8763901

Proceedings of the
Fourth British National
Conference on Databases
(BNCOD 4)

1985

Edited by A. F. GRUNDY

Proceedings of the Fourth
British National Conference
on Databases (sncobp)

University of Keele, 10—12 July 1985

Edited by A. F. GRUNDY

Department of Computer Science, University of Keele

g R
The right of the
University of Cambridge
1o print and sell
all manner of book s
wus grunted by
Henry VI in 1534,
The University has printed
and published continuously
since 1584.

Published by

CAMBRIDGE UNIVERSITY PRESS
on behalf of

THE BRITISH COMPUTER SOCIETY
Cambridge

London New York New Rochelle

Melbour > Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Strect, New York, NY 10022, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© British Informatics Society Ltd 1985

First published 1985

Printed in Great Britain at the University Press, Cambridge
Library of Congress cataloguing data avaﬁablc

British Library cataloguing in publication data

British National Conference on Databases (41h: 1985
University of Kecle)
Proceedings of the Fourth British National Conference on
Databases (BNCOD4): University of Keele, 1012 July 1985 .—
(The British Computer Society workshop series)
1. Data base management 2. File organization
(Computer Science)
I. Title II. Grundy, A. F. IIL British Computer
Society 1V. Series
001.64'42 QA76.9.D3

ISBN 0 521 32020 8

Conference committees

Programme committee

T. Bourne, CACI Inc. International
T. Crowe, Thames Polytechnic

A. F. Grundy, University of Keele
R. G. Johnson, Birkbeck College

P.J. H. King, Birkbeck College

J. Longstaff, Leeds Polytechnic

M. J. R. Shave, University of Liverpool (Chairman)
P. M. Stocker, University of East Anglia

Organising committee

A. F. Grundy, University of Keele
J. Longstaff, Leeds Polytechnic
A. E. Robinson, North Staffordshire Polytechnic

Production editor

P. Hammersley, Middlesex Polytechnic

THE BRITISH COMPUTER SOCIETY WORKSHOP SERIES

EDITOR: P. HAMMERSLEY

The BCS Workshop Series aims to report developments of an advanced
technical standard undertaken by members of The British Computer Society
through the Society's study groups and conference organisation. The Series
should be compulsive reading for all whose work or interest involves
computing technology and for both undergraduate and post-graduate students.
Volumes in this Series will mirror the quality of papers pubiished in the BCS’s
technical penodical The Computer Journal and range widely across topics in
computer hardware, software, applications and management.

Some current titles:
Data Bases: Procecdings of the International Conference 1989
Ed, S. M. Deen and P. Hammersley

Minis, Micros and Terminals for Libraries and Information Services
Ed. Alan Gilchrist

Information Technology for the Eighties BCS 81

Ed. R. D. Parslow

Second Inteinational Conference on Databases 1933

Ed. S. M. Deen and P. I{ammersley

Research and Development in Information Retrieval
Ed. C. J. van Rijsbergen

Proceedings of the Third British National Conference on Databascs (BNCOD 3)
Ed. J. Longstaff

Research and Development in Expert Systems
Ed. M. A. Bramcr

Proceedings of the Fourth British National Conference on Databases
(BNCOD 4)
Ed. A. F. Grundy

Forthcoming

Pcople and Computers: Designing the Interface
Ed P. Johnson and S. Ceok

Preface

This volume presents the Proceedings of the Fourth British National
Conference on Databascs organised by the University of Keele in association
with The British Computer Society.

The aim of this series of conferences (the first was held in 1981) is to pro-
vide a forum for British research workers in databases and database practi-
tioners to present the resulls of theic work. However, in order to broaden the
base of the conference two non-British experts were also invited to present
papers.

Fach of these invited contributions deals, albeit in very different ways,
with shortcomings of the relational model. J. W. Schmidt (Chapter 1) dis-
cusses the extension of the relational and network model to cater for nested
and recursive predicates and data structures. G. Pelapatti (Chapter 10)
describes a synthesis of the relational and network models uniting these in a
sinple system designed to provide some of the benefits of each.

The ten papers sclected by the Programme Committee, after independent
refereeing, for presentation at the conference are all included in these Pro-
ceedings. The order in which the papers appear in the Proceedings is the
order of scheduled presentation. The subjects these selected papers cover
fall into four categories.

Access and Concurrency Control (Chapters 2, 3)

Models and Mapping (Chapters 4, 5,6,7)

Database Management Systems and their users (Chapters 8, 11)
Database Management Systems in use (Chapters 9, 12)

in conclusion [should like to acknowledge those who have assisted in the
organisation of the conference. 1 thank, first, the members of the Programme
Committee, particularly Professor Mike Shave for his guidance as chairman,
and members of the Organising Committeé; Dr Jim Longstaff for the benefit
of his cxperience and Mrs Anne Robinson for her help with publicity.
Colleagues in both the Department of Computer Science and the Computer
Centre at Keele have contributed valuable advice and assistance, especially
Mrs Brenda Banks and Mr David Sherwood who have given detailed advice on

X Preface

design and presentation, also Miss Jayne Doherty who has done the typing.
Thanks must also go to Mr Peter Hammersley and Mrs June Carr at Middlesex
Polytechnic for their considerable contribution in preparing the Proceedings
for publication.

Finally I must thank the BCS for providing publicity and the BCS Database
Specialist Group for financial assistance, which was particularly valuable in
the early stages of the organisation.

Frances Grundy
Conference Organiser.

6

Contents

Conference committees
Preface

Higher Level Relational Objects
Joachim W. Schmidt and Volker Linnemann

An Access Control System For Database Languages
J. M. Kerridge et al.

Towards a Flexible Mechanism for Concurrency Control
in Database Systems
Marcos R. S. Borges

The Qualified Binary Relationship Model of Information
Y. J. Jiang and S. H. Lavington

Action Modelling: A Symmetry of Data and Behaviour
Modelling
Paul Feldman and Guy Fitzgerald

Bidirectional Mapping between a User-oriented Conceptual
Schema and a Target Logical Schema: the ACS
0. C. Akinyokun, P. M. Stocker and M. R. S. Borges

Modelling-Primitives for a Software Engineering Database
P. Hitchcock, D. S. Robinson and R. P. Whittington

A Flexible DBMS for Research and Teaching (PRECI/C)
S. M. Deen, R. Carrick and D. M. Kennedy

Distributed Data Management in a Real-Time Environment
R. Brantingham Moore

page vii
ix

1

25

39

61

81

105

131

147

157

vi

12

Contents

The Integration of the Network and Relational Approaches

ina DBMS 177
V. D’Appolionio, A Fuggetta, P. Lazzarini, M. Negri and

G. Pelagatti

Some Observations on User Interface Design and User

Performance 199
I. A. Newman and J. Sethi

Databases and Office Automation 215
Keith G. Jeffery

Higher Level Relational
Objects™

Joachim W. Schmidt and Volker Linnemann
Fachbereich Informatik, Johann Wolfgang Goethe-Universitat,
Dantestrasse 9, D-6000 Frankfurt am Main 1, West Germany

Relations have been accepted as a data structure adequate for a wide
variety of data-intensive applications. On the one hand, this is due to
the relatively complete query languages that come with relations, on
the other it results from additional technical services such as query
optimization, integrity and concurrency control as well as user-friendly
interfaces provided by relational systems.

A decade of practical experience has demonstrated, however, that
there are at least two basic deficiencies of the relational model. At first,
there exist restrictions in the use of predicates for relation definition
(“linear” predicates only); they turn out to be too restrictive for rule-
intensive applications as, for example, in decision support systems and
expert systems. At second, there are limitations in the use of structures
for element definition (“linear” structures only); they are inappropri-
ate in particular for object-intensive applications as, for example, in
CAD/CAM or in office modelling.

The presentation outlines current research that generalizes the rela-
tional approach in both directions by allowing recursive structured
definition as well as recursive rule definition. This research aims for a
basis fo: future information models while trying to maintain the essen-
tial benefits of current relational technology.

1. Introduction

The relational model for data bases, as introduced by E.F. Codd [5], has
been accepted as a framework for the solution of many of the problems
with data-intensive applications. Its main advantages over traditional
models for data files as founded, for example, on C.A.R. Hoare’s approach
to record handling [13] originate, in essence, from the different ways both
approaches deal with object identification. Files refer to records by refer-
ences, an implementation-oriented notion on a low conceptual level,

*This paper is based on work from [26], [17]

2 J W Schmidt and V Linneniann

known to be error-prone and hard to gencralize. Relations identify their
clements by distinguished attribute values or combinations thercof, ie, by
keys, a notion that leads itself, as we shall see, to predicative set definition
and set selection,

Practical experience with the relational model has demonstrated, how-
cver, that it has at least two basic deficiencics. On the one hand, it restricts
the use of predicates for relation definition (“linear” predicates only), and
the traditional relational query facilities turn out to be too restrictive for
rule-intensive applications, as, for example, decision support systems and
expert systems. On the other hand, the relational model limits the usc of
structures for element definition (“linear” structures only), and the flat
relational tuple structures are inappropriate in particular for object-
intensive applications as, for example, CAD/CAM or office systems
modelling.

The main purpose of this paper is to outline current research that
extends the relational approach by generalizing both, relation and element
definition, essentially by allowing nested and recursive predicate and struc-
ture definitions. Section 2 presents an overview over the use of types,
relations and predicates in database programming. In scetion 3, the princi-
ples of rule-based and recursive rclation construction are outlined while
section 4 generalizes the flat structure of the relational model to what is
called a rccutsive database model. Finally, the two directions of research
are compared and related with emphasis on future work in information
modelling.

2. Types, Relations, and Predicates
The impact of logic on computing - from early data processing in the fifties
to modern computer science — can hardly be overestimated.

In the field of programming, logic marks the step from machine-
oriented coding to algorithmic programming. High levellanguages provide
conditional statements and boolcan cxpressions, use propositions for data
type definition, and depend crucially on predicates for the specification of
language semantics and for reasoning abont programs [10], [12].

Inthe arca of data modelling, the degree to which predicates arc utilized
allows a distinction between early reference-oriented data models and
those that capture mote of the rclationships defined by the application
semantics.

2.1 Data Types and Predicates
I “a type is a precisc characterization of structural and behavioural pro-
perties which a collection of entities (actual or potential) all share ...” [7],

Higher Level Relational Objects 3

the formalism by which those propertics can be characterized decides upon
the power of a type calculus.

Currently prevalent programming languages only allow type definitions
based on restricted propositional logic. Take, as an example, the following
PASCAL-like subtype definition:

partidtype IS RANGE 1..1C0,

which is equivalent to the don.lain predicate (1<p AND p=100) and
which defines the domain sct

partidtype [EACH p IN integer: 1 < p AND p < 100]}

The expressiveness of the type calculus in high level Janguages cormre-
sponds closcly with that of the expression and statement part of these
languages. As a consequence, any action to be taken to assure type pro-
perties can be expressed directly in the language. A type checker can
produce run tiine code in the source language to assure, for example, type
correctness of an integer cxpression, ix, which is to be assigned to a var-
1able, p, of partidtype:

IF (1 < ix) AND (ix < 100)
THEN :pj=ix
ELSE <exceptiond .

Programmers reduce the possibility of run-time exceptions by acquiring
sufficient information on rhs-expressions through inductive reasoning
about assignment chains and subiype definitions (and so do clever
compilers).

Approaches to programming that are more concerned about correct-
ness aliow for the definition of additional program propertics by so-called
annotations. ADA annotations, for example, can be specified in the meta
language ANNA [20],and ADA programs can be proven formally correct
w.r.t. their specification. The meta language ANNA allows full first order
assertions, while the object language ADA is restricted to propositional
logic. An ADA subtype definition, for example, primetype, can be fully
specified by the following ANNA annotation [20]: defining the domain sct

primetype IS integer || WHERE p IN primetype =zz>
ALL n IN integer
((1<n AND ndp) ==> p MOD n £ 0),

4 J W Schmidt and V Linnemann
defining the domain set

primetype { EACH p IN integer: ALL n IN integer
((1<n AND n<p) ==> p MOD n £ 0)} .

2.2 Predicates in Database Languages
Database models, as, for exam ple, the relational model are very concerned
about data integrity; therefore they go beyond programming languages in
the sense that they provide the expressiveness of first order logic directly
through relational languages.

On the expression level, the request for “relational completeness” of
query languages is essentially met by allowing full first order predicates,
P(1,...), as selection predicates in relational expressions:

reltype {EACH r IN rel: p(r,...)}.

On the type or schema level, the role of predicates can be exemplified
best by comparing a PASCAL-like set type definition

settype = SET OF elementtype,

with a relation type definition.

Thelegal values of a relation are also sets of elements; they have to meet,
however, the additional constraint that some attribute (or a collection of
attributes) serves as akey, ie, has a unique value amongst all the elements of
a relation:

reltype = SET OF elementtype ||
WHERE rel IN reltype ==>
ALL r1,r2 IN rel (ril.key=r2.key ==> rl=r2) ,

The key constraint is essential to relational data modelling since only
unique keys can serve as element identifiers as required, for example, for
the construction of higher relationships between elements. Therefore, rela-
tional languages directly support the above class of annotated set type
definitions by a data structure relation that allows for type definitions
equivalent to the previous one:

reltype = RELATION key OF elementtype.

Higher Level Relational Objects 5

For each assignment of a relational expression, rex, to a variable, rel, of rel-
type, the relational type checker has to perform a test equivalent to

IF ALL x1,x2 IN rex (xl.key=x2.key ==> x1sx2)
THEN rel:zrex
ELSE <exception> .

2.3 Predicative Support for Relations: Selectors and Constructors

The key constraint is, of course, not the only condition one would like to
have maintained automatically on a database. Take, for an example, some
objects related by the fact that one object is in front of another.

TYPE objecttype = ... (® full object description,
e.g. by object record %) ,,, ;

parttype = ... (® representative object description,
e.g. by object key %) ... ;
objectrel RELATION part OF objecttype;

infrontrel = RELATION ... OF
RECORD
front ,back: parttype
END;
VAR Objects: objectrel;
Infront: infrontrel .

Since the attributes, front and back, of the Infront relation are supposed to
relate objects, they have to refer to elements in the Objects relation. The
corresponding referential integrity constraint can be expressed by annotat-
ing the type of the Infront relation:

VAR Infront: infrontrel || WHERE r IN Infront ==)>
SOME r1,r2 IN Objects
(r.front=r1.part AND
r.back=r2.part).

In a relational language such a constraint can be enforced by a conditional
which controls assignment to the Infront relation:

IF ALL x IN rex (SOME r1,r2 IN Objects
(x.front=r1.part AND x.back=r2.part))

THEN Infront:=rex

ELSE <exception>.

6 J W Schmidt and V Linnemann

Expecting frequent use of relations in such “conditional patterns”, the
database programming language DBPL [27], [23] provides an abstraction
mechanism for such patterns through the notion of a selector. Referential
integrity on relations of type infrontrel, for example, can be maintained by

SELECTOR refint FOR Rel: infrontrel(): ...:
BEGIN EACH r IN Rel: SOME r1,r2 IN Objects
(r.front=ri.part AND r.back=r2.part)

END refint.

An assignment to a selected relation variable, for example,

Infront[refint] := rex,

is defined to be equivalent to the above conditional assignment to the full
relation variable Infront.

In summary, selectors “factor out” conditions on relations, represent
them uniformally, and make them available to all database system compo-
nents that have to reason about programs and data (such as query
optimizer, concurrency manager, and integrity subsystem). The selector
concept is dlustrated in Fig. 1.

While selectors provide support when data elements are to be excluded
from arelation thereis also a need for supporting the contrary — when addi-
tional derived data objects are to be included into a relation.

For an example, arelation, Ahead_2, can be defined that relates — based
on the data in relation Infront — two objects if and only if they are separated
by at most two steps.

Fact Relation: Rel +eeemccemmeaa- +
]
|
1
1
1
I
1
]
)

Relation

1
1
!
1
i
T i Rell[s]: Selected
1
:
i
.

Fig. 1 Sclectors and Relations

Higher Level Relational Objects 7
Starting with type

TYPE aheadrel = RELATION ... OF RECORD
head,tall: parttype
END,

an annotated definition of relation Ahead_2 would read as follows:

VAR Ahead_2: aheadrel {1 WHERE (r IN Infront ==> r IN Ahead 2)
AND (f,b IN Infront ==> i
(f.backzb.front ==>
<f.front,b.back> IN Ahead_2))

In a relational language the value of such a relation, Ahead_2, can be
denoted by a query expression in terms of predicates and the Infront
relation:

aheadrel [EACH r IN Infront: TRUE,
(f.front,b.back> OF EACH f,b IN Infront:
f.backzb.front }.

Expecting frequent use of relations in such “expressional patterns”, we
have defined an abstraction mechanism for such patterns based on the
notion of a constructor [17].

As an example, the Ahead_2-relationship based on relations of type
infrontrel can be constructed by

CONSTRUCTOR ahead_2 FOR Rel:infrontrel (): aheadrel;
BEGIN EACH r IN Rel: TRUE,
{f.front,b.back> OF
EACH f,b IN Rel: f.back=b.front
END ahead_2.

The value of a constructed variable, for example,

Infront (ahead_2}

is defined to be equal to the above relational expression of type aheadrel.

In the same sense as selectors isolate the constraints imposed on selected
relations, constructors factor out the rules that define the elements in con-
structed relations.

8 J W Schmidt and V Linnemann

Constructed [+
Relation Rel{c} !

Fact Relation: Rel

R Bl A b

Fig. 2 Constructor and Relations

In the subsequent section, the basic issues of constructor semantics are
outlined with emphasis on recursive constructor definition.

3. Relation Constructors

Combining the semantic capabilities of rule-based knowledge representa-
tion and reasoning systems with the efficiency-oriented mechanisms for
query result construction and transaction processing in large shared DBMS
has been the focus of much current research [8], [19].

The use of rules follows a similar pattern. Certain base facts are stored
for which it is known that a certain rule holds. Other facts for which the rule
also holds are not stored explicitly but can be derived by a possibly recur-
sive (deduction) rule. The deduction rule may depend on the existence of
other facts (parameters), which are, however, not necessarily part of the
result. Constructors allow the definition of such deduction rules in DBPL.
The idea is illustrated in Fig. 2.

In this section, we discuss the notion of a constructor in more detail by
providing some examples based on the relations introduced in section 2.

3.1 Recursive Constructors

The above simple constructor, ahead_2, representing all object pairs sep-
arated by at most two steps, can be generalized to a sequence of
constructors, ahead_n, representing all pairs of objects separated by at
most n steps:

CONSTRUCTOR ahead_n FOR Rel:infrontrel(): aheadrel;
BEGIN EACH r IN Rel: TRUE,
<f.front,b.tail> OF EACH f IN Rel,
EACH b IN Rel {ahead n-1} :
(f.back=b.head)
END ahead_n.

