

8462766

Cambridge Computer Science Texts - 17

An introduction to APL

S.POMMIER

Collective name for a team at the Ecole Nationale Supérieure des Mines
comprising.

Jean-Jacques Girardot

Serge Guiboud-Ribaud

Bertrand Jullien

Francois Mireaux

Michel Nakache

Translated by Bronwen A. Rees

TIAAA

E8462766

CAMBRIDGE UNIVERSITY PRESS
Cambridge

London New York New Rochelle
Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

Originally published in French as Introduction @ APL by
Dundod informatique, Paris and © BORDAS, Paris, 1978

First published in English by Cambridge University Press 1983 as
An introduction to APL

English edition © Cambridge University Press 1983

Printed in Great Britain at the University Press, Cambridge
Library of Congress catalogue card number: 83-7374

British Library cataloguing in publication data
Pommier, S.
An introduction to APL - (Cambridge computer science texts; 17)

1. APL (Computer program language)
I. Title II. Rees, B. A.

III. Introduction 4 APL. English
001.64'24 QA76.72.A27

ISBN 052124977 5 hard covers
ISBN 052127109 6 paperback

DJ

PREFACE

APL originates from the work of K. E. Iverson, during his time as Professor at
Harvard, on formalising algorithms. Its fundamental concepts are outlined in his
book, A Programming Language, published in 1962. It was first used on a
computer at IBM in the late 1960s.

The Department of Computer Science of the Ecole des Mines at Saint-Etienne
developed several APL systems. In recent years new APL systems have been
appearing and the use of the language is beginning to spread.

The present manual is designed to guide the first steps of the APL user.
Consequently, only those aspects which we believe to be essential for a graded
study in computer science have been detailed - the reader will not find an APL
reference manual for a specific computer here. Numerous examples have been
given to illustrate the text. They have been programmed on our system and the
responses shown are those that actually occurred. We have tried our best to
avoid particular cases, but where this has been impossible we have informed the
reader in a footnote. In order to help the reader two appendices appear at the
end of the text:

The current APL alphabet,
An APL mini-guide.

1.1
1.2
1.3
1.4
1.5
1.6
1:7
1.8
1.9
1.10
1.1
1.12

2.1
2.2
2.3
2.4
2.5
2.6
27
2.8
2.9
2.10

3.1
3.2
3.3
3.4

CONTENTS

Preface vii
Introducing the terminal 1
From slide rule to APL 1
The terminal and the computer 1
Entering instructions 2
The computer’s reply 3
APL expressions 3
Exponential notation 5
Error messages 5
Some other APL functions 6
The concept of variables 8
How to use the APL system 9
An example of a session 10
Important points 12
Handling scalars and vectors 13
Line correction 13
Error correction 13
Composite characters 14
APL syntax 15
Control language 17
Logical type 19
Character type 20
Dealing with sets 21
Reduction 24
Important points 26
Defining and using a function 97
User functions 27
Defining a function 27
Correcting a function 29

The function heading 30

3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6

System commands
Branching

Trace

Interruption of execution
Important points

Working with arrays

The array

Definition

Operating on arrays

Indices

Modification of the elements of an array
Index search in a vector

Index origin

Important points

Further functions . . .

Communicating with the outside world - input/output
Transformation of type

Iteration

Decoding and encoding

Sorting

Membership

Execute function

Important points

Dealing with function stacks
Local and global variables
Static block structure
Dynamism of local variables
Recursion

Static and dynamic structure
Important points

A simple application
Exercises
Solutions to exercises

Appendices 1, 2

Index

vi

33
35
38
40
42

44
44
44
46
57
60
60
61
61

62
62
66
67
68
70
72
72
75

76
76
78
79
80
83
88

89
98
111
122

135

1 INTRODUCING THE TERMINAL

1.1 From slide rule to APL
The last few years have witnessed thé development of more and more
sophisticated methods of calculation.

Just as the slide rule has become a museum piece, pocket calculators which
could only carry out a few operations have been superseded by pocket micro-
computers, capable of being programmed in a developed language. Nevertheless,
these machines still have their limitations, particularly in their capacity for
storing data. The moment one needs to carry out operations of any significant
size, it becomes necessary to use a ‘true computer’ the size of which is decreasing
from year to year if not from month to month. Which language should be used?
Without doubt, because of its power and (debugging) capabilities, APL is one of
the most useful. It is now available on a wide range of computers from the very
large to the very small.

To work in APL then, it is necessary to have access to a computer capable of
understanding the language, that is, capable of understanding or executing the
calculations demanded of it by the language user. In this chapter we shall
examine how the APL machine can be used. We shall call it indiscriminately the
APL interpreter or system.

1.2 The terminal and the computer
In order to make use of the computer’s ability to perform calculations

rapidly, we obviously must be able to transmit the necessary instructions to it.
For this a terminal (sometimes called a console) is used. A terminal consists of
a keyboard, similar to that of a typewriter. Through this keyboard the user
instructs the computer. In addition, part of the terminal is designed for the
computer to communicate results (or other information) to the user, in response
to instructions he has given. The technology of this part, the ‘output device’,
varies according to the terminal model.

Generally, they are of two types: a visual display unit (like a television
screen), or a line printer that prints on paper (like a typewriter). However, the
answer supplied by the computer is independent of the type of terminal used.

2

The terminal is either linked to the computer directly of via a telephone line
depending on where it is situated. The data typed in by the user on the terminal
is sent to the computer which subsequently communicates the result.

1.3 Entering instructions
Each character entered on the keyboard is transmitted to the computer

which then displays the character on the screen (or piece of paper). The
computer must be told when a line (also called an instruction) has been com-
pleted and this is done by depressing the ‘carriage return’ key. This indicates that
it is now (and only now) that the computer should execute the calculation
demanded of it. The carriage (or cursor if using a screent) then moves to the
beginning of the next line. We shall see later how to correct typing errors.

Unfortunately, different keyboards are not all identical and the reader should
try to familiarise himself with each of them. Figure 1 gives an example of one.
On the majority of keyboards, certain keys represent up to four characters (see
Figure 2). In APL only the characters situated on the left hand side are used. To
enter the characters situated in the upper part of the left hand side the relevant

1 It is only through linguistic misuse that we still tend to use the term ‘carriage’.
This can refer to either carriage or cursor depending on the type of terminal

used.

Figure 1
HEHODRO®E®O®O®OOOO®® ©
HECDOEHOHOOOOOAOROEO® & 6
olelcslalelofolololelololalalol=

CDEDHOOOEA@OOOOE) @
C_ D)
Figure 2
i APL and ASCIIE :'APL jASCIIS EAPL 1 ASCII ¢
? V' (Upper case
Q 9 Lower case

1 1
! adsswad Yesaals
' " ' y]
1 ' ' '
. '
: ! ' 1
1
|

i APL

'
n
[
'
'
'
'

' APL and ASCII! ! APL and ASCII;

3

key and the shift key should be struck simultaneously. A special selector, APL/
ASCII, makes the choice between characters on the right or left. The set of
characters available in APL is the same whatever the terminal used:

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ O[]
T—XF*O[IKS=FZ2>AV~ aepw?” _1=>1<DNUCL T . :;/\O'°AY

14 The computer’s reply

When the calculation has been completed, the computer prints the
result at the terminal and awaits further instruction on the next line, having
shifted the carriage six spaces to the right.

An APL instruction often consists of no more than a few characters, but it
can, on the other hand, take up more than one line of the terminal (in the
physical sense). Equally, an instruction might simply consist of ‘carriage return’
to move to the following line.

1.5 APL expressions
A simple APL expression might consist of a single number or of two
numbers separated by a function, thus:

6

3x5
15
Numbers are expressed in decimal form; if any part of the number is a fraction,
it is separated from the integer part by a decimal point. The integer or the
fractional part can be omitted if it is equal to zero. For example:

« o+ .75
3.25

1:7+2.83

Results supplied by the computer are printed following the same convention.
In particular, the fractional part of a result will only be indicated if not equal to
zero. But, for example, the terms 3, 3. and 3.00 are equivalent.

We have all used certain functions of the APL system from a very tender age.
These are addition, subtraction, multiplication and division, represented by the
keys +, —, x, and +. These functions, used to carry out the majority of everyday
numerical calculations, are called dyadic because two operands are necessary.

Thus:

2%x3
6

1521+873
2394

7865+715
11
B 605-872
267

In this example a new sign ~ appears which indicates that the number is
negative. Let us try using it:

The machine obstinately yields the result ~1. Does this mean that the two keys
—and " have the same effect? In reality, no. In the first instance, — is the unary
function (also called the monadic function) which, when applied to a number,
gives its opposite value. In the second case, the expression is composed of the
single constant, ‘minus one’. The sign ~ is a symbol used to represent negative
numerical constants.

Also, this example shows us how a symbol such as — can have two distinct
functions, depending on whether it is applied to a single number (or, more
generally, operand) or to two. This is true for the majority of symbols used in
APL. Let us try to discover the meanings of the other monadic functions
corresponding to the keys +, x, and +:

+5
5 -

+78
B

x5
1

x 2
1 -

x"3
1

x0

We can see that the x key, when used in its monadic form, gives the sign of its
operand: 1 if positive, O if zero, and "1 if negative. Let us continue our

investigation:
2
oD
#3
.333333
71
!
+0
DOMAIN ERROR
0
A

This is rather a strange reaction from a machine that until now has proved to
be quite amenable. It is, in fact, quite simply, an ‘error message’. The machine
is not capable of executing a division by zero. As the machine indicates, we have
left the domain of the definition of the function used (in this case, the function
of division).

Furthermore, the symbol A shows precisely where the error lies, which is very
useful when we have a long expression comprising several functions.

1.6 Exponential notation
Let us calculate:

12300x27200
3.3456F£8

In giving the answer, the machine adopts a neat notation: E8 means ‘multiplied
by 10 to the power of 8’. This representation is always used when the answer
moves outside the domain in which the usual notation is clearer. Thus the
‘computer will print 125 or 0.23, and not 1.25E2 or 2.3E71, but 1.3E9 or
3.65E711 and not 1300000000 or 0.0000000000365. However, in an
expression, the terms 1ES and 100000, for example, are strictly equivalent.

1.7 Error messages

Generally speaking, an error message indicates that the computer finds
it impossible to execute a task properly. One of the more common reasons might
be a mathematical impossibility:

3:0
DOMAIN ERROR

3:0
A

Another cause might be the machine’s limitations. For example:

1.234E567
LIMIT ERROR
1.234E567
A
In fact, the internal specification for the representation of numbers means that

they must lie within a certain interval, for example:
[71.701411E38 1.701411E38]

this interval varying from one computer to another.
Such an error, generally called a ‘/imit error’, can also occur in any inter-
mediate calculation:

1E20%x3.5E30
LIMIT ERROR

1E20x3.5E30
A

Other errors may result from the incorrect format for a number being used.
For example:

125
SYNTAX ERROR

125
A
1 . 58 &4
SYNTAX ERROR
1 . 58 4
A

In fact, spaces are not allowed between the negative sign and the number, or
within the number itself or the exponent.
Another type of error occurs when an expression does not mean anything to
the computer. For example:
1+
SYNTAX ERROR

1+
A

1.8 Some other APL functions

(@) Power and exponential
These functions are symbolised by the key % which in its monadic form
represents the exponential, and, in its dyadic form, a power.

3*2

4x3
64

A power can also be a fraction or a negative number:

2%.5
1.41421 _

Bx"1.5
.125

As stated in its monadic form, the symbol represents the exponential:
*1
2.71828

*2.3
9.97419

®) Absolute value
This function is represented by the sign |:

|5
5
|73
3
() Rounding up or down

Numbers can be rounded up or down by means of the ‘ceiling’ and
‘floor’ functions. Thus:

[3.14
i

L.5+2.63
3

The normal operation for rounding a number up or down can thus be written:

[T.5+2.17
2

[T.5+2.63
3

When the number is already an integer, the two functions give the same result.
312
312

L312
312

When used in their dyadic form the maximum ([) or minimum () of two
numbers can be calculated.

23L17
17

1.9 The concept of variables
All the APL expressions that we have encountered so far have contained

only numerical constants. However, it is possible in APL to retain a numerical
value while designating a symbolic name to it, in the same way that in
mathematics ‘pi’ or ‘e’ are used to denote the values 3.141592and
2.71828....or ‘X0’ to denote a starting point in iteration, etc.

In APL the symbol <, called the ‘specification (or assignment) function’, is
used to create a name-value pair which we call a ‘variable’.

PI+3.141592

X0+«1
These operations result in the creation of two variables, called PI and X0 whose
values are 3.141592 and 1. In an expression, these variables are referred to by
their symbolic names.

X0
1

X0+2
3

PI+XO0
4.141592

When the APL interpreter comes across the name of a variable, it replaces it with
the designated value of the variable.

3xPI
9.424776

3x3.141592
9.424776

It is, of course, possible to change the value of a variable, at any given moment;
we say that we are assigning a new value to this variable:

X0+2.5
2xX0
5

The assigned value can be the result of a calculation:

PI+PI+1
PI
4.141592

In this example the expression PI +1 was evaluated first, giving the result
4.141592, then this new value was assigned to PI.

The name (or identifier) of a variable consists of a string of letters (which
may be underlined) and numbers, the first character being, of necessity, a letter.
The maximum length of a name depends on the APL system used (for example
32 or 72 characters).

An error message occurs if an identifier that has not been specified is used:

TOTO+3

VALUE ERROR
TOTO+3
A

TOTO
VALUE ERROR
TOoTO

TOTO+2
TOTO+3
5

‘VALUE ERROR’ means then, quite simply, that the computer cannot find the
value associated with the name ‘TOTO’.

1.10 How to use the APL system

At present, APL systems are available on a number of computers and in
many different forms. There are microcomputers specially designed for APL
which, like a pocket calculator, are ready to execute APL instructions as soon as
they are switched on. On other machines APL is available in the form of a
program called by a specific command. Finally, certain organisations offer an
APL service as part of a time-sharing system, where the user identifies himself by
entering in a user’s sign-on number, and a password.

10

We shall not, however, describe the APL connection procedure since it varies
dramatically from one system to another. For any given system you should
refer to the manual supplied by the designer.

1.11 An example of a session
The following session took place on a T1600 computer, designed solely
for APL, which operates a time-sharing system enabling several users to work
simultaneously, each using his own terminal to communicate with the machine.
When a terminal is vacant it displays the following:

APL/16\MINES READY
RELEASE 3.0 DECEMBER 78 T030
L0000 s i 6 6 6 L)

To use APL service, you must first of all identify yourself by giving a user’s
sign-on number followed by a password. Theoretically, the password is known
only by the person who uses the sign-on number. This procedure is called
connection (sign-on or log-in).

To connect up, a closing bracket, followed by the sign-on number, a colon
and the password must be typed in. For example:

)31415:SESAME

If the system recognises the sign-on number and the password, it gives an
answer:

030) 83/03/21 10.08.15 SMITH

APL/16\MINES READY 64 K

Different APL systems can hide the sign-on number and password, either by not
printing the characters typed in by the user, or by disguising them. This is what
happened in our example.

This message gives the following information:

030) 83/03/21 10.08.15 SMITH

R
Terminal Date and User’s
number time of name

connection

The APL system is now ready for use.
When you no longer require the computer’s services, you must indicate this
with the message:

)OFF
sometimes followed by a colon and a new password. The system then sends

back the reply:

030 83/03/21 10.08.35 SMI
CONNECTED 0.01.00 TO DATE 0.01.00
CPU TIME 0.00.00 TO DATE 0.00.00

which contains the following information:

030 83/01/05 10.08.35. SMI

S e
Terminal Date and time of 1st 3 letters
number disconnection of user’s name

CONNECTED 0.01.00 TO DATE 0.01.00

N —_——

Length of session Sum of the time of

in hours, minutes all the user’s
and seconds sessions

CPUTIME 0.00.00 TODATE 0.00.00

N N
Calculation time Sum of time for
in hours, minutes all of the user’s

and seconds calculations

CPU stands for central processing unit.
This is what appeared on the user’s terminal:
APL/16\MINES READY
RELEASE 3.0 DECEMBER 78 TO030

) B0EREE0E000000000008
030) 83/03/21 10.10.08 SMITH

APL/16\MINES READY 64 K

1+2+3
6

1+4:3
2.33333

E«x1

E
2.71828

*2.3
9.97419

€
SYNTAX ERROR

€

A

