge Monographs on Mathematical Physics

Relativistic Fluids and Magneto-Fluids A.M. Anile

Kinetic Theory in the Expanding Universe J. Bernstein

Quantum Fields in Curved Space N.D. Birrell and P.C.W. Davies

Semiclassical Methods for Nucleus-Nucleus Scattering D.M. Brink
Renormalization J.C. Collins

An Introduction to Regge Theory and High Energy Physics P.D.B. Collins
Quarks, Gluons and Lattices M. Creutz

Relativity on Curved Space F. de Felice and C.J.S. Clarke

Supermanifolds B.S. DeWitt

Introduction to Supersymmetry P.G.O. Freund

The Wave Equation in Curved Space-Time F.G. Friedlander

Scattering from Black Holes J.A.H. Futterman, F.A. Handler and R. Matzner
Differential Geometry, Gauge Theories and Gravity M. Gockeler and T. Schiicker
Superstring Theory, vol. 1: Introduction M.B. Green, J.H. Schwarz and E. Witten

Superstring Theory, vol. 2: Loop Amplitudes, Anomalies and Phenomenology M.B.
Green, J.H. Schwarz and E. Witten

The Large Scale Structure of Space-Time S.W. Hawking and G.F.R. Ellis
The Interacting Boson Model F. lachello and A. Arima
The Interacting Boson-Fermion Model F. Iachello and P. Van Isacker

Statistical Field Theory, vol. 1: From Brownian Motion to Renormali: \tion and
Lattic Gauge Theory C. Itzykson and J.- M. Drouffe

Statistical Field Theory, vol. 2: Strong Coupling, Monte Carlo Methods, Conformal
Field Theory, and Random Systems C. Itzykson and J.- M. Drouffe

Finite Temperature Field Theory J. Kapusta

Exact Solutions of Einstein’s Field Equations D. Kramer, H. Stephani. M.A.H.
MacCallum and E. Herlt

Liquid Metals: Concepts and Theory N.H. March

Group Structure of Gauge Theories L. O’Raifeartaigh

Hamiltonian Systems, Chaos and Quantization A. Ozorio de Almeida

Spinors and Space-time, vol. 1: Two Spinor Calculus R. Penrose and W. Rindler

Spinors and Space-time, vol. 2: Spinor and Twistor Methods R. Penrose and W.
Rindler

Gauge Field Theories S. Pokorski

Models of High Energy Processes J.C. Polkinhorne

Functional Integrals and Collective Excitations V.N. Popov

Path Integral Methods in Quantum Field Theory R.J. Rivers

The Structure of the Proton: Deep Inelastic Scattering R.G. Roberts
Gravitational Physics of Stellar and Galactic Systems W.C. Saslaw
Advanced General Relativity J.M. Stewart

Twistor Geometry and Field Theory R.S. Ward and R.O. Wells Jr



PREFACE

General relativity is the flagship of applied mathematics. Al-
though from its inception this has been regarded as an ex-
traordinarily difficult theory, it is in fact the simplest theory to
consummate the union of special relativity and Newtonian grav-
ity. Einstein’s ‘popular articles’ set a high standard which is
now emulated by many in the range of introductory textbooks.
Having mastered one of these the new reader is recommended
to move next to one of the more specialized monographs, e.g.
Chandrasekhar, 1983, Kramers et al., 1980, before considering re-
view anthologies such as Einstein (centenary), Hawking and Israel,
1979, Held, 1980 and Newton (tercentary), Hawking and Israel,
1987. As plausible gravitational wave detectors come on line in
the next decade (or two) interest will focus on gravitational ra-
diation from isolated sources, e.g., a collapsing star or a binary
system including one, and I have therefore chosen to concentrzlc
in this book on the theoretical background to this topic.

The material for the first three chapters is based on my lec-
ture courses for graduate students. The first chapter of this book
presents an account of local differential geometry for the benefit
of the beginner and as a reminder of notation for more experi-
enced readers. Chapter 2 is devoted to two-component spinors
which give a representation of the Lorentz group appropriate for
the description of gravitational radiation. (The relationship to the
more common Dirac four-component spinors is discussed in an ap-
pendix.) Far from an isolated gravitating object one might expect
spacetime to become asymptotically Minkowskian, so that the de-
scription of the gravitational field would be especially simple. This
concept, asymptopia (asymptotic Utopia) is discussed in chapter

vii



viii Preface

3, commencing with an account of the asymptotics of Minkowski
spacetime, and going on to the definitions of asymptotic flatness
and Miuting spacetimes. (For a more detailed development of the
material in chapters 2 and 3, the reader is referred to Penrose and
Rindler, 1984, 1986.) The book concludes with a self-contained
discussion of the characteristic initial value problem, caustics and
their relation to the singularity theory of Arnol’d.

Exercises form an integral part of each chapter giving the reader
a chance to check his understanding of intricate material or of-
fering straightforward extensions of the mainstream discussions.

roblems are even more important, for they are not only more
/challenging exercises, but can frequently be combined to produce
significant results, encouraging the student to develop his under-
standing by deriving much material which is not explicitly spelt

“out. The brevity of this book is deceg.ive.

Finally I acknowledge the considerable benefit of discussions
with many of my colleagues, especially Jirgen Ehlers, Bernd
Schmidt and Martin Walker. in particular I owe especial thanks
to Helmut Friedrich for teaching me (almost) all I know about the
characteristic initial value problem.

John Stewart
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o1
DIFFERENTIAL GEOMETRY

The natural arena for physics is spacetime. As we shall see later
spacetime is curved. It is necessary therefore to introduce a fair
amount of mathematics in order to understand the physics. For-
tunately we shall only need a local theory, so that problems from
differential topology will not occur.

1.1 Differentiable manifolds

The simplest example of a curved space is the surface of a sphere
S?%, such as the surface of the earth. One can set up local ccos-
dinates, e.g., latitude and longitude, which map S? onto a plane
piece of paper R?, known to sailors as a chart. Collections of charts
are called atlases. Perusal of any atlas will reveal that there is no
1-1 map of S? into R?; we need several charts to cover S?. L_t us
state this more formally.

(1.1.1) DEFINITION

Given a (topological) space M, a chart on M is a 1-1 map ¢
from an open subset U C M to an open subset $(U) C R", i.e., a
map ¢ : M — R™. A chart is often called a coordinate system.

Now suppose the domains U,,U, of two charts ¢,,4, over-
lap in U, N U,. Choose a point z, in ¢,(U, NU,). It
corresponds to a point p in U, N U,, where p = ¢, (=,).
Since p is in U, we can map it to a point z, in ¢,(U,).
We shall require the map z, — =z, to be smooth, see fig-
ure 1.1.1 so that in the next section the definitions of smooth

1



2 1 Differential geometry

#1 )
o / \ P
é2 0o¢y ! ’

Fig. 1.1.1 When the domains of two charts ¢, and ¢, overlap they are
required to mesh smoothly, i.e., ¢, 0 ¢; ! must be smooth.

curves and tangent vectors will be coordinate-independent. More
precisely:

(1.1.2) DEFINITION

Two charts ¢,,¢, are C>-related if both the map
¢y 0 ¢1_1 16, (U, NU,) = ¢,(U,NT,),

and its inverse are C®. A collection of C*-related charts such
that every point of M lies in the domain of at least one chart
forms an atlas. The collection of all such C*-related charts forms
2 mazimal atlas. If M is a space and A its mazimal atlas, the
set (M, A) is a (C>-) differentiable manifold. If for each ¢ in
the atlas the map ¢ : U — R™ has the same n, then the manifold
hes dimension n.

When problems of differentiablity arise we can similarly define
C*-related charts and C*-manifolds.

The reader for whom these ideas are new is strongly recom-
‘mended to peruse a geographical atlas and identify the features
described above. Further examples worth examining include the
plane R* the circle S, the sphere S? and a Mobius band.
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Fig. 1.2.1 A curve A : [ — M t— X(t)is smooth iff its image under a chart

is a smooth curve in R".

1.2 Tangent vectors and tangent spaces

Most concepts in physics involve the concept of differentiability,
- and, as we sha!l see, an essential ingredient is the generalization
of the idea of a vector. Simple naive definitions of vectors do not
work in general manifolds. The vector London — Paris may be
parallel to the vector London — Dublin in one chart and perpen-
dicular to it in another. Some experiments will show that there are
severe problems in establishing chart-independence for the usual
properties of vectors in any non-local definition. The following ap-
proach may not be an obvious one but it will capture the intuitive

concepts. We start by defining a curve within a manifold.

(1.2.1) DEFINITION

A C*®-curve in a manifold M is a map A of the open interval
I =(a,b) € R - M such that for any chart ¢, o X: I — R" is

a C*® map.

There are a number of points to note about this defirition.
Firstly C*-curves are defined in the obvious way. Either or both of
a,b can be infinite. By considering half-closed or closed intervals
I one or both endpoints can be included. Finally the definition
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Rn
A ¢ b0 A

¢popu

( )

Fig. 1.2.2 Two curves \(t), p(s) are tangent at p iff their images under a
chart ¢ are tangent at ¢(p) in R".

implies that the curve is parametrized. As an abbreviation one
often speaks of the curve \(t), with t € (a,b).

Let f: M — R be a smooth function on M. Consider the map
foAd:1I — Rt f(A(t)). This has a well-defined derivative, the

rate of change of f along the curve. Now suppose that two curves
A(t), p(s) meet at a point p where t =t_, s = s,. Suppose that

d d
E(fO)‘):d—s('fO#) at t=t, s=s, (1.2.1)

for all functions f. This is a precise way of stating that “A, u pass
through p with the same velocity”. To see this we consider:

(1.2.2) LEMMA

Suppose that ¢ is any chart whose domain of dependence includes
p- Let ¢ map ¢ € M to z'(q) where z'(g) are the coordinates of q.
Then (1.2.1) holds if and only if for all charts and each 1

[%(z'ox)] =[%(m‘op)} : (1.2.2)

t=t, s=3,

Proof: 1t is trivial to show that (1.2.1) implies (1.2.2). To proceed
in the other direction write fol = (fo@ ')o(¢oA). Now fogp~!



1.2 Tangent vectors and tangent spaces 5

is a map R — R, z' — f(z') = f (¢ '(z')). Also ¢o)is a map
I - R™, t— z'(\(t)). Using the chain rule for differentiation

- [@ ]d (A(t))- (1.2.3)

FUen =2 [mue)] &

A similar expression holds for f o p which then proves the result.

Thus given a curve A(¢) and a function f we can obtain a new
number [d(f o A)/dt],_, , the rate of change of f along the curve
A(t) at t = t,. We now use this result to remove the non-locality
from the idea of a vector.

(1.2.3) DEFINITION

The tangent vector /'\p = (dA/dt), to a curve A(t) at a point
p on it is the map from the set of real functions [ defined in a
neighbourhood of p to R, defined by

Gl |G UoN] = (on, = 5,0, (1.2.4)

P

Given a chart ¢ with coordinates ¢', the components of /.\p with
respect to the chart are

(foﬂ;z[%z%M04;

The set of tangent vectors at p is the tangent ;Zace T,(M) at p.

This accords with the usual algebraists’ idea of vectors, as we
see from the following result.

(1.2.4) THEOREM

If the dimension of M is n then T,(M) is a vector space of
dimension n.
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Proof: We show first that TP(M) is a vector space, i.e., if X, Y, €
T,(M) and a is a real number then

X +Y, aX € T,(M).

P p’ P

In other words we have first to show that there is a curve v(t)
through p, t =t such that

()= (fov),=X,f+Y,]. (1.2.5)

Let A, u be curves through p with A(t,) = u(t,) = p, and /.\p =X,
f,=Y, Then &:ts poX+dopu—¢(p)isacurvein R" (where
+,— have their usual meaning) and v : t — ¢! o ¥ is a curve in
M satisfying (1.2.5). The second part of this proof iz:left as an
exercise for the reader.

Finally we have to show that a basis of 7,,(M) contains n vec-
tors. We first establish a useful result. Let ¢ be a chart with

coordinates z'. Consider n curves A, (t) defined as follows

¢ (X)) = (=" (p), .-, 2" (p), 2" (p) + £,2" 1 (p), ..., 2"(P))

i.e., only the k’th coordinate varies. We denote the tangent vector
at p, t =0 by

2, (0) = (-gz—k)p. (1.2.6)

Note the simple result (z' o A.) = 6',. Then using the chain rule
(1.2.3) we have

(-g—;k-)p f= 2o,
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Next we show that each vector at p is a linear combination of the
(6/8:1:")p. To see this let X, be a tangent vector to the curve A(t)
with A(0) = p. Then

X,f = (foX)(0)=[f o™ 04 0A](0)
= Y O (fed) (@ 0 1) (0)
k

3} 4 ,
= ;<W>pf (X,z%), (1.2.8)

where (1.2.7) has been used in the last step. Thus

X, =) (X,z") (%)} (1.2.9)

k

and so the (8/33:*),, span T,(M). Finally to show that they are
linearly independent suppose that 5 A* (O/Oxk)p = 0. Then

0

0= ;Ak (W),,Il = 2; A"ék' = A"

Thus each A' = 0, i.e., the (3/(92")}) form a basis. From (1.2.9)
we see that Xp:c‘ are the components of X with respect to the
given basis.

We shall subsequently use the Einstein summation conven-
tion: in an expression where the same index occurs twice, once up
once down, it is to be summed. (In a fraction up in a denominator
counts as down in the numerator and vice versa.) Thus

0 0
k(Y ) a2
Xk:A <t9:ck>p A (61‘“),,

WARNING: Do not confuse the differential operator acting on
functions in R", §/8z" with the vector (8/8:")p in T,(M).

The final result needed to capture the concept of a tangent
vector as a derivative is left as an exercise.



