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Preface

To prove the correctness of a program is to demonstrate, through impeccable
mathematical techniques, that it has no bugs. To test a program is to run it with the
expectation of discovering bugs.

These two paths to software reliability seem to diverge from the very start: if you
have proved your program correct, it is fruitless to comb it for bugs; and if you are
testing it, that surely must be a sign that you have given up on any hope to prove its
correctness.

Accordingly, proofs and tests have, since the onset of software engineering
research, been pursued by distinct communities using different kinds of techniques
and tools. Dijkstra’s famous pronouncement that tests can only show the presence of
errors — in retrospect, perhaps one of the best advertisements one can imagine for
testing, as if “only” finding bugs were not already a momentous achievement! —
didn’t help make testing popular with provers, or proofs attractive to testers.

And yet the development of both approaches leads to the discovery of common
issues and to the realization that each may need the other. The emergence of model
checking was one of the first signs that apparent contradiction may yield to
complementarity; in the past few years an increasing number of research efforts have
encountered the need for combining proofs and tests, dropping earlier dogmatic views
of incompatibility and taking instead the best of what each of these software
engineering domains has to offer.

TAP — Tests And Proofs — results from an effort to present and discuss some of
the most interesting of today’s research projects at the convergence of proofs and
tests. The first event of its kind, TAP 2007 was held at ETH Zurich on February,
12-13 2007. The conference demonstrated that this is indeed a vibrant topic with
exciting developments and the potential for much further growth and cross-
fertilization between the ideas pursued by many groups.

We hope that you will agree that TAP 2007 advanced the understanding of two
equally promising approaches to software quality, and that you will find in the results,
collected in this volume, a source of insight inspiration, and new challenges.

The success of TAP was the result of contributions by many people. We are
particularly grateful to the authors who submitted excellent papers; to the keynote
speakers, Yuri Gurevich, Jonathan Ostroff and Yannis Smaragdakis; to the Program
Committee members and outside referees who made it possible to conduct an
effective process leading to a selection of high-quality papers.

The conference was sponsored by IFIP; we are particularly grateful to the support
of IFIP Working Group WG2.3 on Programming Methodology (through its
Chairperson, Pamela Zave, and all the other members who supported the idea of IFIP
sponsorship) as well as TC2 (the Technical Committee on Programming, especially
its Chair Robert Meersman and its then secretary Judith Bishop). ETH Zurich
provided excellent facilities and impeccable organization.

The financial support of Microsoft Research was particularly useful and is
gratefully acknowledged.



VI Preface

The organization, including the preparation of these proceedings, was made
possible by the work of the Organizing Committee: Ilinca Ciupa, Manuel Oriol,
Andreas Leitner, Claudia Giinthart, and Lisa Liu without whom the conference could
not have taken place.

Yuri Gurevich
Bertrand Meyer
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Combining Static and Dynamic Reasoning for
Bug Detection

Yannis Smaragdakis® and Christoph Csallner?

! Department of Computer Science
University of Oregon, Eugene, OR 97403-1202, USA
yannis@cs.uoregon.edu
2 College of Computing
Georgia Institute of Technology, Atlanta, GA 30332, USA
csallner@gatech.edu

Abstract. Many static and dynamic analyses have been developed to
improve program quality. Several of them are well known and widely used
in practice. It is not entirely clear, however, how to put these analyses
together to achieve their combined benefits. This paper reports on our
experiences with building a sequence of increasingly more powerful com-
binations of static and dynamic analyses for bug finding in the tools
JCrasher, Check 'n’ Crash, and DSD-Crasher. We contrast the power
and accuracy of the tools using the same example program as input to
all three.

At the same time, the paper discusses the philosophy behind all three
tools. Specifically, we argue that trying to detect program errors (rather
than to certify programs for correctness) is well integrated in the devel-
opment process and a promising approach for both static and dynamic
analyses. The emphasis on finding program errors influences many as-
pects of analysis tools, including the criteria used to evaluate them and
the vocabulary of discourse.

1 Introduction

Programming is hard. As an intellectual task, it attempts to approximate real-
world entities and conditions as abstract concepts. Since computers are unfor-
giving interpreters of our specifications, and since in software we can build up
complexity with no physical boundaries, it is easy to end up with artifacts that
are very hard to comprehend and reason about. Even moderate size programs
routinely surpass in detail and rigor the most complex laws, constitutions, and
agreements in the “real world”. Not only can individual program modules be
complex, but the interactions among modules can be hardly known. Most pro-
grammers work with only a partial understanding of the parts of the program
that their own code interacts with. Faced with this complexity, programmers
need all the help they can get. In industrial practice, testing has become signif-
icantly more intense and structured in the past decade. Additionally, numerous
static analyses attempt to automatically certify properties of a program, or de-
tect errors in it.

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 1-16, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 Y. Smaragdakis and C. Csallner

In the past few years, we have introduced three program analysis tools for
finding program defects (bugs) in Java applications. JCrasher [3] is a simple,
mostly dynamic analysis that generates JUnit test cases. Despite its simplicity it
can find bugs that would require complex static analysis efforts. Check 'n’ Crash
[4] uses JCrasher as a post-processing step to the powerful static analysis tool
ESC/Java. As a result, Check 'n’ Crash is more precise than ESC /Java alone
and generates better targeted test cases than JCrasher alone. DSD-Crasher [5]
adds a reverse engineering step to Check 'n’ Crash to rediscover the program’s
intended behavior. This enables DSD-Crasher to suppress false positives with
respect to the program’s informal specification. This property is more useful for
bug-finding than for proving correctness, as we argue later.

In this paper, we report on our experience with these tools and present their
comparative merits through a simple example. At the same time, we discuss
in detail our philosophy in building them. All three tools are explicitly geared
towards finding program errors and not towards certifying program correctness.
Viewed differently, program analyses (regardless of the artificial static/dynamic
distinction) can never accurately classify with full confidence all programs as
either correct or incorrect. Our claim is that analyses that choose to be confident
in their incorrectness classification (sound for incorrectness) are gaining ground
over analyses that choose to be confident in their correctness classification (sound
for correctness). We discuss this point next in more detail.

2 Bug Finding Musings

There are several dichotomies in program analysis. Clearly, analyses are often
classified as static or dynamic. Additionally, analyses are often classified as sound
or complete, or as over- and under-approzimate. We next present some thoughts
on these distinctions as well as the terminology they introduce.

2.1 Static and Dynamic Analysis

At first glance it may seem simple to classify an analysis as static or dynamic.
The definition in the popular Wikipedia archive claims that:

Static code analysis is the analysis of computer software that is per-
formed without actually executing programs built from that software
(analysis performed on executing programs is known as dynamic analy-
81s).

This definition is not quite satisfying, however. Program execution only differs
from program reasoning at the level of accuracy. This distinction is fairly artifi-
cial. First, there are languages where reasoning and execution are often thought
of in the same terms (e.g., static analyses of Prolog programs often include steps
such as “execute the program in a universe that only includes these values”).
Second, even in imperative languages, it is often hard to distinguish between
a virtual machine that executes the program and tools that reason about it
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at some level of abstraction (e.g., model checking tools, or symbolic execution
analyses). Finally, it is hard to classify analyses that execute a program with
known inputs. Known inputs are by definition “static”, in standard terminology,
and these analyses give information about the program without executing it un-
der “real” conditions. Yet at the same time, since the program is executed, it is
tempting to call such analyses “dynamic”.

We believe that there is a continuum of analyses and the static vs. dynamic
classification is not always easy to make. Our working definition is as follows:

An analysis is “dynamic” if it emphasizes control-flow accuracy over
data-flow richness/generality, and “static” if it emphasizes data-flow
richness/generality over control-flow accuracy.

There is always a trade-off between these trends. The undecidability of most
useful program properties entails that one cannot make statements about infi-
nitely many inputs without sacrificing some control-flow accuracy.

Although the definition is approximate, we believe that it serves a useful
purpose. It reflects the intuitive understanding of the two kinds of analyses,
while emphasizing that the distinction is arbitrary. A more useful way to classify
analyses is in terms of what they claim not how they maintain the information
that leads to their claims.

2.2 Soundness for Incorrectness

Analyses can be classified with respect to the set of properties they can establish
with confidence. In mathematical logic, reasoning systems are often classified as
sound and complete. A sound system is one that proves only true sentences,
whereas a complete system proves all true sentences. In other words, an analysis
is sound iff provable(p) = true(p) and complete iff true(p) = provable(p).
Writing the definitions in terms of what the analysis claims, we can say:

Definition 1 (Sound). claim ye(p) = true(p).
Definition 2 (Complete). true(p) = claimipye(p).

When we analyze programs we use these terms in a qualified way. For instance, a
type system (the quintessential “sound” static analysis) only proves correctness
with respect to certain errors.

In our work, we like to view program analyses as a way to prove programs
incorrect—i.e., to find bugs, as opposed to certifying the absence of bugs. If
we escape from the view of program analysis as a “proof of correctness” and
we also allow the concept of a “proof of incorrectness”, our terminology can
be adjusted. Useful program analyses give an answer for all programs (even if
the analysis does not terminate, the programmer needs to interpret the non-
termination-within-time-bounds in some way). In this setting, an analysis is
sound for showing program correctness iff it is complete for showing program
incorrectness. Similarly, an analysis is sound for showing program incorrectness
iff it is complete for showing program correctness.

These properties are easily seen from the definitions. We have:



4 Y. Smaragdakis and C. Csallner

Lemma 1. Complete for program correctness = Sound for program incorrect-

correct(p) = claimeor(p)
—incorrect(p) = —claiMmincor(p)
claiMincor(p) = incorrect(p)
Sound for program incorrectness

Hnene

Lemma 2. Complete for program incorrectness = Sound for program correct-
ness.

Proof. Complete for program incorrectness
incorrect(p) = claimincor ()
—correct(p) = —claimeor(p)

claimeor(p) = correct(p)

Sound for program correctness

| 1T 1]

In the above, we considered the complementary use of the analysis, such that it
claims incorrectness whenever the original analysis would not claim correctness.
Note that the notion of “claim” is external to the analysis. An analysis either
passes or does not pass programs, and “claim” is a matter of interpretation.
Nevertheless, the point is that the same base analysis can be used to either
soundly show correctness or completely show incorrectness, depending on how
the claim is interpreted.

The interesting outcome of the above reasoning is that we can abolish the
notion of “completeness” from our vocabulary. We believe that this is a useful
thing to do for program analysis. Even experts are often hard pressed to name
examples of “complete” analyses and the term rarely appears in the program
analysis literature (in contrast to mathematical logic). Instead, we can equiva-
lently refer to analyses that are “sound for correctness” and analyses that are
“sound for incorrectness”. An analysis does not have to be either, but it certainly
cannot be both for interesting correctness properties.

Other researchers have settled on different conventions for classifying analyses,
but we think our terminology is preferable. For instance, Jackson and Rinard call
a static analysis “sound” when it is sound for correctness, yet call a dynamic
analysis “sound” when it is sound for incorrectness [12]. This is problematic,
since, as we argued, static and dynamic analyses form a continuum. Furthermore,
the terminology implicitly assumes that static analyses always attempt to prove
correctness. Yet, there are static analyses whose purpose is to detect defects (e.g.,
FindBugs by Hovemeyer and Pugh [11]). Another pair of terms used often are
“over-” and “under-approximate”. These also require qualification (e.g., “over-
approximate for incorrectness” means the analysis errs on the safe side, i.e., is
sound for correctness) and are often confusing.
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2.3 Why Prove a Program Incorrect?

Ensuring that a program is correct is the Holy Grail of program construction.
Therefore analyses that are sound for correctness have been popular, even if
limited. For instance, a static type system guarantees the absence of certain kinds
of bugs, such as attempting to perform an operation not defined for our data.
Nevertheless, for all interesting properties, soundness for correctness implies that
the analysis has to be pessimistic and reject perfectly valid programs. For some
kinds of analyses this cost is acceptable. For others, it is not—for instance, no
mainstream programming language includes sound static checking to ensure the
lack of division-by-zero errors, exactly because of the expected high rejection
rate of correct programs.

Instead, it is perfectly valid to try to be sound for incorrectness. That is,
we may want to show that a program fails with full confidence. This is fairly
expected for dynamic analysis tools, but it is worth noting that even static
analyses have recently adopted this model. For instance, Lindahl and Sagonas’s
success typings [14] are an analogue of type systems but with the opposite trade-
offs. Whereas a type system is sound for correctness and, hence, pessimistic, a
success typing is sound for incorrectness and, thus, optimistic. If a success typing
cannot detect a type clash, the program might work and is permitted. If the
system does report a problem, then the problem is guaranteed to be real. This is
a good approach for languages with a tradition of dynamic typing, where users
will likely complain if a static type system limits expressiveness in the name of
preventing unsafety.

Yet the most important motivation for analyses that are sound for incorrect-
ness springs from the way analyses are used in practice. For the author of a
piece of code, a sound-for-correctness analysis may make sense: if the analysis is
too conservative, then the programmer probably knows how to rewrite the code
to expose its correctness to the analysis. Beyond this stage of the development
process, however, conservativeness stops being an asset and becomes a liability.
A tester cannot distinguish between a false warning and a true bug. Reporting a
non-bug to the programmer is highly counter-productive if it happens with any
regularity. Given the ever-increasing separation of the roles of programmer and
tester in industrial practice, high confidence in detecting errors is paramount.

This need can also be seen in the experience of authors of program analyses
and other researchers. Several modern static analysis tools [10, 8, 11] attempt
to find program defects. In their assessment of the applicability of ESC/Java,
Flanagan et al. write [10]:

“[TThe tool has not reached the desired level of cost effectiveness. In
particular, users complain about an annotation burden that is perceived
to be heavy, and about excessive warnings about non-bugs, particularly
on unannotated or partially-annotated programs.”

The same conclusion is supported by the findings of other researchers. Notably,
Rutar et al. [19] examine ESC/Java2, among other analysis tools, and conclude
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that it can produce many spurious warnings when used without context infor-
mation (method annotations). For five testees with a total of some 170 thousand
non commented source statements, ESC warns of a possible null dereference
over nine thousand times. Rutar et al., thus, conclude that “there are too many
warnings to be easily useful by themselves.”

To summarize, it is most promising to use analyses that are sound for correct-
ness at an early stage of development (e.g., static type system). Nevertheless, for
analyses performed off-line, possibly by third parties, it is more important to be
trying to find errors with high confidence or even certainty. This is the goal of
our analysis tools. We attempt to increase the soundness of existing analyses by
combining them in a way that reduces the false error reports. Just like analyses
that are sound for correctness, we cannot claim full correctness, yet we can claim
that our tools are sound for incorrectness with respect to specific kinds of errors.
Such soundness-for-incorrectness topics are analyzed in the next section.

3 Soundness of Automatic Bug Finding Tools

In practice, there are two levels of soundness for automatic bug finding tools. The
lower level is being sound with respect to the execution semantics. This means
that a bug report corresponds to a possible execution of a program module,
although the input that caused this execution may not be one that would arise
in normal program runs. We call this language-level soundness because it can
be decided by checking the language specification alone. Many bug finding tools
concern themselves only with this soundness level and several of them do not
achieve it. A stronger form of soundness consists of also being sound with respect
to the intended usage of the program. We call this user-level soundness, as it
means that a bug report will be relevant to a real user of the program. This is
an important distinction because developers have to prioritize their energy on
the cases that matter most to their users. From their perspective, a language-
level sound but user-level unsound bug report may be as annoying as one that
is unsound at the language level.

We next examine these concepts in the context of the ESC/Java tool. Analysis
with ESC/Java is an important step for our tools, and we can contrast them well
by looking at what need they fill over the base ESC/Java bug finding ability.

3.1 Background: ESC/Java

The Extended Static Checker for Java (ESC/Java) [10] is a compile-time pro-
gram checker that detects potential invariant violations. ESC/Java compiles the
Java source code under test to a set of predicate logic formulae [10]. ESC/Java
checks each method m in isolation, expressing as logic formulae the properties of
the class to which the method belongs, as well as Java semantics. Each method
call or invocation of a primitive Java operation in m’s body is translated to a
check of the called entity’s precondition followed by assuming the entity’s post-
condition. ESC/Java recognizes invariants stated in the Java Modeling Language



