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Preface

Research in software composition investigates models and techniques to build
systems from predefined, pretested, reusable components instead of building
them from scratch. In recent years, this idea has largely been adopted by in-
dustry. In the shape of service-oriented architecture, software composition has
become an influential design paradigm, especially for the (re-)organization of the
IT infrastructure of organizations. On the technical level, the standardization of
Web services and other composition technologies has further matured.

Current research in software composition aims at (further) developing com-
position models and techniques. The aspect-oriented programming and design
paradigm, for instance, has gained interest in the research community as a com-
position (support) model. Other current research questions concern the spec-
ification of component contracts, in particular making explicit its observable
behavior, and methods of correct components composition. The International
Symposium on Software Composition provides a premier forum for discussing
these kinds of research questions and presenting original research results.

This LNCS volume contains the proceedings of the 5th International Sym-
posium on Software Composition, which was held as a satellite event of the
European Joint Conferences on Theory and Practice of Software (ETAPS) in
Vienna, Austria, March, 25-26 2006. The symposium started with a keynote on
“Semantically Enabled Service-Oriented Architectures” given by Dieter Fensel,
Director of the Digital Research Institute. The main program consisted of presen-
tations of research papers on software compositions. These proceedings contain
the revised versions of the papers presented at SC 2006.

We selected 21 technical papers out of 60 submissions. Each paper went
through a thorough revision processes and was reviewed by three to five review-
ers followed by an electronic Program Committee discussion. We would like to
thank the Program Committee members and the external reviewers for selecting
a set of diverse and excellent papers and making SC 2006 a success.

We would like to express our gratitude to the European Network of Ex-
cellence on Aspect-Oriented Software Development (AOSD-Europe) and to the
International Federation for Information Processing, Technical Committee on
Software: Theory and Practice (IFIP, TC 2) for sponsoring this event. Finally,
we would like to thank the organizers of ETAPS 2006 for hosting and providing
an excellent organizational framework for SC 2006.

June 2006 Welf Lowe, Vaxjo University, Sweden
Mario Stidholt, INRIA - Ecole des Mines de Nantes, France

Program Co-chairs

SC 2006
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Automatic Checking of Component Protocols in
Component-Based Systems

Wolf Zimmermann! and Michael Schaarschmidt?

! Martin-Luther Universitit Halle-Wittenberg, Institut fiir Informatik,
06099 Halle/Saale, Germany
zimmer@informatik.uni-halle.de
2 Martin-Luther Universitit Halle-Wittenberg, Rechenzentrum,
06099 Halle/Saale, Germany
michael.schaarschmidtQurz.uni-halle.de

Abstract. We statically check whether each component in a component-
based system is used according to its protocol and provide counterexam-
ples if such a check fails. The protocol is given by a finite state machine
specifying legal sequences of procedure calls of the interface of a compo-
nent. The main contribution is that we can deal with call-backs without
any restrictions. We achieved this by using context-free grammars in-
stead of finite state machines to describe the use of components.

1 Introduction

The construction of component-based systems became increasingly important
in software construction. However, software architects have to deal with new
problems stemming from component-based system architectures. An important
issue is whether a component is correctly used. Usually components implement
one or more interfaces specifying the services they offer. For the purpose of this
paper, a service is simply a procedure or function signature. However just the
knowledge of services does not provide sufficient information for the construc-
tion of systems. Often the source code of a component is not available after its
deployment or even not physically available as e.g. Web Services. However, for a
component industry the unavailability of source code is essential — Web Services
may even be offered on a pay-per-use basis.

A major problem for construction of component-based systems is to check
whether the components can be composed and possibly provide own components
to adapt them. A failure to use a component correctly might cause a system
abortion while executing the system — this might happen even after the system
is delivered to the customer. In this context abortion means that a system stops
with an uncaught exception internal to a component (e.g. dereferencing of null
reference, illegal array accesses, division by zero etc.). Since the source code of
components is often unavailable, other approaches are necessary to check whether
components are used in such a way that the system does not abort. Our goal
is to provide a mechanizable approach for checking statically component-based
systems for abortion freeness on an almost black-box basis.

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 1-17, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 W. Zimmermann and M. Schaarschmidt

Our approach currently restricts the architecture of component-based sys-
tems to sequential systems and to one client using services of other components.
However any component may use services of other components or even of the
client. In particular we do not exclude call-backs. We assume that each compo-
nent implements one or more interfaces and each interface I specifies services
as a set of procedure signatures Y. The services X of a component C' is the
union of the interfaces implemented by the component. Informally, a protocol of
a component is a set of sequences Lc C Y. The aim of protocols is to guarantee
certain properties, e.g. that the component doesn’t abort if its services are called
according to a sequence in L. A component C' might call other services spec-
ified as interfaces used by a component. The profile of a component C' specifies
for each interface I required by C' the set of sequences Po(I) C X7 of services
possibly being called by C. A component-based system S is a multi-set of com-
ponents (i.e. there might be multiple copies of a component called instances)
where each interface used by a component is instantiated with an instance of
a component. The use of an instance ¢ of a component C' in a component-
based system S is the set of possible sequences of services U. C X that are
called to ¢ during execution of §. The use of an instance ¢ of a component C'
conforms to its protocol iff U. C L¢, i.e. any sequence of services called to ¢
agrees with the protocol of C. Therefore, if the conformity check succeeds for
each instance in a component-based system S and each component of S is cor-
rectly implemented then the abortion-freeness of S is guaranteed. We assume
that each component contains in its deployment description its protocol and its
profile.

Many approaches (e.g. [13,17,18,22]) use finite state machines (short: FSM)
Ap and Ap to specify protocols L(Ap) and profiles L(Ag) for each interface of a
component where L(Ap) and L(ARg) are the languages accepted by Ap and Ag,
respectively. Since connectors connect profiles for an interface of one component
with an interface of another component it is checked whether L(Ag) C L(Ap)
and counter-examples are provided in the case such a check fails. The idea be-
hind these local checks is that protocol conformance checks can be executed
incrementally. It implicitly assumes that any checked connection cannot be in-
validated as long as the protocols of the component providing the profile are
satisfied. In this paper, we show that these approaches have several drawbacks:
First, local checks cannot be applied if the interfaces of a component cannot
be used independently. Second, it cannot be applied if the component system
contains recursive call-backs.

Other works use model-checking approaches [8,9,7,11,3,5] to prove that pro-
grams satisfy certain properties. They use context-free model checking because
finite state machine models are not an adequate abstraction if the program may
contain recursive procedures. However, these works assume that the whole pro-
gram is completely available.

Our method combines and generalizes these approaches in order to allow de-
pendencies between different interfaces of a component and arbitrary recursive
call-backs. FSMs are used for describing protocols. In contrast to the above



Automatic Checking of Component Protocols in Component-Based Systems 3

Deployment
Gy G, C,
PS, PS, oo o PS,
A, A; Aq
H H
I\ \ 7\
I ’ VAR
/I ‘\ )/ b Combined L \\

7 \ _ \ Grammar /’ N
/ ) 1 L(Gg)eL(A) / \
! oai \ ! / L(G)) cL(A)\
S LGHELA) 3 > (Gq)cL(An) .

/ ! / \

L X 1 Y
Instance Instance Instance Instance Instance Instance
Grammar | ¢ @ @ | Grammar Grammar | @ee | Grammar | © @ @ Grammar | ¢ @ @ | Grammar

Gj Gj Gj Gy G, Glp

Instances

Fig. 1. An Approach to Conformance Checking

works, a single FSM A¢ is used for the whole component C. Hence, interaction
of procedure calls to different interfaces of C' are taken into account. Instead of
FSMs for describing uses of components our approach uses context-free grammar
(short: CFG) G¢ for this purpose. Thus, for each instance ¢ of a component C
it is checked whether L(G.) C L(A¢). It is a well-known result from the theory
of formal languages that this test is algorithmically decidable. We show how
counterexamples can be provided if such a check fails. From the global system
and the profiles of each component the use of components is derived. However,
a profile of a component C cannot be described itself as a context-free grammar
since only the use of interfaces is known but not how these are instantiated.
Therefore, we generalize context-free grammars by parameterizing non-terminal
and terminal symbols with the interfaces. The obtained structure is called a
parameterized context-free scheme (pCFS). These pCFSs can be mechanically
computed from the source code of the components. The pCFSs are used in a
component-based system S to compute a context free grammar specifying all se-
quences of calls to all instances of the components by instantiating the interfaces
of the pCFS analogous to the corresponding instances in §. Context-free gram-
mars for uses of instances of components in a component-based system can now
be derived by projection. Hence, it is now possible to check for each instance ¢
of component C of § whether L(G.) C L(A¢), i.e. whether to use of ¢ conforms
to the protocol. Fig. 1 illustrates the summary of our approach. The paper is
organized as follows: Section 2 demonstrates the limitations of local checks and
the use of FSMs for profiles. Section 3 summarizes how to check L(G) C L(A)
for CFGs G and FSMs A and shows how counterexamples are provided. Sec-
tion 4 introduces parameterized context-free schemes. Section 5 shows their use
in specifying profiles of components and how they can be generated from source
text. Finally, Section 6 shows how CFGs specifying the use of a component are
generated from the profiles. A short appendix introduces some of the notations
from formal languages used in this paper.
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2 Limitations of Local Checks Based on FSMs

Local protocol checking approaches (e.g. [18,20,13]) check independently each
connection in a component-based system. They usually assume a protocol for
each interface and assume that they can be independently used. L.e. instances of
a component C can accept all interleavings of all calling sequences by the proto-
cols of its interfaces. Then they deduce profiles for the interfaces required by C.
Hence, it is possible to check whether a profile U for an interface conforms to its
protocol P, i.e. whether U C P. For these checks, it is often assumed that the
profile U also is a regular language. Thus, protocol conformance can be decided.
However, in practice it often happens that components cannot accept arbitrary
interleavings of the calling sequences to its protocol. Thus, more sophisticated
approaches introduce coordination components (sometimes also called connec-
tors) that accept arbitrary interleavings and the other components only have
one interface. Therefore a component has a single protocol. In this section, we
show that even if each component has one interface and if each connection is
succesfully checked, the absence of global protocol errors is not guaranteed. The
main reason for these violations are recursive call-backs. Thus, for the same rea-
sons as in the works of software model checking [8,9,7,11,3,5], CFGs are more
adequate than FSMs to describe the use of components.

Our examples are denoted similar to Java. The main difference is that classes
are components and we do not inherit from components. Procedures and func-
tions can only have parameters whose types are interfaces or basic types (for
simplicity, we only use here the type int). Any procedure or function that is not
defined by an interface of a component is internal to that component. There is
exactly one component, the client, containing a parameterless procedure main
which is executed upon on system start. The client has parameters that represent
interfaces to be instantiated with components upon composition time. Thus, all
instances of components in a component based system are known upon compo-
sition time. Note that all instances of a component can be referenced by a name.
Procedures allow to pass by reference instances of components. Values of basic
types are passed by value. This model is similar to commercial component sys-
tems such as COM, EJB, CORBA except that all components are known upon
composition time. Dynamic instances of components are possible. The operation
new(x) computes a new instance of the component refered to by variable z. In
this paper, we assume for simplicity that all services of components are proce-
dures. The parameters of the client can only be used in main. The identifier this
denotes the instance of the component currently being executed.

Ezample 1. Consider the component system in Fig. 2. ¢ is an instance of Cs.
The component system starts its execution by executing main. Suppose we read
2, i.e. i = 2. Then, the body of the loop will be executed and it calls c.a(2, this).
Thus, when executing this call on ¢ it is n = 2 and « refers to the client. Since
the condition becomes true, the call z.b(1, this) is being executed. Since x refers
to the client, this is a call-back and the execution of b on the client starts with
k =1 and z referring to c. After the first assignment it holds n = 1 which also
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holds after the second assignment. Thus, the call z.a(1, this) is executed. Note
that this is a recursive call since z refers to ¢ and the first call of a on ¢ is not
yet completed. In this second call it is n = 1 and x refers to the client. Thus the
condition becomes true and the call 2.b(0, this) is being executed. This again is a
recursive call since x refers to the client and the first call of b on the client is not
yet completed. After the execution of the first statement it holds n = 0. Hence,
the second statements performs a division by 0 and therefore the system aborts.

Fig. 3 shows the protocol of the components. Note that a second execution of
b and a second execution of d on the client lead to a division by zero. The client
requires that b and d must be called alternating and b is called first — if at all.
Otherwise divisions by zero are executed. Apparently, this protocol is violated
by the system.

The following example demonstrates that recursive call-backs are the reason for
protocol violations:

Ezample 2. According to the clients protocol, the profile for c¢is L. = {a™|n € N}
and the profile for z is also L, = {a"|n € N}. According to component Cs’s
protocol, the profile for z is L, = {(bd)"|n € N}.

After composition, z always refers to ¢ and z always refers to the client. Such
information could e.g. be derived from a points-to analysis. Thus there are two
profiles for calling sequences to ¢. Even an arbitrary interleaving of L, and L.
shows that U. = {a™|n € N} is the set of all calling sequences to instance ¢ of
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component Cs. Since these sequences are accepted, the use of ¢ conforms to the
protocol of C. Consider now the client. Since = is the only variable referring to
the client, the use of the client is U = {(bd)™|n € N}. Hence, the local protocol
checking approach also would decide that the use of the client conforms to its
protocol which is wrong according to the scenario in Example 1.

The checking approach in Example 2 considers individually each component.
If there wouldn’t introduced recursive procedure calls due to call-backs the
above arguments would be completely legal. The individual protocol confor-
mance checking doesn’t work because these recursive calls lead to use of com-
ponents that cannot be detected from one component alone. Many works of
protocol checking are aware of this problem and exclude therefore recursive call-
backs. In fact if a is recursively called every call b can be viewed as an open
bracket that is closed by a call d. Therefore the set of sequences describing the
use of the client is the Dyck-Language over the pair of brackets b and d. It is gen-
erated by the CFG G = ({b,d},{Z},{Z = ZZ|cZd|e}, Z). 1t is a well-known
result from the theory of formal languages that Dyck-Languages are not regu-
lar languages and therefore no FSM exists that accepts Dyck-languages. Thus,
the use of components cannot be specified using FSMs. The next section shows
that even in the case that the use of components is described by CFGs, model
checking of protocol conformance is possible.

3 Model Checking with CFGs

We present here the standard algorithm for checking L(G) C L(A) for a CFG
G=(T,N,P,Z) and a FSM A = (T,Q, R, qo, F'). Furthermore, we show how it
can be used to provide counterexamples if L(G) € L(A). The basic idea is instead
of checking L(G) C L(A) to check the equivalent condition L(G)N(T*\ L(A)) =
0. Any word w € L(G) N (T* \ L(A)) is a counterexample of the check. In the
context of the paper, it provides a sequence of procedure calls to a component
that violate its protocol. The FSM A’ = (T, Q, R, qo, @ \ F') accepts T* \ L(A).
Hence, we check whether L(G) N L(A’) = (. It is known that the intersection
of a context-free language with a regular language is context-free, and that it is
decidable for context-free grammars G whether L(G) = (). Our model checker
therefore has the following steps: First, a CFG G’ such that L(G’) = L(G)NL(A’)
is constructed. Then, it is checked whether L(G’) = @. If it turns out that
L(G") # 0, a counterexample w € L(G') is produced.

Step 1: First the CFG G = (T, N, P, Z) is transformed into an equivalent gram-
mar in extended Chomsky Normal Form (short: eCNF) G, = (T, Ny, Py, Z4),
i.e., each production has one of the forms' A := BC, A == B, or A ==t
with A,B,C € N andt € T. If ¢ € L(G) then Z; ::= ¢ € P;. Second, a CFG
G' = (T,N',P', Z') is computed such that L(G’) = L(G1) N L(A’). Define the
size of a CFG G = (T, N, P, Z) as |G| £ |P| + Z |r].

lin=repP

! Chomsky Normal form also forbids chain productions A := B.



