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Preface

The study of computer operating systems has progressed from learning an ad hoc
collection of folk wisdom about how systems work to examining a coherent set of
topics about which substantial theoretical and practical knowledge has been devel-
oped. We have been teaching modern operating systems to undergraduates and grad-
uate students for 10 to 15 years at several universities, and believe that introductory
material for the undergraduate student is well agreed upon and adequately exposited
in several modern texts.

Unfortunately, at the graduate-student or professional level, no such agreement
exists. Worse, to teach advanced material properly we have been forced to rely
directly on the current literature. Although reference to the contemporary work of
researchers and practitioners is useful at this level, students (and instructors as well)
have felt the lack of a centralized source of information upon which to rely for an
overall framework and source of direction.

The purpose of this book is to provide that needed resource. We have identified
eight major subjects in the design and analysis of modern operating systems and
have brought together our work on each topic to give the reader a modern course
in the advanced topics of importance. The synthesis of many points of view gives
the reader an accurate picture of the current state of each topic. The subjects are
enduring ones that are not dependent on a particular vendor’s system or on current
technology; this material should be useful in design and analysis of future systems
as well.

Operating Systems: Advanced Concepts continues to rely on original sources
for two reasons. First, to keep the book to a manageable size, some subjects are
covered completely at a fundamental level with references to generalizations and
special cases that the interested reader may pursue. Second, we believe that at this
level the serious student of operating systems must be cognizant of the contemporary
literature; we hope this approach will help train the reader in professional reading
habits if they are not already established. To make this easy, we have often chosen
to refer to the most accessible items of literature (major journal or conference articles)
instead of the earliest sources (often internal technical reports). In addition to cited
references, we provide an additional bibliography of literature for each topic.

Our appreciation is due to Misses Noriko Shiogama and Nahoko Murao, who
entered the first handwritten version of the manuscript. The following reviewers
have carefully read and improved the book through several drafts: Imtiaz Ahmad,
University of Windsor; Rob Cubert, Sacramento State University; D. M. Etter, Uni-
versity of New Mexico; William Franta, University of Minnesota; Dale Grit, Col-
orado State University;. Teofilo Gonzales, University of Texas at Dallas; Evan lvie,



PREFACE

Brigham Young University; Roger King, University of Colorado; Marek Rusinkiew-
icz, University of Houston; and Nish Thakor, Northwestern University. Many stu-
dents in our operating classes have been exposed to this material and have selflessly
pointed out areas for clarification and improvement. All of these people have made
this an enjoyable project and, we hope, a valuable product. Finally, we would like
to acknowledge our families and friends who have provided support and encour-
agement over the course of the project.

Mamoru Maekawa
Arthur E. Oldeboeft
Rodney R. Oldehoeft
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Overview

1.1 Introduction

The purpose of this book is to serve as a resource in the advanced study of modern
computer operating systems. The book can be used in at least three ways. First, it
can serve as a textbook in a formal course in advanced operating systems for students
who have mastered fundamental material in an undergraduate course. We include
here advanced-level material on familiar topics (synchronization, deadlock, virtual
memory), as well as material that is not generally covered at an elementary level
(security, distributed systems and control, modeling and analysis). There is enough
material for a two-quarter sequence, and more than enough for a single semester.
There are numerous questions and problems. The former will help students review
the chapter; the latter should help them delve more deeply into the material of each
chapter. Each chapter also includes a list of important terms to help ensure subject
mastery.

Second, the book is useful as an organized course for professionals or for self-
study. The chapters are organized so that a brief but adequate review precedes
material at an advanced level. This will allow the professional whose background
is strong but incomplete to quickly “come up to speed” on a particular subject.
Where appropriate, references are given to background material that may be valuable
for the reader who is working independently.

Third, the book is a guide to current research and methodology for operating
system designers. The individual chapters are independent of each other and well
suited for the reader who wants to study a particular subject in depth.

The chapters each center on a major topic in the advanced study of operating
systems. The following briefly describes the contents of each chapter. The references
in this chapter are the basis on which most significant topics in this book are based.

1.2 Chapter 2: Process Synchronization

In this chapter we cover methods for process management that are more advanced
than those found in an introductory course. After a brief review of processes and
their synchronization via elementary methods, we describe a model that is valuable
for analyzing sets of concurrent processes [Bernstein, 1966]. With this model we can
demonstrate safe, deterministic execution while ensuring the maximum potential
for parallel processing. Advanced methods of process synchronization are surveyed



