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Preface

Structured analysis is obsolete. Structured design is
irrelevant. And structured programming is passé.

If you believe these gloomy pronouncements, here are a
few more: Capitalism is doomed; greed is out. Organized
religion is on the wane; soon, there will be no more churches.
And Congress is going to vote next year to abolish alcohol and
tobacco. They're even going to balance the budget.

No, the structured techniques are not dead. They are very
much alive, and they continue to evolve to adapt to new
technologies and to new paradigms. One important paradigm
that emerged in the 1980s and that has become widely accepted
is prototyping. Its proponents argue that there is no point
trying to “pre-specify” the requirements for a system because
users don't really know what they want, don't really know what
possibilities and alternatives are open to them, and simply
cannot understand abstract models such as data flow diagrams.

Thomas Kuhn discusses the concept of “paradigm shifts”
eloquently in his book, The Structure of Scientific Revolutions
([Kuhn, 1962]); serious students of the software engineering
revolution must read this book to put current (and future)
developments in perspective. But the systems development
field differs from some other scientific disciplines in at least one
important way: New paradigms do not necessarily replace old
paradigms, but rather enlarge and refine the older ones. When
Copernicus proposed a rather radical paradigm shift in the field
of astronomy, he presented his audience with a binary choice:
People either had to believe that the earth revolved around the
sun, or that the sun revolved around the earth. You couldn't have
it both ways.

But in the systems development field, you can have it both
ways. There is no need to make a binary choice between the
prespecified (structured analysis) paradigm and the prototyping
paradigm. They both work. Sometimes it makes more sense to
build a formal, abstract system model on paper and explore its
characteristics; sometimes it makes more sense to build a
prototype and let the user kick the tires and drive the system
around the block to get a feeling for it.

Xiii
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The really significant change in the past ten years is the
recognition, in the “savvy” MIS organizations, that there is an
enormous spectrum of information systems; different paradigms
(and methodologies, guidelines, techniques, programming lan-
guages, etc.) are required, depending on the kind of system
being built, the users who want the system, the environment in
which the system will operate, etc.

From this perspective, I now view structured systems
development as a “metaparadigm”: an attempt to bring together
several independent paradigms that have heretofore been
advertised as competitive and mutually exclusive. I use the word
“advertise” deliberately. It is unfortunate that both the acade-
micians and the consultants in this industry have been driven by
greed and ego to promote their ideas in “brand name” form.
But this has happened throughout history. As Kuhn points out,
the fiery, young revolutionary eventually becomes a conservative,
old fussbudget, desperately trying to defend his old paradigm
against the onslaught of new ideas.

In the systems development field, practical programmers
and analysts won't tolerate this any longer. Any single-minded
paradigm becomes quickly tarnished and discredited if it is
applied in a maniacal fashion to all systems and all projects.
Thus, there is more and more of a movement underway to take
the best concepts and ideas from each competing brand-name
methodology— the best ideas of the Gane-Sarson approach, the
Warnier-Orr-dackson approach, the Yourdon-DeMarco-Constan-
tine approach, the Martin approach, and the concepts of
Dijkstra, Wirth, Parnas, Brooks, and dozens of others—into a
metaparadigm that “works” within the framework of a specific
MIS organization. As this happens, brand names will disappear.

This process has just begun, and it has a long way to go;
along the way, there will still be onslaughts from new paradigms
that seek to obliterate existing paradigms by forcing yet another
binary choice. As this edition was being written, object-oriented
design was playing that aggressive role in MIS organizations
around the country. So we will have several years of “two steps
forward and one step back” before we have a seamless
integration of paradigms in even the best of MIS organizations.

Indeed, it is more likely to be an ongoing, never-ending
process, because as long as we continue to have quantum-leap
improvements in hardware technology, we will continue to
change the way we think about computers and systems. I think
we will be well into the next century before advances in
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hardware technology begin to level off—and that's a conservative
view at best.

The primary purpose of this book is not to show how the
technical aspects of various paradigms mesh together; that
would require several books. However, I have incorporated
some of the changes that have taken place in the well-defined
field of structured analysis and structured design; specifically,
this book eliminates the classical concept of building a “current
physical” and “current logical” model in structured analysis.
Instead, it presents the “event partitioning” approach discussed
in such books as [McMenamin and Palmer, 1984], [Ward and
Mellor, 1985], and [Yourdon, 1989]. And the discussion of CASE
tools has been updated to reflect current developments;
however, I have omitted references to specific vendors and
products in this area, because they would surely be obsolete by
the time this book is published.

Most of the book, though, is not concerned with the
technical issues per se, but rather with the management and
cultural issues surrounding structured techniques. Anticipating
and preventing paradigm wars is probably the most important
thing you an MIS manager can do as we end this turbulent
decade of the 1980s; helping your staff grow and accommodate
new paradigms, thus enlarging their ability to build systems, is
the most important long-term investment you can make.

A few other changes in this edition require brief comment.
The chapter on program librarians in the previous edition has
been dropped. CASE tools and other productivity aids have
rendered the notion of a human assistant obsolete in most MIS
organizations. The chapter on chief programmer teams still
takes a gloomy view of its practicality in large MIS organizations,
but acknowledges its stunning success in many of the smaller
PC-based software development organzations. And, of course,
the bibliography has been enlarged and brought up-to-date; it is
by no means an exhaustive list of everything that has been
written on software engineering and structured techniques, but
it certainly represents a basic library for the professional
systems developer.

It is a pleasure to acknowledge the assistance of many
people who helped me produce this new edition of Managing
the Structured Techniques. Bob Spurgeon and Adrian Bowles
read the manuscript and made many helpful suggestions. Ed
Moura, the managing editor of Yourdon Press, encouraged the
project from the beginning and never complained as deadline
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after deadline was missed. And last (though probably first given
my verbosity), my editor, Jackie Jeglinski, for her invaluable
help and patience throughout the project.

Edward Yourdon
New York City
January, 1989
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Chapter 1
INTRODUCTION

1.1 THE STRUCTURED REVOLUTION

The issue here is not technology, but the management of
technology. I don't care whether you've ever heard of structured
analysis, or whether you know what a leveled data flow diagram
is. It's not important whether you are familiar with the
structured design concepts of coupling and cohesion, or
whether you believe that structured programming is more
practical in Pascal than in COBOL.

What does matter is the way you introduce these and other
new software development technologies into your organization,
and how you manage their use. With no management
involvement, structured techniques and software engineering
will attract some followers at the grass-roots level, but will not
have any significant impact. Programmer productivity might be
increased for the few individuals who decided to follow an
organized, disciplined approach to the development of systems,
but project productivity would not necessarily increase.

And project productivity is not even enough. As we enter
the 1990s, it is vitally important that we begin focusing on
enterprise productivity— because other enterprises around the
world are focusing on this level of productivity, and it promises
to have an ever-increasing impact on the profitability and very
survival of many organizations.

Indeed, we must eventually focus on national productivity,
for information systems are becoming a larger and larger part of
our overall economy. In 1985, the information processing
industry represented approximately 8 percent of the Gross
National Product in the United States; in 1990, it will be 15
percent. Thus, the quality of our information systems and the
productivity of the people building those systems are now every
bit as important as quality and productivity were in the steel
industry in the 1960s and in the automobile industry in the
1970s. Just as American dominance in many of the traditional
“smokestack” industries came under heavy attack from Europe,
Japan, Asia, and various Third World countries, so the American



