Operating
Systems

Advanced Concepts

Maekawa « Oldehoeft - Oldehoeft

W 27




Operating
Systems

ADVANCED CONCEPTS

Mamoru Maekawa
University of Tokyo
Arthur E. Oldehoeft

lowa State University

Rodney R. Oldehoeft

Colorado State University

THE BENJAMIN/CUMMINGS PUBLISHING COMPANY, INC.

Menlo Park, California ® Reading, Massachusetts
Don Mills, Ontario ® Wokingham, U.K. ® Amsterdam
Sydney ® Singapore ® Tokyo ® Madrid ® Bogota
Santiago @ San Juan



Sponsoring Editor: Alan Apt

Production Editors: Laura Kenney, Julie Kranhold
Copyeditor: Carol Dondrea

Illustrator: Lisa Torri

Cover Designer: John Edeen

Compositor: Graphic Typesetting Service

The basic text of this book was designed using the Modular Design
System, as developed by Wendy Earl and Design Office Bruce Kortebein.

Copyright © 1987 by The Benjamin/Cummings Publishing
Company, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada.

The programs presented in this book have been included for their
instructional value. They have been tested with care but are not
guaranteed for any particular purpose. The publisher does not offer any
warranties or representations, nor does it accept any liabilities with
respect to the programs.

Library of Congress Cataloging-in-Publication Data

Maekawa, M. (Mamoru), 1942-
Operating systems.

Includes bibliographies and index.

1. Operating systems (Computers) I. Oldehoeft,
Arthur E. II. Oldehoeft, Rodney R. III. Title.
QA76.76.063M335 1987 005.4'3 86-28419
ISBN 0-8053-7121-4

BCDEFGHIJ-DO-8 987
The Benjamin/Cummings Publishing Company, Inc.

2727 Sand Hill Road
Menlo Park, CA 94025



Operating Systems

ADVANCED CONCEPTS



Preface

The study of computer operating systems has progressed from learning an ad hoc
collection of folk wisdom about how systems work to examining a coherent set of
topics about which substantial theoretical and practical knowledge has been devel-
oped. We have been teaching modern operating systems to undergraduates and grad-
uate students for 10 to 15 years at several universities, and believe that introductory
material for the undergraduate student is well agreed upon and adequately exposited
in several modern texts.

Unfortunately, at the graduate-student or professional level, no such agreement
exists. Worse, to teach advanced material properly we have been forced to rely
directly on the current literature. Although reference to the contemporary work of
researchers and practitioners is useful at this level, students (and instructors as well)
have felt the lack of a centralized source of information upon which to rely for an
overall framework and source of direction.

The purpose of this book is to provide that needed resource. We have identified
eight major subjects in the design and analysis of modern operating systems and
have brought together our work on each topic to give the reader a modern course
in the advanced topics of importance. The synthesis of many points of view gives
the reader an accurate picture of the current state of each topic. The subjects are
enduring ones that are not dependent on a particular vendor’s system or on current
technology; this material should be useful in design and analysis of future systems
as well.

Operating Systems: Advanced Concepts continues to rely on original sources
for two reasons. First, to keep the book to a manageable size, some subjects are
covered completely at a fundamental level with references to generalizations and
special cases that the interested reader may pursue. Second, we believe that at this
level the serious student of operating systems must be cognizant of the contemporary
literature; we hope this approach will help train the reader in professional reading
habits if they are not already established. To make this easy, we have often chosen
to refer to the most accessible items of literature (major journal or conference articles)
instead of the earliest sources (often internal technical reports). In addition to cited
references, we provide an additional bibliography of literature for each topic.

Our appreciation is due to Misses Noriko Shiogama and Nahoko Murao, who
entered the first handwritten version of the manuscript. The following reviewers
have carefully read and improved the book through several drafts: Imtiaz Ahmad,
University of Windsor; Rob Cubert, Sacramento State University; D. M. Etter, Uni-
versity of New Mexico; William Franta, University of Minnesota; Dale Grit, Col-
orado State University;. Teofilo Gonzales, University of Texas at Dallas; Evan lvie,



PREFACE

Brigham Young University; Roger King, University of Colorado; Marek Rusinkiew-
icz, University of Houston; and Nish Thakor, Northwestern University. Many stu-
dents in our operating classes have been exposed to this material and have selflessly
pointed out areas for clarification and improvement. All of these people have made
this an enjoyable project and, we hope, a valuable product. Finally, we would like
to acknowledge our families and friends who have provided support and encour-
agement over the course of the project.

Mamoru Maekawa
Arthur E. Oldeboeft
Rodney R. Oldehoeft

Acknowledgments

Figure 3.12 is reprinted from Ada for Experienced Programmers by A. Nico
Habermann and Dwane E. Perry (Addison-Wesley, 1983).

Figures 6.21 and 6.22 and Tables 6.3 and 6.4 are reprinted from Mamoru
Maekawa, “A N Algorithm for Mutual Exclusion in Decentralized Systems,” in ACM
Transactions on Computer Systems 3 (May 1985). Reprinted by permission of the
Association for Computing Machinery, Inc.

Figure 8.24 is reprinted from Voydock and Kent, “Security Mechanisms in
High-Level Network Protocols,” in Computing Surveys 15 (1983). Reprinted by
permission of the Association for Computing Machinery, Inc.



Contents

1 Overview 1
1.1 Introduction 1
1.2 Chapter 2: Process Synchronization 1
1.3 Chapter 3: Language Mechanism for Concurrency 2
1.4 Chapter 4: Deadlock 2
1.5 Chapter 5: Virtual Memory 3
1.6 Chapter 6: Distributed Systems 3
1.7 Chapter 7: Distributed Concurrency Control, Deadlock,

and Recovery 4
1.8 Chapter 8: Computer Security 4
1.9 Chapter 9: Queuing Models of Computer Systems 5
References 6

2 Process Synchronization 9

2.1 Background and Review 9
2.1.1 Concept of a Process 9

2.1.2 Concurrent Processes 11

THE MODEL 12
DETERMINATE SYSTEMS OF PROCESSES 12

MUTUALLY NONINTERFERING SYSTEMS 13

MAXIMALLY PARALLEL SYSTEMS 14

2.1.3  Critical Sections 15

2.1.4 Early Mechanisms 15

2.1.5 Semaphores 16

2.1.6 Common Synchronization Problems 17

2.2 Sequencers and Eventcounts 17
2.2.1 The Producer/Consumer Problem Using Eventcounts 20

2.2.2  The Reader/Writer Problem Using Eventcounts 20

vii



CONTENTS

2.2.3 Tagged Messages 21

2.3 OR Synchronization 23
2.4 AND Synchronization 24
2.4.1 Dining Philosopher Problem 30

2.4.2 Starvation and Efficiency 30

2.4.3 Cigarette Smoker’s Problem 31

2.5 NOT Synchronization 31
2.6 Cooperation Without Mutual Exclusion 34
2.6.1 Lamport’s Theorem 35

2.6.2 Single Writer/Multiple Reader Problem 36

2.7 Interprocess Communication 37
2.7.1 Direct and Indirect Communication 38

2.7.2 Capacity 40

2.7.3 Message Size 40

2.8 Summary of Mechanisms 41
2.9 Issues of Design and Implementation 42
2.9.1 Overhead 42
FIRMWARE IMPLEMENTATIONS 42

PRIVATE SEMAPHORES 43

2.9.2 Real-Time and Fault Tolerance 43

2.9.3 Creation and Deletion of Semaphores and Sequencers 45

2.9.4 Misuse of Mechanisms 46

2.10 Summary 46
KEY WORDS 46
QUESTIONS 47
PROBLEMS 49
REFERENCES 52
SUGGESTED READINGS 53

3 Language Mechanisms for Concurrency 55
3.1 Introduction 55
3.2 The Object Model and Monitors 55
3.2.1 Mechanisms 57

3.2.2 The Reader/Writer Problem 59

3.2.3 A Disk-Head Scheduler 62

3.2.4 Design and Usage Issues 62
PRIORITIES 63

NESTED MONITOR CALLS

64



CONTENTS

3.3 Analysis Framework for Mechanisms 64
3.3.1 Requirements 64
APPLICABILITY TO CENTRALIZED AND DISTRIBUTED SYSTEMS 65

EXPRESSIVE POWER 65

MODULARITY 65

EASE OF USE 66

PROGRAM STRUCTURE 66

PROCESS FAILURES AND TIME-OUTS 67
UNANTICIPATED FAULTS AND RECOVERY 67

REAL-TIME SYSTEMS 68

3.3.2 Languages and Systems 68

3.4 Some Concurrent Programming Mechanisms 69
3.4.1 Serializers 69

3.4.2 Path Expressions 71

OPEN PATH EXPRESSIONS AND PATH PASCAL 72
IMPLEMENTATION 74

PREDICATE PATH EXPRESSIONS 77

3.4.3 Communicating Sequential Processes 79

3.4.4 Distributed Processes 81

3.5 Ada Concurrent Programming Mechanisms 82
3.5.1 Task Declaration and Initiation 83

3.5.2 Entries and the Accept Statement 84

3.5.3 The Select Statement 85

3.5.4 Real-Time Processing 88

3.5.5 Termination and Exceptions 90

3.5.6 Ada and Concurrent Programming Requirements 91

3.6 Summary 92
KEY WORDS 93
QUESTIONS 93
PROBLEMS 94
REFERENCES 97
SUGGESTED READINGS 99

4 Deadlock 101
4.1 Introduction 101
4.2 The Deadlock Problem 101
4.2.1 Definition of Deadlock 101

4.2.2 Examples of Deadlock 104

4.2.3 Resource Types 105

4.2.4 Deadlock Policies 105



CONTENTS

4.3 Concepts from Graph Theory 106
4.4 The General Model 108
4.4.1 General Resource Graph 108

4.4.2 Operations on Resources 109

4.4.3 Necessary and Sufficient Conditions for Deadlock 110

4.5 Special Cases with Useful Results 115
4.5.1 Single-Unit Requests 115

4.5.2 Consumable Resources Only 117

4.5.3 Reusable Resources Only 118
DETECTION IN REUSEABLE RESOURCE SYSTEMS 118

AVOIDANCE IN REUSABLE RESOURCE SYSTEMS 121

4.6 Recovery from Deadlock 122
4.7 Prevention by System Design 124
4.8 Total System Design 125
4.9 Summary 126
KEY WORDS 126
QUESTIONS 127
PROBLEMS 129
REFERENCES 130
SUGGESTED READINGS 130

5 Virtual Memory 133
5.1 Introduction 133
5.2 Background and Review 133
5.2.1 Hardware Support 134

5.2.2 Page-Fault Rate and Principle of Locality 134

5.2.3 Software Components 136
OPERATING SYSTEM POLICIES 136

PROCESS BEHAVIOR 139

5.3 Stack Algorithms 140
5.3.1 Cost Function 140

5.3.2 Definition of a Stack Algorithm 141

5.3.3 Stack-Updating Procedure 142

5.3.4 Calculating Cost Function 144

5.3.5 The Extension Problem 146

5.4 Working Sets 147
5.4.1 Definition of Working Set 148

5.4.2 Properties of Working Sets 149



CONTENTS

5.4.3 Implementation 150

5.5 Models of Virtual Memory 151
5.5.1 An Extrinsic Model—Lifetime Curves 151

5.5.2  An Intrinsic Model—LRU Stack 153

5.6 Clock Algorithms 153
5.6.1 A Working Set Approximation—WSClock 154

5.6.2 Load-Control Methods 154

LT/RT LOAD CONTROL 154

WSCLOCK LOAD CONTROL 156

CLOCK LOAD CONTROL 156

CHOOSING A PROCESS TO DEACTIVATE 157

5.6.3 Simulation Results 157
PROCESS DEACTIVATION POLICIES 157

LT/RT CONTROL 158

CLOCK LOAD CONTROL 158

RELATIVE PERFORMANCE 158

5.7 Program Restructuring 158
5.7.1 Theoretical Bounds on Paging Performance 159
PAGING PERFORMANCE MODEL 159

SECTORING PERFORMANCE MODEL 160

A LOWER BOUND 160

AN UPPER BOUND 161

5.7.2  An Experiment 161
BUILDING THE INTERSECTOR REFERENCE MATRIX 163

CLUSTERING PROCEDURE 163
EXPERIMENTAL RESULTS 164

5.8 Summary 165
KEY WORDS 165
QUESTIONS 166
PROBLEMS 168
REFERENCES 171
SUGGESTED READINGS 172

6 Distributed Systems 177
6.1 Introduction 177
6.2 Layered Structures 178
6.2.1 The Reference Model of Open Systems Interconnection 178

6.2.2 The Local Area Network Reference Model 183

6.6.3 Implementation Strategies 183

xi



xii

CONTENTS

6.3 The First Three Layers

6.3.1

6.3.2
6.3.3
6.3.4

The Physical Layer
TELEPHONE SYSTEMS
COMMUNICATION SATELLITES
LOCAL AREA NETWORKS

The Data-Link Layer

The Network Layer
Multicomputer Organizations

6.4 The Middle Two Layers

6.4.1
6.4.2

The Transport Layer
The Session Layer

6.5 Proprietary Network Architectures
6.6 Distributed Process Management

6.6.1

6.6.2

Issues in Distributed Algorithms

THE CHARACTERIZATION OF DISTRIBUTED ALGORITHMS

ORDERING OF EVENTS IN A DISTRIBUTED SYSTEM
Requirements for Distributed Mutual Exclusion
Algorithms

6.7 Lamport’s Algorithm
6.8 Richart and Agrawala’s Algorithm
6.9 Maekawa’s Square-Root Algorithm

6.9.1
6.9.2

6.9.3
6.9.4
6.9.5
6.9.6

Other Improvement Techniques

Theoretical and Conceptual Basis for Maekawa’s
Algorithm

Implementation Details of Maekawa’s Algorithm
An Example Using Maekawa’s Algorithm

A Comparative Message Traffic Analysis
Formation of Member Sets S;

METHOD 1

METHOD 2

6.10 Miscellaneous Considerations

6.10.1 Special Network Topologies

6.10.2 Management of Message Sequence Numbers
6.10.3 Dynamic Changes to the Network Topology
6.10.4 Elimination Algorithms

6.10.5 Other Approaches

6.11 A Comparative Order Analysis

184

184
185
187
187
188
190
192

194
194
200
200
201

202
202
204

205
207
208
211
211

212
215
220
221
223
224
224

225
225
225
226
226
227

227



CONTENTS
6.12 Summary 228
KEY WORDS 229
QUESTIONS 230
PROBLEMS 232
REFERENCES 233
SUGGESTED READINGS 235

7 Distributed Concurrency Control, Deadlock, and

Recovery 239
7.1 Introduction 239
7.2 Database Consistency 239
7.3 Assumptions and Requirements 240
7.3.1 Database Model 240
7.3.2 Requirements of the Solution 243
7.4 Concurrency Control Based on Locking 244
7.4.1 Lock Actions 244
7.4.2  Structural Properties of Transactions 244
7.4.3  Schedules 246
7.4.4 Serial and Legal Schedules 246
7.4.5 Equivalent Schedules 247
7.5 Theorems on Consistency 249
7.6 Deadlock Detection 251
7.6.1 Centralized Deadlock Detection 253
7.6.2 Hierarchical Deadlock Detection 257
7.6.3 Distributed Deadlock Detection 257
A PERIODIC DEADLOCK-DETECTION ALGORITHM 260
A CONTINUOUS DEADLOCK-DETECTION ALGORITHM 264
7.6.4 Performance 269
7.7 Deadlock Prevention and Avoidance 269
7.8 Lock Granularity 270
7.8.1 Hierarchical Locks 270
7.8.2 Directed Acyclic Graph of Locks 273

7.8.3 Equivalence of the DAG Lock Protocol and
Conventional Lock Protocol 274
7.9 Deadlock Freedom Using Edge Locks 276
7.10 Recovery 277
7.10.1 Atomic Actions 278

xiii



xiv

CONTENTS
7.10.2 Implementation of Atomic Actions 278
LOCK REQUIREMENTS 279
STORAGE MANAGEMENT FOR ATOMIC ACTIONS 280
THE TWO-PHASE COMMIT PROTOCOL 281
7.10.3 Structure of Recovery Management System 285

7.11 Synchronization Techniques Based on TimeStamp
Ordering 285
7.11.1 Basic Timestamp Ordering Implementation 286
7.11.2 Two-Phase Commit 287

7.11.3 Improvements on the Method of Basic TimeStamp

Ordering 289
THE THOMAS WRITE RULE 290
MULTIVERSION TIMESTAMP ORDERING 290
WAIT_DIE AND WOUND_WAIT 290
CONSERVATIVE TIMESTAMP ORDERING 290
7.12 Summary 292
KEY WORDS 292
QUESTIONS 293
PROBLEMS 294
REFERENCES 296
SUGGESTED READINGS 297
8 Computer Security 301
8.1 Introduction 301
8.2 Definition of Security and Common Violations 301
8.3 A Model for Access Control 304
8.3.1 Access Matrix Model 304
REPRESENTATION OF THE PROTECTION STATE 305
ENFORCEMENT OF ACCESS CONSTRAINTS 306
PROTECTION STATE TRANSITIONS 306
8.3.2 Levels of Sharing 308
8.3.3 The General Issue of Trust 311
8.3.4 The Confinement Problem 312
8.4 Flow-Secure Access Controls 313
8.5 Information Flow Control 317
8.5.1 The Lattice Model and Security Requirements 317
8.5.2 Types of Information Flow 318



CONTENTS

8.5.3 Compile-Time Certification with Static Binding 318
THE CERTIFICATION PROCESS FOR ELEMENTARY PROGRAMS 379
HANDLING ARRAY AND RECORD OBJECTS 320
FLOW ANALYSIS OF PROCEDURE CALLS 321
EXCEPTION HANDLING 322
THE CONFINEMENT PROBLEM REVISITED 322

8.5.4 Run-Time Certification with Static Binding 323

8.5.5 Certification with Dynamic Binding 323

8.6 Implementation of Access Controls 323

8.6.1 Implementation Issues 324
DESIGN PRINCIPLES 324
ENFORCEMENT OF SPECIFIC SECURITY POLICIES 324
REPRESENTATION AND MANAGEMENT OF THE ACCESS
MATRIX 325

8.6.2 Access Hierarchies 326

8.6.3 Capability Systems 327
IMPLEMENTATION OF ABSTRACT DATA TYPES 330
CAPABILITY-BASED ADDRESSING 331
REVOCATION 333

8.6.4 Access Control List Systems 334

8.6.5 Lock/Key Systems 336

8.6.6  Security Kernels 336

8.6.7 Extensions to Database Management Systems 336

8.6.8 Test and Verification 337

8.7 Cryptography 338

8.7.1 Application of Cryptography to Secure Computer Systems 338

8.7.2 Cryptosystems and Security Requirements 339

8.7.3 Conventional Cryptosystems 341

8.7.4 The Data Encryption Standard (DES) 342

8.7.5 Public-Key Cryptosystems 343

8.7.6  Authentication and Digital Signatures 346

8.7.7 The Use of Encryption for Stored Information 347

8.8 User Authentication 348

8.9 Summary 350
APPENDIX: Details of the DES Algorithm

Initial Permutation and Its Inverse 350

The Cipher Function f 350

Key Schedule Calculation 353

KEY WORDS 356

QUESTIONS 358

PROBLEMS 359

REFERENCES 368

SUGGESTED READINGS 371



CONTENTS

9 Queuing Models of Computer Systems 375
9.1 Introduction 375
9.2 Dynamic Behavior of a Single Queue 376

9.2.1 Performance Measures 377

9.2.2 The Poisson Distribution 377
POISSON POSTULATES 377
DEVELOPMENT OF THE POISSON DISTRIBUTION 378

DISTRIBUTION OF INTERARRIVAL TIMES 379

AGGREGATION AND BRANCHING OF POISSON STREAMS 379

9.2.3 Analysis of a Single M/M/1 Queue 380
STEADY-STATE QUEUE-LENGTH PROBABILITIES 380
PERFORMANCE MEASURES 382

9.2.4 Generalizations on the Single Queue 382

M/M/C QUEUE 382

M/M/© QUEUE 383

M/G/1 QUEUE 383

9.3 Open Networks of Queues 385
9.4 Closed Networks—Normalization Constant Method 388
9.4.1 Efficient Computation of the Normalization Constant 389

9.4.2 Queue-Length Probabilities for LD Queues 390

9.4.3 Performance Measures 392

9.4.4 Generalizations 393

9.5 Closed Networks—Mean Value Analysis 394
9.6 Operational Analysis of Queuing Networks 397
9.6.1 Operational Quantities 398

9.6.2 Job Flow Analysis 399

9.6.3 System Response Time 400

9.6.4 Bottleneck Analysis 400

9.6.5 Generalizations 404

9.7 Summary 405
KEY WORDS 405
QUESTIONS 406
PROBLEMS 407
REFERENCES 408
SUGGESTED READINGS 409

Index 411



Overview

1.1 Introduction

The purpose of this book is to serve as a resource in the advanced study of modern
computer operating systems. The book can be used in at least three ways. First, it
can serve as a textbook in a formal course in advanced operating systems for students
who have mastered fundamental material in an undergraduate course. We include
here advanced-level material on familiar topics (synchronization, deadlock, virtual
memory), as well as material that is not generally covered at an elementary level
(security, distributed systems and control, modeling and analysis). There is enough
material for a two-quarter sequence, and more than enough for a single semester.
There are numerous questions and problems. The former will help students review
the chapter; the latter should help them delve more deeply into the material of each
chapter. Each chapter also includes a list of important terms to help ensure subject
mastery.

Second, the book is useful as an organized course for professionals or for self-
study. The chapters are organized so that a brief but adequate review precedes
material at an advanced level. This will allow the professional whose background
is strong but incomplete to quickly “come up to speed” on a particular subject.
Where appropriate, references are given to background material that may be valuable
for the reader who is working independently.

Third, the book is a guide to current research and methodology for operating
system designers. The individual chapters are independent of each other and well
suited for the reader who wants to study a particular subject in depth.

The chapters each center on a major topic in the advanced study of operating
systems. The following briefly describes the contents of each chapter. The references
in this chapter are the basis on which most significant topics in this book are based.

1.2 Chapter 2: Process Synchronization

In this chapter we cover methods for process management that are more advanced
than those found in an introductory course. After a brief review of processes and
their synchronization via elementary methods, we describe a model that is valuable
for analyzing sets of concurrent processes [Bernstein, 1966]. With this model we can
demonstrate safe, deterministic execution while ensuring the maximum potential
for parallel processing. Advanced methods of process synchronization are surveyed



