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PREFACE

Once upon a time computers were very simple. These early machines executed a
small number of elementary instructions, and the user wrote his programs directly
using these primitive instructions. Those days are long gone. A modern computer
is a far more complicated entity, often consisting of a half dozen or more distinct levels
at which it can be programmed and studied. In fact, nowadays it is often difficult to
tell where the “machine” ends and where the software begins.

Many universities have a course in assembly language programming and computer
organization early in the curriculum. There was a time when teaching the students
how to program one specific computer in assembly language was considered adequate.
Those days are also long gone. These courses must keep pace with a rapidly changing
subject, and must now provide an introduction to a wide range of topics related to
computer organization, many of which were barely known outside the research
laboratories only a few years ago. Segmented virtual memories, parallel processing,
race conditions, microprogramming, variable architecture machines, store and forward
networks, self-virtualizing machines, and cache memories are just a few examples of
these varied topics.

This book is intended as a textbook for such an introductory course on assembly
language programming and computer organization. The only prerequisite is an
introductory course in computer science (or equivalent practical experience) including
a little knowledge of programming in a high-level language such as FORTRAN,
COBOL, or PL/I. No mathematical or engineering background is needed, making
the book suitable for use even at the sophomore level. Nearly all of the material of the
B2 course in the ACM Curriculum 68 is covered, as well as similar material that has
become important since that proposal was written. The book can also be used for the
proposed COSINE course on “Machine Structure and Machine Language Program-
ming.” The chapters are self-contained, allowing them to be used as references on
specific subjects.

The structured organization of computers, as a hierarchy of levels, is the theme
of this book. At the bottom level is the true hardware, whose function is to execute
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Xvi PREFACE

interpreters called microprograms. The language interpreted by the microprograms
is the one most people think of as the “machine language” and is the one described
in the manufacturer’s machine reference manual. Thus, this “machine language”
is already one level removed from the language directly executed by the electronic
circuits. We call the lowest level “the microprogramming level” (Chapter 4) and the
level it supports “the conventional machine level” (Chapter 3).

Most computers have an operating system that runs on the conventional machine
level. The operating system provides its users with an “extended” or “virtual” machine
that has instructions and facilities not present at the conventional machine level.
These include file manipulation instructions, instructions for parallel processing (multi-
tasking) and virtual memory. The set of features and instructions available to the user
of the operating system can be regarded as defining a new level, “the operating system
machine level” (Chapter 5).

The fourth level is the symbolic assembly language level. Unlike levels 2 and 3,
which are supported by interpretation, this level is implemented by a program called
an assembler (Chapter 6), which translates level 4 programs to one of the levels below
it. Still higher levels, not covered in this book, are the levels deﬁned by problem-
oriented languages.

Chapter 7 examines the construction and applications of multilevel computers
as a whole, in contrast to Chapters 3-6, each of which deals only with a single level.
Chapter 8 is a guide to further study.

The IBM 370, CDC Cyber 70, and DEC PDP-11 computers are used as running
examples throughout the text. These machines are used for illustrative purposes only,
and no prior experience with any of them is expected.

There are a few algorithms written in a simple subset of PL/I, but these should be
immediately understandable to anyone familiar with FORTRAN or ALGOL.
PL/I was chosen as a compromise, since it is both widely used and suitable for
structured programming. My own first choice was ALGOL 68, but few sophomores
know it, unfortunately.

Many people have made contributions to this book. At times I have felt more like
an editor than an author. Two people stand out above the others. Jack Alanen read
the first handwritten draft in its entirety, and kept many bad ideas from even getting
as far as the typewriter. He also made numerous suggestions for improving both the
content and presentation. I especially thank Jack for teaching me a lot about teaching.
Kim Gostelow went over a later version with a fine-tooth comb, commenting exten-
sively, correcting errors, and trying to turn my prose into something resembling
English. Nearly every single paragraph in the entire manuscript was marked with
some suggestion for improvement. I am deeply indebted to both of them.

Reind van de Riet and Mitchell Tanenbaum also read and criticized the complete
manuscript, providing me with different points of view. John W. Carr III, Arnie
Falick, Dick Grune, Jim van Keulen, Bob Rosin, Carel Stillebroer and Wayne Wilner
each offered suggestions and help with specific sections. I would also like to thank my
students, especially Arie de Bruin, Wim Harmsen, Ad Ko6nig, Sape Mullender, Johan
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Stevenson, and Hans van Vliet for providing feedback. Mrs. Homburg-Knieper did
a fine job of typing several versions of the manuscript.

I would like to express my appreciation to the International Business Machines
Corporation, the Control Data Corporation, the Digital Equipment Corporation and
the Burroughs Corporation for permission to adapt material from their copyrighted
publications as follows: IBM—“IBM System/370 Principles of Operation Manual”
and engineering drawings for the IBM 3125 CPU; CDC—*“Control Data Cyber 70
Models 72, 73, 74 Computer Systems Reference Manual”; DEC—“PDP-11/45
Processor Handbook” and PDP-11/40 engineering drawings; Burroughs—“B1700
Systems Reference Manual.” Any errors in the descriptions of these computers are
my responsibility.

Finally, I want to thank Suzanne for encouragement, support, help, and especially
patience throughout my long period of self-imposed exile from the human race during
the preparation of this book. I also would like to thank her for breaking up the long
hours with an uitgeperste sinaasappel.

ANDREW S. TANENBAUM
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l INTRODUCTION

A digital computer is a machine that can solve problems for people by carrying
out instructions given to it. A sequence of instructions describing how to perform
a certain task is called a program. The electronic circuits of each computer can
recognize and directly execute a limited set of simple instructions into which all its
programs must be converted before they can be executed. These basic instructions
are rarely much more complicated than

add two numbers
check a number to see if it is zero

move a piece of data from one part of the computer’s memory to another

Together, a computer’s primitive instructions form a language in which it is
possible for people to communicate with the computer. Such a language is called a
machine language.

The people designing a new computer must decide what instructions to include in
its machine language. Usually they try to make the primitive instructions as simple
as possible, consistent with the computer’s intended use and performance require-
ments, in order to reduce the complexity and cost of the electronics needed. Because
most machine languages are so simple, it is difficult and tedious for people to use
them.

There are two principal ways to attack this problem; both involve designing a
new set of instructions that is more convenient for people to use than the set of
built-in machine instructions. Taken together, these new instructions also form a

1




