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PREFACETO
THE SECOND EDITION

This new edition contains considerable improvements over the first edition.
Much new material has been added. For example, in Chapter 2 there are two
new sections on model theory devoted to elementary equivalence and elemen-
tary extensions and to ultrapowers and nonstandard analysis. The greatest
change has been the addition of a large number of exercises. There are 389
exercises, many of them consisting of several parts. Completely new is a section
at the end of the book, Answers to Selected Exercises, which should improve the
usefulness of the book as a textbook as well as for independent study. With all
these changes, I have attempted to preserve the spirit of the original book, which
was intended to be a simple, clear introduction to mathematical logic unencum-
bered by excessive notation and terminology.

I should like to thank the many people who have given me suggestions for
corrections and improvement. I am particularly indebted to Professor Frank
Cannonito for much helpful advice.

ELLIOTT MENDELSON

il



PREFACE. TO
THE FIRST EDITION

In this book we have attempted to present a compact introduction to some of
the principal topics of mathematical logic. In order to give a full and precise
treatment of the more important basic subjects, certain subsidiary topics, such as
modal, combinatory, and intuitionistic logics, and some interesting advanced
topics, such as degrees of recursive unsolvability, have had to be omitted.

In the belief that beginners should be exposed to the most natural and easiest
proofs, free-swinging set-theoretic methods have been used. The significance of
a demand for constructive proofs can be evaluated only after a certain amount
of experience with mathematical logic has been obtained. After all, if we are to
be expelled from “Cantor’s paradise” (as non-constructive set theory was called
by Hilbert), at least we should know what we are missing.

The five chapters of the book can be covered in two semesters, but, for a
one-semester course, Chapters 1 through 3 will be quite adequate (omitting, if
hurried, Sections 5 and 6 of Chapter 1 and Sections 10, 11, and 12 of Chapter 2).
The convention has been adopted of prefixing a superscript “D” to any section
or exercise which will probably be difficult for a beginner, and a superscript “A”
to any section or exercise which presupposes familiarity with a topic that has not
been carefully explained in the text. Bibliographical references are given to the
best source of information, which is not always the earliest paper; hence these
references give no indication as to priority. For example, Boone [1959] gives the
most complete account of his work on the word problem, which was actually
done independently of and about the same time as Novikov’s work [1955].

The present book is an expansion of lecture notes for a one-semester course in
mathematical logic given by the author at Columbia University from 1958 to
1960 and at Queens College in 1961 and 1962. The author hopes that it can be
read with ease by anyone with a certain amount of experience in abstract
mathematical thought, but there is no specific prerequisite. The author would
like to thank J. Barkley Rosser for encouragement and guidance during his
graduate studies in logic, and he would like to acknowledge also the obvious
debt owed to the books of Hilbert-Bernays, 1934, 1939; Kleene, 1952; Rosser,
1953; and Church, 1956.
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INTRODUCTION

One of the most popular definitions of logic is that it is the analysis of
methods of reasoning. In studying these methods, logic is interested in the form
rather than the content of the argument. For example, consider the two deduc-
tions:

(1) All men are mortal. Socrates is a man. Hence Socrates is*mortal.
(2) All rabbits like carrots. Sebastian is a rabbit. Hence, Sebastian likes
carrots.

Both have the same form: All 4 are B. S is an 4. Hence S is a B. The truth or
falsity of the particular premisses and conclusions is of no concern to the
logician. He wants to know only whether the truth of the premisses implies the
truth of the conclusion. The systematic formalization and cataloguing of valid
methods of reasoning is one of the main tasks of the logician. If his work uses
mathematical techniques and if it is primarily devoted to the study of mathe-
matical reasoning, then it may be called mathematical logic. We can narrow the
domain of mathematical logic if we define its principal aim to be a precise and
adequate definition of the notion of “mathematical proof”.

Impeccable definitions have little value at the beginning of the study of a
subject. The best way to find out what mathematical logic is about is to start
doing it, and the student is advised to begin reading the book even though (or
especially if) he has qualms about the meaning or purposes of the subject.

Although logic is basic to all other studies, its fundamental and apparently
self-evident character discouraged any deep logical investigations until the late
nineteenth century. Then, under the impetus of the discovery of non-Euclidean
geometries and of the desire to provide a rigorous foundation for analysis,
interest in logic revived. This new interest, however, was still rather unen-
thusiastic until, around the turn of the century, the mathematical world was
shocked by the discovery of the paradoxes, i.e., arguments leading to contradic-
tions. The most important of these paradoxes are the following.

1



2 INTRODUCTION

Logical Paradoxes

(1) (Russell, 1902) By a set, we mean any collection of objects, e.g., the set
of all even integers, the set of all saxophone players in Brooklyn, etc. The objects
which make up a set are called its members. Sets may themselves be members of
sets, e.g., the set of all sets of integers has sets as its members. Most sets are not
members of themselves; the set of cats, for example, is not a member of itself,
because the set of cats is not a cat. However, there may be sets which do belong
to themselves, e.g., the set of all sets. Now, consider the set A of all those sets X
such that X is not a member of X. Clearly, by definition, 4 is a member of A4 if
and only if 4 is not a member of 4. So, if A is a member of A, then 4 is also not
a member of A; and if A is not a member of 4, then 4 is a member of 4. In any
case, A is a member of 4 and 4 is not a member of 4.

(2) (Cantor, 1899) This paradox involves a certain amount of the theory of
cardinal numbers and may be skipped by those having no previous acquaintance

with that theory. The cardinal number Y of a set Y is defined to be the set of all
sets X which are equinumerous with Y (i.e., for which there is a one-one
correspondence between Y and X, cf. page 7). We define Y < Z to mean that ¥

is equinumerous with a subset of Z; by Y <Z we mean 7<z and Y#Z.
Cantor proved that, if ?(Y) is the set of all subsets of Y, then Y <P (Y) (cf.
page 195). Let C be the universal set, i.e., the set of all sets. Now, P(C)is a
subset of C, so it follows easily that ¥ (C ) < C. On the other hand, by Cantor’s
Theorem,_f‘ <P(0). Ihe_Schréder-Eernstein Theorem (cf. page 194) asserts
that _if Y<Z and Z<7Y, then Y=Z. Hence, C=%(C), contradicting
C<P(C).

(3) (Burali-Forti, 1897) This paradox is the analogue in the theory of ordinal
numbers of Cantor’s Paradox and will make sense only to those already familiar
with ordinal number theory. Given any ordinal number, there is a still larger
ordinal number. But the ordinal number determined by the set of all ordinal
numbers is the largest ordinal number.

Semantic Paradoxes

(4) The Liar Paradox. A man says, “I am lying.” If he is lying, then what he
says is true, and so he is not lying. If he is not lying, then what he says is true,
and so he is lying. In any case, he is lying and he is not lying.§

+The Cretan “paradox”, known in antiquity, is similar to the Liar Paradox. The Cretan philoso-
pher Epimenides said, “All Cretans are liars.” If what he said is true, then, since Epimenides is a
Cretan, it must be false. Hence, what he said is false. Thus, there must be some Cretan who is not a
liar. This is not logically impossible, so we do not have a genuine paradox. However, the fact that the
utterance by Epimenides of that false sentence could imply the existence of some Cretan who is not
a liar is rather unsettling.
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(5) (Richard, 1905) Some phrases of the English language denote real num-
bers, e.g., “the ratio between the circumference and diameter of a circle” denotes
the number 7. All phrases of the English language can be enumerated in a
standard way: order all phrases having k letters lexicographically (as in a
dictionary), and then place all phrases with k letters before all phrases with a
larger number of letters. Hence, all phrases of the English language denoting
real numbers can be enumerated merely by omitting all other phrases in the
given standard enumeration. Call the n™ real number in this enumeration the n
Richard number. Consider the phrase: “the real number whose n™ decimal place
is 1 if the n™ decimal place of the n™ Richard number is not 1, and whose n
decimal place is 2 if the n™ decimal place of the ™ Richard number is 1”. This
phrase -defines a Richard number, say the k™ Richard number; but, by its
definition, it differs from the k™ Richard number in the k™ decimal place.

(6) (Berry, 1906) There are only a finite number of syllables in the English
language. Hence, there are only a finite number of English expressions contain-
ing fewer than forty syllables. There are, therefore, only a finite number of
positive integers which are denoted by an English expression ¢ontaining fewer
than forty syllables. Let k be the least positive integer which is not denoted by an
expression in the English language containing fewer than forty syllables. The
italicized English phrase contains fewer than forty syllables and denotes the
integer k. ,

(7) (Grelling, 1908) An adjective is called autological if the property denoted
by the adjective holds for the adjective itself. An adjective is called heterological
if the property denoted by the adjective does not apply to the adjective itself.
For example, “polysyllabic” and “English” are autological, while “mono-
syllabic”, “French”, and “blue” are heterological. Consider the adjective “het-
erological”. If “heterological” is heterological, then it is not heterological. If
“heterological” is not heterological, then it is heterological. In any case, “hetero-
logical” is both heterological and not heterological.

All of these paradoxes are genuine in the sense that they contain no obvious
logical flaws. The logical paradoxes involve only notions from the theory of sets,
whereas the semantic paradoxes also make use of concepts like “denote”, “true”,
“adjective”, which need not occur within our standard mathematical language.
For this reason, the logical paradoxes are a much greater threat to a mathema-
tician’s peace of mind than the semantic paradoxes.

Analysis of the paradoxes has led to various proposals for avoiding them. All
of these proposals are restrictive in one way or another of the “naive” concepts
which enter into the derivation of the paradoxes. Russell noted the self-reference
present in all the paradoxes and suggested that every object must have a definite
non-negative integer as its “type”. Then an expression, “x is a member of the set
»”, is meaningful if and only if the type of y is one greater than the type of x.
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This approach, known as the theory of types and systematized and developed
by Russell-Whitehead [1910-1913], is successful in eliminating the known para-
doxes,T but it is clumsy in practice and has certain other drawbacks as well. A
different criticism of the logical paradoxes is aimed at their assumption that, for
every property P(x), there exists a corresponding set of all objects x which
satisfy P(x). If we reject this assumption, then the logical paradoxes are no
longer derivable.} It is necessary, however, to provide new postulates that will
enable us to prove the existence of those sets which are a daily necessity to the
practicing mathematician. The first such axiomatic set theory was invented by
Zermelo [1908]. In Chapter 4 we shall present an axiomatic theory of sets which
is a descendant of Zermelo’s system (with some new twists given to it by von
Neumann, R. Robinson, Bernays, and Gdodel). There are also various hybrid
theories combining some aspects of type theory and axiomatic set theory, e.g.,
Quine’s system NF (cf. Rosser [1953]).

A more radical interpretation of the paradoxes has been advocated by
Brouwer and his intuitionist school (cf. Heyting [1956]). They refuse to accept
the universality of certain basic logical laws, such as the law of excluded middle:
P or not-P. Such a law, they claim, is true for finite sets, but it is invalid to
extend it on a wholesale basis to all sets. Likewise, they say it is invalid to
conclude that “there exists an object x such that not-P(x)” follows from
“not-(for all x, P(x))”; we are justified in asserting the existence of an object
having a certain property only if we know an effective method for constructing
(or finding) such an object. The paradoxes are, of course, not derivable (or even
meaningful) if we obey the intuitionist strictures, but, alas, so are many beloved
theorems of everyday mathematics, and, for this reason, intuitionism has found
few converts among mathematicians.

Whatever approach one takes to the paradoxes, it is necessary first to examine
the language of logic and mathematics to see what symbols may be used, to
determine the ways in which these symbols are put together to form terms,
formulas, sentences, and proofs, and to find out what can and cannot be proved
if certain axioms and rules of inference are assumed. This is one of the tasks of
mathematical logic, and, until it is done, there is no basis for comparing rival
foundations of logic and mathematics. The deep and devastating results of
Godel, Tarski, Church, Rosser, Kleene, and many others have been ample
reward for the labor invested and have earned for mathematical logic its status
as an independent branch of mathematics.

+Russell’s Paradox, for example, depends upon the existence of the set A of all sets which are not
members of themselves. Because, according to the theory of types, it is meaningless to say that a set
belongs to itself, there can be no such set 4.

1Russell’s Paradox then proves that there is no set 4 of all sets which do not belong to themselves;
the paradoxes of Cantor and Burali-Forti show that there is no universal set and no set containing
all ordinal numbers. The semantic paradoxes cannot even be formulated, since they involve notions
not expressible within the system.
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For the absolute novice a summary will be given here of some of the basic
ideas and results used in the text. The reader is urged to skip these explanations
now, and, if necessary, to refer to them later on.

A set is a collection of objects.f The objects in the collection are called
elements or members of the set, and we shall write “x € y” for the statement that
x is a member of y. (Synonymous expressions are “x belongs to y” and “y
contains x”.) The negation of “x € y” will be written “x & y”.

By “x C y” we mean that every member of x is also a member of y, or, in
other words, that x is a subset of y (or, synonymously, that x is included in y).
We shall write “¢ = 5” to mean that “s” and “s” denote the same object. As
usual, “z 7 s” is the negation of “¢# = s”. For sets x and y, we assume that x = y
if and only if x C y and y C x; that is, if and only if x and y have the same
members. A set x is called a proper subset of a set y, written “x C y”, if x C y
but x # y.I

The union x U y of sets x and y is defined to be the set of all elements which
are members of x or y or both. Hence, x Ux=x, xUy =y U x, and
(x Uy)U z = x U (y U z). The intersection x N y is the set of elements which
x and y have in common. It is easy to verify that x N x = x, x Ny =y N x,
xNNna)=xny)nz,xNn(yuz=xNnNy)u(xnz),and xU(yNz)
= (x Uy)N (x U z). The relative complement x — y is the set of members of
x which are not members of y. We also postulate the existence of the empty set
(or null set) 0, ie., a set which has no members at all. Then, x N 0 = 0,
xUO=x,x—-0=x,0—- x=0,and x — x = 0. Two sets x and y are called
disjoint if x Ny = 0.

Given any objects by, . . ., b, the set which contains b,, . . ., b, as its only
members is denoted {b,, . . ., b, }. In particular, {x, y} is a set having x and y as
its only members and, if x # y, is called the unordered pair of x and y. The set
{x, x} is written {x} and is called the unit set of x. Notice that {x, y} = {y, x}.
On the other hand, by <b,, . .., b,> we mean the ordered k-tuple of b, ..., b.
The basic property of ordered k-tuples is that {b,, ..., b)) =<{c}, ..., ¢) if
and only if b, = ¢}, b, = c,, ..., b, = ¢. Thus, (b, b, = <b,, b,) if and only
if b, = b,. Ordered 2-tuples are called ordered pairs. If X is a set and k is a
positive integer, we denote by X* the set of all ordered k-tuples (byy ..., by of
elements b, . .., b, of X. We also make the convention that X' stands for X.
X* is called the Cartesian product of X with itself k times. If Y and Z are sets,
then by ¥ X Z we denote the set of all ordered pairs {y, z) such that y € Y
and z € Z. Y X Z is called the Cartesian product of Y and Z.

TWhich collections of objects form sets will not be specified here. Care will be exercised to avoid
using any ideas or procedures which may lead to the paradoxes; all the results can be formalized in
the axiomatic set theory of Chapter 4. The term “class” is sometimes used as a synonym for “set”,
but it will be avoided here because it has a different meaning in Chapter 4. If the property P(x) does
determine a set, this set is often denoted {x|P(x)}.

{The notation x S y is often used instead of x C y.
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An n-place relation (or a relation with n arguments) on a set X is a subset of
X" ie., a set of ordered n-tuples of elements of X. For example, the 3-place
relation of betweenness for points on a line is the set of all 3-tuples {x,y, z)
such that the point x lies between the points y and z. A 2-place relation is called
a binary relation, e.g., the binary relation of fatherhood on the set of human
beings is the set of all ordered pairs {x,y) such that x and y are human beings
and x is the father of y. A 1-place relation on X is a subset of X, and is called a
property on X.

Given a binary relation R on a set X, the domain of R is defined to be the set
of all y such that {y, z) € R for some z; the range of R is the set of all z such
that {y, z) € R for some y; and the field of R is the union of the domain and
range of R. The inverse relation R ~1of R is the set of all ordered pairs {y, z)
such that (z, y> € R. For example, the domain of the relation < on the set w of
non-negative integerst is w, its range is w — {0}, and the inverse of < is > .
Notation: Very often xRy is written instead of <x, »> € R. Thus, in the example
just given, we usually write x <y instead of {x,y) € <.

A binary relation R is said to be reflexive if xRx for all x in the field of R. R
is symmetric if xRy implies yRx, and R is transitive if xRy and yRz imply xRz.
Examples: The relation < on the set of integers is reflexive and transitive but
not symmetric. The relation “having at least one parent in common” on the set
of human beings is reflexive and symmetric but not transitive.

A binary relation which is reflexive, symmetric, and transitive is called an
equivalence relation. Examples of equivalence relations: (1) the identity relation
I, on a set X consisting of all pairs {y,y), where y € X; (2) the relation of
parallelism between lines in a plane; (3) given a fixed positive integer 7, the
relation x = y (mod #n) holds when x and y are integers and x — y is divisible by
n; (4) the relation between directed line segments in three-dimensional space
which holds when and only when they have the same length and the same
direction; (5) the congruence relation on the set of triangles in a plane; (6) the
similarity relation on the set of triangles in a plane. Given an equivalence
relation R on a set X, and given any y € X, define [y] as the set of all zin X
such that yRz. Then [y] is called the R-equivalence class of y. It is easy to check
that [y] = [z] if and only if yRz and that, if [y] # [z], then [y] N [2] =0, ie,
different R-equivalence classes have no elements in common. Hence, the set X is
completely partitioned into the R-equivalence classes. For some of the examples
above: (1) the equivalence classes are just the unit sets {y}, where y € X; (2)
the equivalence classes can be considered to be the directions in the plane; (3)
there are n equivalence classes, the k™ equivalence class (k =0, 1,...,n — 1)
being the set of all numbers which leave the remainder k upon division by n; (4)
the equivalence classes are the three-dimensional vectors.

+w will also be referred to as the set of natural numbers.
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A function f is a binary relation such that {x,y) € f and {x, z) € f imply
y = z. Thus, for any element x of the domain of a function f, there is a unique y
such that (x, y> € f; this unique element y is denoted f(x). If x is in the domain
of f, then f(x) is said to be defined. A function f with domain X and range Y is
said to be a function from X onto Y. If f is a function from X onto Y, and
Y C Z, then f is called a function from X into Z. For example, if f(x) = 2x for
every integer x, f is a function from the set of integers onto the set of even
integers, and f is a function from the set of integers into the set of integers. A
function the domain of which consists of n-tuples is said to be a function of n
arguments. A (total) function of n arguments on a set X is a function f whose
domain is X”. We usually write f(x,, ..., x,) instead of f({x;,...,x,)). A
partial function of n arguments on a set X is a function whose .domain is a
subset of X”; e.g. ordinary division is a partial, but not total, function of two
arguments on the set of integers (since division by zero is not defined). If fis a
function with domain X and range Y, then the restriction f, of f to a set Z is the
function f N (Z X Y). Clearly, f,(u) = v if and only if ¥ € Z and f(u) = v.
The image of the set Z under the function f is the range of f,. The inverse image
of a set W under the function f is the set of all elements u of the domain of f
such that f(u) € W. We say that f maps X onto (into) Y if X is a subset of the
domain of f and the image of X under f is (a subset of) Y. By an n-place
operation (or operation with n arguments) on a set X we mean a function from X"
into X. For example, ordinary addition is a binary (i.e., 2-place) operation on the
set of natural numbers {0, 1, 2, ... }. But ordinary subtraction is not a binary
operation on the set of natural numbers, though it is a binary operation on the
set of integers.

Given two functions f and g, the composition f ° g (also sometimes denoted fg)
is the function such that (f ° g)(x) = f(g(x)); (f ° g)(x) is defined if and only
if g(x) is defined and f(g(x)) is defined. For example, if g(x) = x? and f(x) =
x + 1 for every integer x, then (f° g)(x) = x>+ 1 and (g ° f)(x) = (x + )%
Also, if A(x) = — x for every real number x and f(x) = Vx for every non-nega-
tive real number x, then (f o A)(x) is defined only for x < 0, and, for such x,
(f° h)(x) =V — x . A function f such that f(x) = f(y) implies x = y is called a
1-1 (one—one) function. Examples: (1) The identity relation 7, on a set X is a
1-1 function, since I,(y) = y for any y € X; (2) the function g(x) = 2x, for
every integer x, is a 1-1 function; (3) the function A(x) = x?, for every integer x,
is not 1-1, since A(— 1) = h(1). Notice that a function f is 1-1 if and only if its
inverse relation f~! is a function. If the domain and range of a 1-1 function f
are X and Y, respectively, then f is said to be a 1-1 (one—one) correspondence
between X and Y; then f~ ! is a 1-1 correspondence between Y and X, and
(f'efy=1I,and (fo f~') = I,. If fis a 1-1 correspondence between X and
Y, and g is a 1-1 correspondence between Y and Z, then go fis a 1-1
correspondence between X and Z. Sets X and Y are said to be equinumerous
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(written X = Y) if and only if there is a 1—1 correspondence between X and Y.
Clearly, X = X; X =Y implies Y =X; and X =Y and Y =Z mply X = Z.
One can prove (cf. Schroder-Bernstein Theorem, page 194) that if X = Y,CY
and Y =X, C X, thenX =Y. If X = Y, one sometimes says that X and Y have
the same cardinal number, and if X is equinumerous with a subset of ¥ but Y is
not equinumerous with a subset of X , one says that the cardinal number of X is
smaller than the cardinal number of Y.t

A set X is denumerable if it is equinumerous with the set of positive integers. A
denumerable set is said to have cardinal number &), and any set equinumerous
with the set of all subsets of a denumerable set is said to have the cardinal
number 2% (or to have the power of the continuum). A set X is finite if it is empty
or if it is equinumerous with the set of all positive integers {1, 2, . . ., n} which
are less than or equal to some positive integer n. A set which is not finite is said
to be infinite. A set is countable if it is either finite or denumerable. Clearly, any
subset of a denumerable set is countable. A denumerable sequence is a function s
whose domain is the set of positive integers; one usually writes s, instead of s(n).

A finite sequence is a function whose domain is {1,2,...,n)}, for some positive
integer n.
Lt PO, g+ 4 s 4 Vi) be some relation on the set of non-negative integers. In

particular, P may involve only the variable x and thus be a property. If
P, y,, ...,y holds, and, if, for any n, P(n,y,,...,y,) implies P(n+1,
Y- ), then P(x,y,, ..., Vi) 1s true for all non-negative integers x
(Principle of Mathematical Induction). In applying this principle, one usually
proves that, for any n, P(n, y,, . .. » Vi) implies P(n + 1,y,, ..., y,) by assum-
ing P(n,y,,...,y) and then deducing P(n + 1,y,,. .. » Vi), in the course of
this deduction, -P(n, y,, . . ., Vi) is called the inductive hypothesis. If the relation
P actually involves variables Y1 - - -, ¥y other than x, then the proof of “for all
X, P(x)” is said to proceed by induction on x. A similar induction principle holds
for the set of integers greater than some fixed integer j. Example: to prove by
mathematical induction that the sum of the first n odd integers 1 + 3 + 5
+ ... +@n—1) is n? first show that 1 =12 (e, P(1)), and then, that if
I+3+5+ ... 4+Qn—1)=n%thenl +3+5+ oo +@n = 1)+ (2n +1)
= (n + 1) (ie., if P(n) then P(n + 1)). From the Principle of Mathematical
Induction one can prove the Principle of Complete Induction: if, for every

non-negative integer x the assumption that P(u,y,, ...,y is true for all u < x
implies that P(x, Yis -+ -» ) holds, then, for all non-negative integers x,
P(x,yy,...,y) is true. (Exercise: show, by complete induction, that every

integer greater than 1 is divisible by a prime number.)

TOne can attempt to define the cardinal number of a set X as the collection [X] of all sets
equinumerous with X. However, in certain systems of set theory, [X] does not exist, whereas in
others (cf. page 196), [X] exists but is not a set. For cardinal numbers [X] and [Y], one can define
[X] < [Y] to mean that X is equinumerous with a subset of Y.
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A partial order is a binary relation R such that R is transitive and, for every x
in the field of R, xRx is false. If R is a partial order, then the relation R’ which
is the union of R and the set of all ordered pairs {x, x), where x is in the field of
R, we shall call a reflexive partial order; in the literature, “partial order” is used
for either partial order or reflexive partial order.. Notice that (xRy and yRx) is
impossible if R is a partial order, while (xRy and yRx) implies x = y if R is a
reflexive partial order. A (reflexive) total order is a (reflexive) partial order R
such that, for any x and y in the field of R, either x = y or xRy or yRx.
Examples: (1) the relation < on the set of integers is a total order, while < is a
reflexive total order; (2) the relation C on the set of all subsets of the set of
positive integers is a partial order, but not a total order, while the relation C is a
reflexive partial order but not a reflexive total order. If C is the field of a
relation R, and if B is a subset of C, then an element y of B is called an R-/least
element of B if yRz for every element z of B different from y. A well-order (or
well-ordering relation) is a total order R such that every non-empty subset of the
field of R has an R-least element. Examples: (1) the relation < on the set of
non-negative integers is a well-order; (2) the relation < on the set of non-nega-
tive rational numbers is a total order but not a well-order; (3) the relation < on
the set of integers is a total order but not a well-order. Associated with every
well-order R having field X there is a corresponding Complete Induction Princi-
ple: if P is a property such that, for any u in X, whenever all z in X such that
zRu have the property P, then u has the property P, then it follows that all
members of X have the property P. If the set X is infinite, a proof using this
principle is called a proof by transfinite induction. One says that a set X can be
well-ordered if there exists a well-order whose field includes X. An assumption
which is useful in modern mathematics but about the validity of which there has
been considerable controversy is the Well-Ordering Principle: every set can be
well-ordered. The Well-Ordering Principle is equivalent (given the usual axioms
of set theory) to the Axiom of Choice (Multiplicative Axiom): given any set X of
non-empty pairwise disjoint sets, there is a set Y (called a choice set) which
contains exactly one element in common with each set in X.

Let B be a non-empty set, f a function from B into B, and g a function from
" B?into B. Let us write x’ for f(x), and x N y for g(x, y). Then (B, f, g) is called
a Boolean algebra if and only if the following conditions are satisfied:

i) xNy=yn xforall x,y in B.
i) (xnNny)nz=xn(ynz)forall x,y,zin B.
(i) x Ny =zn z if and only if x N y = x for any x, y, z in B.

We let x U y stand for (x’ N y’); and we write x < y for x N y = x. It is easily
proved that z N z/ = w N w’ for any w, z in B; we denote the value of z N 2’ by
0. (The symbols N, U, 0 should not be confused with the corresponding
symbols used in set theory.) We let 1 stand for 0’. Then: z U z’ = 1 for all z in
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B; < is a reflexive partial order on B; and (B, f, U ) is a Boolean algebra. An
ideal in (B, f, g) is a non-empty subset J of B such that: (1)if x € Jandy € J,
then x U y € J, and (2) if x € J and y € B, then x N y € J. Clearly, {0} and
B are ideals. An ideal different from B is called a proper ideal. A maximal ideal
is a proper ideal which is included in no other proper ideal. It can be shown
that a proper ideal J is maximal if and only if, for any u in B, u € J or «’ € J.
From the Well-Ordering Principle (or the Axiom of Choice) it can be proved
that every Boolean algebra contains a maximal ideal, or, equivalently, that every
proper ideal is included in some maximal ideal. Example: let B be the set of all
subsets of a set X; for Y € B,let Y’ = X — Y,andfor Y, Zin B,let Y N Z be
the ordinary set-theoretic intersection of Y and Z. Then (B, ’, N ) is a Boolean
algebra. The 0 of B is the empty set 0, and 1 is X. Given an element u in X, let J,
be the set of all subsets of X which do not contain u. Then J, is a maximal ideal.
For a detailed study of Boolean algebras, cf. Sikorski [1960], Halmos [1963],
Mendelson [1970].




