DDDDDDDDDDDD

MANAGING

Aipante § 1 I

ol RUGTURED
TEGANIGUES

EDWARD YOURDON

MANAGING
 THE f

STRUCTURED

TECHNIQUES

Fourth Edition

EDWARD YOURDON

Prentice Hall
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging—in-Publication Data

Yourdon, Edward.

Managing the structured techniques / Edward Yourdon.

p. cm.
Bibliography: p.
Includes index.
ISBN 0-13-551680-3

1. Electronic data processing--Structured techniques.

software--Development--Management. I. Title.
QA76.9.S84Y68 1988
005.1'13--dc18

Editorial/production supervision: Jacqueline A. Jeglinski
Cover design: Bruce Kenselaar
Manufacturing buyer: Mary Ann Gloriande

= © 1989 by Prentice-Hall, Inc.
= A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:
Special Sales/College Marketing
Prentice-Hall, Inc.
College Technical and Reference Division
Englewood Cliffs, NJ 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 T 6 5 4 3 2 1

ISBN 0-13-551kL80-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Toyko

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

-- 4th ed.

2. Computer

88-31643
CIP

MANAGING
THE
STRUCTURED
TECHNIQUES

Selected titles from the YOURIDN PRESS COMPUTING SERIES
Ed Yourdon, Advisor

BLOCK The Politics of Projects

BODDIE Crunch Mode: Building Effective Systems on a Tight Schedule

BOULDIN Agents of Change: Managing the Introduction of Automated Tools

BRILL Building Controls Into Structured Systems

BRILL Techniques of EDP Project Management: A Book of Readings

CONSTANTINE AND YOURDON Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design

DEMARCO Concise Notes on Software Engineering

DEMARCO Controlling Software Projects: Management, Measurement, and Estimates

DeMARCO Structured Analysis and System Specification

DICKINSON Developing Structured Systems: A Methodology Using Structured
Techniques

FLAVIN Fundamental Concepts in Information Modeling

FRANTZEN AND McEVOY A Game Plan for Systems Development: Strategy and Steps
for Designing Your Own System

INMON Information Engineering for the Practitioner: Putting Theory into Practice

KELLER Expert Systems Technology: Development and Application

KELLER The Practice of Structured Analysis: Exploding Myths

KING Creating Effective Software: Computer Program Design Using the Jackson Method

KING Current Practices in Software Development: A Guide to Successful Systems

MAC DONALD Intuition to Implementation: Communicating About Systems Towards a
Language of Structure in Data Processing System Development

MC MENAMIN AND PALMER Essential System Analysis

ORR Structured Systems Development

PAGE-JONES Practical Guide to Structured Systems Design, 2/E

PETERS Software Design: Methods and Techniques

RUHL The Programmer’s Survival Guide: Career Strategies for Computer Professionals

SHLAER AND MELLOR Object-Oriented Systems Analysis: Modeling the World in Data

THOMSETT People and Project Management

TOIGO Disaster Recovery Planning: Managing Risk and Catastrophe in Information
Systems

VESELY Stratagic Data Management: The Key to Corporate Competitiveness

WARD Systems Development Without Pain: A User’s Guide to Modeling Organizational
Patterns

WARD AND MELLOR Structured Development for Real-Time Systems, Volumes I. 11,
and III

WEAVER Using the Structured Techniques: A Case Study

WEINBERG Structured Analysis

YOURDON Classics in Software Engineering

YOURDON Managing Structured Techniques. 3/E

YOURDON Managing the System Life Cycle, 2/E

YOURDON Modern Structured Analysis

YOURDON Structured Walkthroughs, 4/E

YOURDON Techniques of Program Structure and Design

YOURDON Writing of the Revolution: Selected Readings on Software Engineering

ZAHN C Notes: A Guide to the C Programming

To my son,
David Nash Yourdon,
who is already a better writer than his father.

Preface

Structured analysis is obsolete. Structured design is
irrelevant. And structured programming is passé.

If you believe these gloomy pronouncements, here are a
few more: Capitalism is doomed; greed is out. Organized
religion is on the wane; soon, there will be no more churches.
And Congress is going to vote next year to abolish alcohol and
tobacco. They're even going to balance the budget.

No, the structured techniques are not dead. They are very
much alive, and they continue to evolve to adapt to new
technologies and to new paradigms. One important paradigm
that emerged in the 1980s and that has become widely accepted
is prototyping. Its proponents argue that there is no point
trying to “pre-specify” the requirements for a system because
users don't really know what they want, don't really know what
possibilities and alternatives are open to them, and simply
cannot understand abstract models such as data flow diagrams.

Thomas Kuhn discusses the concept of “paradigm shifts”
eloquently in his book, The Structure of Scientific Revolutions
([Kuhn, 1962]); serious students of the software engineering
revolution must read this book to put current (and future)
developments in perspective. But the systems development
field differs from some other scientific disciplines in at least one
important way: New paradigms do not necessarily replace old
paradigms, but rather enlarge and refine the older ones. When
Copernicus proposed a rather radical paradigm shift in the field
of astronomy, he presented his audience with a binary choice:
People either had to believe that the earth revolved around the
sun, or that the sun revolved around the earth. You couldn't have
it both ways.

But in the systems development field, you can have it both
ways. There is no need to make a binary choice between the
prespecified (structured analysis) paradigm and the prototyping
paradigm. They both work. Sometimes it makes more sense to
build a formal, abstract system model on paper and explore its
characteristics; sometimes it makes more sense to build a
prototype and let the user kick the tires and drive the system
around the block to get a feeling for it.

Xiii

Xiv PREFACE

The really significant change in the past ten years is the
recognition, in the “savvy” MIS organizations, that there is an
enormous spectrum of information systems; different paradigms
(and methodologies, guidelines, techniques, programming lan-
guages, etc.) are required, depending on the kind of system
being built, the users who want the system, the environment in
which the system will operate, etc.

From this perspective, I now view structured systems
development as a “metaparadigm”: an attempt to bring together
several independent paradigms that have heretofore been
advertised as competitive and mutually exclusive. I use the word
“advertise” deliberately. It is unfortunate that both the acade-
micians and the consultants in this industry have been driven by
greed and ego to promote their ideas in “brand name” form.
But this has happened throughout history. As Kuhn points out,
the fiery, young revolutionary eventually becomes a conservative,
old fussbudget, desperately trying to defend his old paradigm
against the onslaught of new ideas.

In the systems development field, practical programmers
and analysts won't tolerate this any longer. Any single-minded
paradigm becomes quickly tarnished and discredited if it is
applied in a maniacal fashion to all systems and all projects.
Thus, there is more and more of a movement underway to take
the best concepts and ideas from each competing brand-name
methodology— the best ideas of the Gane-Sarson approach, the
Warnier-Orr-dackson approach, the Yourdon-DeMarco-Constan-
tine approach, the Martin approach, and the concepts of
Dijkstra, Wirth, Parnas, Brooks, and dozens of others—into a
metaparadigm that “works” within the framework of a specific
MIS organization. As this happens, brand names will disappear.

This process has just begun, and it has a long way to go;
along the way, there will still be onslaughts from new paradigms
that seek to obliterate existing paradigms by forcing yet another
binary choice. As this edition was being written, object-oriented
design was playing that aggressive role in MIS organizations
around the country. So we will have several years of “two steps
forward and one step back” before we have a seamless
integration of paradigms in even the best of MIS organizations.

Indeed, it is more likely to be an ongoing, never-ending
process, because as long as we continue to have quantum-leap
improvements in hardware technology, we will continue to
change the way we think about computers and systems. I think
we will be well into the next century before advances in

PREFACE XV

hardware technology begin to level off—and that's a conservative
view at best.

The primary purpose of this book is not to show how the
technical aspects of various paradigms mesh together; that
would require several books. However, I have incorporated
some of the changes that have taken place in the well-defined
field of structured analysis and structured design; specifically,
this book eliminates the classical concept of building a “current
physical” and “current logical” model in structured analysis.
Instead, it presents the “event partitioning” approach discussed
in such books as [McMenamin and Palmer, 1984], [Ward and
Mellor, 1985], and [Yourdon, 1989]. And the discussion of CASE
tools has been updated to reflect current developments;
however, I have omitted references to specific vendors and
products in this area, because they would surely be obsolete by
the time this book is published.

Most of the book, though, is not concerned with the
technical issues per se, but rather with the management and
cultural issues surrounding structured techniques. Anticipating
and preventing paradigm wars is probably the most important
thing you an MIS manager can do as we end this turbulent
decade of the 1980s; helping your staff grow and accommodate
new paradigms, thus enlarging their ability to build systems, is
the most important long-term investment you can make.

A few other changes in this edition require brief comment.
The chapter on program librarians in the previous edition has
been dropped. CASE tools and other productivity aids have
rendered the notion of a human assistant obsolete in most MIS
organizations. The chapter on chief programmer teams still
takes a gloomy view of its practicality in large MIS organizations,
but acknowledges its stunning success in many of the smaller
PC-based software development organzations. And, of course,
the bibliography has been enlarged and brought up-to-date; it is
by no means an exhaustive list of everything that has been
written on software engineering and structured techniques, but
it certainly represents a basic library for the professional
systems developer.

It is a pleasure to acknowledge the assistance of many
people who helped me produce this new edition of Managing
the Structured Techniques. Bob Spurgeon and Adrian Bowles
read the manuscript and made many helpful suggestions. Ed
Moura, the managing editor of Yourdon Press, encouraged the
project from the beginning and never complained as deadline

Xvi PREFACE

after deadline was missed. And last (though probably first given
my verbosity), my editor, Jackie Jeglinski, for her invaluable
help and patience throughout the project.

Edward Yourdon
New York City
January, 1989

Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

Preface

Introduction

1.1 The structured revolution 1
1.2 Management implications 4
1.3 Changing religions 7

1.4 Objectives of this book 8

How to Sell the Structured
Techniques

2.1 Introduction 10

2.2 The environment for
structured techniques 11

2.3 Introducing the structured
techniques within your
organization 13

2.4 Who needs to be sold? 16

2.5 How to promote the structured

techniques 22
2.6 Statistics supporting use of

structured techniques 35

Structured Analysis

3.1 Introduction 37

3.2 The tools of structured
analysis 39

3.3 Applying the tools of
structured analysis 50

3.4 Management problems with
structured analysis 57

vii

10

37

viii

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS

Top-Down Design and Testing 66

4.1 An overview of the top-down
approach 66

4.2 The benefits of the top-down
approach 70

4.3 Management problems with
the top-down approach 80

Structured Design 91

5.1 An overview of structured
design 91

5.2 Management problems with
structured design 97

Structured Programming 105

6.1 An overview of structured
programming 105

6.2 Management problems with
structured programming 114

Documentation Techniques 130

7.1 Documentation to illustrate
a system's structure 131
7.2 Documentation techniques
to show a system's
procedural design 136
7.3 Documentation associated
with systems analysis 142
7.4 Management problems
associated with
documentation
techniques 143

CONTENTS

CHAPTER 8 Chief Programmer Teams 146

8.1

The motivation behind the
CPTO concept 146

8.2 The history of the CPTO
concept 149

8.3 The nature of the chief
programmer team 150

8.4 Management problems with
the chief programmer
team 155

CHAPTER 9 Structured Walkthroughs 157

9.1 Egoless teams 157

9.2 Types of walkthroughs 159

9.3 Objectives of a
walkthrough 161

9.4 When should a walkthrough
be conducted? 162

9.5 Conducting the
walkthrough 164

9.6 Other aspects of
walkthroughs 165

9.7 Management problems with

walkthroughs 167

CHAPTER 10 Which Techniques to Implement

First

10.1

10.2

10.3
10.4

10.5

172

Implementing all
of the structured techniques
at once 172
Techniques involving
organizational change 173
Using structured code alone 174
Using top-down design and
implementation first 174
Conducting informal
walkthroughs 175

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CONTENTS

Choosing a Pilot Project 176

11.1 A good pilot project should be
of a reasonable size 176

11.2 The pilot project should be
useful, visible, and
low-risk 177

11.3 The pilot project should be
measurable 178

Developing Standards for the
Structured Techniques 180

12.1 When standards should be
developed 181

12.2 Hard standards will probably
be ignored 182

12.3 Summary 182

Impact on Scheduling, Budgeting,
and Project Control 184

13.1 The effect on estimating and
scheduling 184

13.2 The effect of structured
techniques on classical
milestones 187

13.3 Milestones and the structured
techniques 188

13.4 Summary 190

What Can Go Wrong? 191

14.1 Political problems 191
14.2 Personnel problems 192
14.3 Time delay problems 193
14.4 Maintenance problems 195

CONTENTS

CHAPTER 15

CHAPTER 16

CHAPTER 17

CHAPTER 18

Xi

The Impact of Personal
Computers 197

15.1
15.2

15.3
15.4

Classification 197

The dangers of personal
computing 199

Structured techniques and
personal computers 201

Summary 202

Fourth-Generation Languages 204

16.1
16.2
16.3

16.4

Characteristics of a fourth-
generation language 205

Advantages of fourth-
generation languages 207

Disadvantages of fourth-

generation languages 208
Conclusion 210

Application Prototyping 211

17.1
17.2
17.3

17.4

The motivation for
prototyping 211
The premises in a
prototyping environment 213
The dangers of
prototyping 214
Conclusions and
comments 216

Data Modeling and
Object-Oriented Design 218

18.1 The current situation 220
18.2 Current issues 221

Xii CONTENTS

CHAPTER 19 The Future of Structured
Techniques 223

19.1 Automated tools 223
19.2 Reusable code 227

19.3 Complexity models 229
19.4 Proofs of correctness 230
19.5 Project management 231
19.6 Visual programming 233
19.7 Artificial intelligence 235

Appendix A Suggested COBOL Coding
Standards 238

Appendix B Suggested PL/I Coding Standards 247

Bibliography 254

Index 263

Chapter 1
INTRODUCTION

1.1 THE STRUCTURED REVOLUTION

The issue here is not technology, but the management of
technology. I don't care whether you've ever heard of structured
analysis, or whether you know what a leveled data flow diagram
is. It's not important whether you are familiar with the
structured design concepts of coupling and cohesion, or
whether you believe that structured programming is more
practical in Pascal than in COBOL.

What does matter is the way you introduce these and other
new software development technologies into your organization,
and how you manage their use. With no management
involvement, structured techniques and software engineering
will attract some followers at the grass-roots level, but will not
have any significant impact. Programmer productivity might be
increased for the few individuals who decided to follow an
organized, disciplined approach to the development of systems,
but project productivity would not necessarily increase.

And project productivity is not even enough. As we enter
the 1990s, it is vitally important that we begin focusing on
enterprise productivity— because other enterprises around the
world are focusing on this level of productivity, and it promises
to have an ever-increasing impact on the profitability and very
survival of many organizations.

Indeed, we must eventually focus on national productivity,
for information systems are becoming a larger and larger part of
our overall economy. In 1985, the information processing
industry represented approximately 8 percent of the Gross
National Product in the United States; in 1990, it will be 15
percent. Thus, the quality of our information systems and the
productivity of the people building those systems are now every
bit as important as quality and productivity were in the steel
industry in the 1960s and in the automobile industry in the
1970s. Just as American dominance in many of the traditional
“smokestack” industries came under heavy attack from Europe,
Japan, Asia, and various Third World countries, so the American

