STRUCTURED
COMPUTER
ORGANIZATION

ANDREW S. TANENBAUM

Prentice-Hall Series in Automatic Computation



7960261

STRUCTURED
COMPUTER ORGANIZATION

ANDREW S. TANENBAUM

Vrije Universiteit
Amsterdam, The Netherlands

ARG

E7950261

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, NEW JERSEY




Library of Congress Cataloging in Publication Data

TANENBAUM, ANDREW S, (date)
Structured computer organization.
Bibliography
1. Electronic digital computers—Programming.
I. Title.
QA76.6.T38 001.6'42 74-30322
ISBN 0-13-854505-7

© 1976 by Prentice-Hall, Inc., Englewood Cliffs, N, J.

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

10 9 8 7 6

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA (PTE.) LTD., Singapore



STRUCTURED
COMPUTER ORGANIZATION



Prentice-Hall
Series in Automatic Computation

AHO, ed., Currents in the Theory of Computing
AHO AND ULLMAN, The Theory of Parsing, Translation, and Compiling,
Volume I: Parsing; Volume II: Compiling
ANDREE, Computer Programming: Techniques, Analysis, and Mathematics
ANSELONE, Collectively Compact Operator Approximation Theory
and Applications to Integral Equations
BATES AND DOUGLAS, Programming Language/One, 2nd ed.
BLUMENTHAL, Management Information Systems
BRENT, Algorithms for Minimization without Derivatives
BRINCH HANSEN, Operating System Principles
COFFMAN AND DENNING, Operating Systems Theory
CRESS, et al., FORTRAN 1V with WATFOR and WATFIV
DAHLQUIST, BJORCK, AND ANDERSON, Numerical Methods
DANIEL, The Approximate Minimization of Functionals
DEO, Graph Theory with Applications to Engineering and Computer Science
DESMONDE, Computers and Their Uses, 2nd ed.
DRUMMOND, Evaluation and Measurement Techniques for Digital Computer Systems
ECKHOUSE, Minicomputer Systems: Organization and Programming (PDP-11)
FIKE, Computer Evaluation of Mathematical Functions
FIKE, PL/I for Scientific Programmers
FORSYTHE AND MOLER, Computer Solution of Linear Algebraic Systems
GEAR, Numerical Initial Value Problems in Ordinary Differential Equations
GORDON, System Simulation
GRISWOLD, String and List Processing in SNOBOL4: Techniques and Applications
HANSEN, A Table of Series and Products
HARTMANIS AND STEARNS, Algebraic Structure Theory of Sequential Machines
JACOBY, et al., Iterative Methods for Nonlinear Optimization Problems
JOHNSON, System Structure in Data, Programs, and Computers
KIVIAT, et al., The SIMSCRIPT II Programming Language
LAWSON AND HANSON, Solving Least Squares Problems
LORIN, Parallelism in Hardware and Software: Real and Apparent Concurrency
LOUDEN AND LEDIN, Programming the IBM 1130, 2nd ed.
MARTIN, Computer Data-Base Organization
MARTIN, Design of Man-Computer Dialogues
MARTIN, Design of Real-Time Computer Systems
MARTIN, Future Developments in Telecommunications
MARTIN, Programming Real-Time Computing Systems
MARTIN, Security, Accuracy, and Privacy in Computer Systems
MARTIN, Systems Analysis for Data Transmission
MARTIN, Telecommunications and the Computer



MARTIN, Teleprocessing Network Organization
MARTIN AND NORMAN, The Computerized Society
MCKEEMAN, et al., A Compiler Generator
MEYERS, Time-Sharing Computation in the Social Sciences
MINSKY, Computation: Finite and Infinite Machines
NIEVERGELT, et al., Computer Approaches to Mathematical Problems
PLANE AND MCMILLAN, Discrete Optimization:
Integer Programming and Network Analysis for Management Decisions
POLIVKA AND PAKIN, APL: The Language and Its Usage
PRITSKER AND KIVIAT, Simulation with GASP I1:
A FORTRAN-based Simulation Language
PYLYSHYN, ed., Perspectives on the Computer Revolution
RICH, Internal Sorting Methods Illustrated with PL|/1 Programs
SACKMAN AND CITRENBAUM, eds., On-Line Planning:
Towards Creative Problem-Solving
SALTON, ed., The SMART Retrieval System:
Experiments in Automatic Document Processing
SAMMET, Programming Languages: History and Fundamentals
SCHAEFER, A Mathematical Theory of Global Program Optimization
SCHULTZ, Spline Analysis
SCHWARZ, et al., Numerical Analysis of Symmetric Matrices
SHAH, Engineering Simulation Using Small Scientific Computers
sHAW, The Logical Design of Operating Systems
SHERMAN, Techniques in Cgomputer Programming
SIMON AND SIKLOSSY, eds., Representation and Meaning:
Experiments with Information Processing Systems
STERBENZ, Floating-Point Computation
STOUTEMYER, PL/I Programming for Engineering and Science
STRANG AND FIX, An Analysis of the Finite Element Method
STROUD, Approximate Calculation of Multiple Integrals
TANENBAUM, Structured Computer Organization
TAVISS, €d., The Computer Impact
UHR, Pattern Recognition, Learning, and Thought:
Computer-Programmed Models of Higher Mental Processes
VAN TASSEL, Computer Security Management
VARGA, Matrix Iterative Analysis
WAITE, Implementing Software for Non-Numeric Application
WILKINSON, Rounding Errors in Algebraic Processes
WIRTH, Systematic Programming: An Introduction
veH, ed., Applied Computation Theory: Analysis, Design, Modeling



To Suzanne, Pluis, and Koe



PREFACE

Once upon a time computers were very simple. These early machines executed a
small number of elementary instructions, and the user wrote his programs directly
using these primitive instructions. Those days are long gone. A modern computer
is a far more complicated entity, often consisting of a half dozen or more distinct levels
at which it can be programmed and studied. In fact, nowadays it is often difficult to
tell where the “machine” ends and where the software begins.

Many universities have a course in assembly language programming and computer
organization early in the curriculum. There was a time when teaching the students
how to program one specific computer in assembly language was considered adequate.
Those days are also long gone. These courses must keep pace with a rapidly changing
subject, and must now provide an introduction to a wide range of topics related to
computer organization, many of which were barely known outside the research
laboratories only a few years ago. Segmented virtual memories, parallel processing,
race conditions, microprogramming, variable architecture machines, store and forward
networks, self-virtualizing machines, and cache memories are just a few examples of
these varied topics.

This book is intended as a textbook for such an introductory course on assembly
language programming and computer organization. The only prerequisite is an
introductory course in computer science (or equivalent practical experience) including
a little knowledge of programming in a high-level language such as FORTRAN,
COBOL, or PL/I. No mathematical or engineering background is needed, making
the book suitable for use even at the sophomore level. Nearly all of the material of the
B2 course in the ACM Curriculum 68 is covered, as well as similar material that has
become important since that proposal was written. The book can also be used for the
proposed COSINE course on “Machine Structure and Machine Language Program-
ming.” The chapters are self-contained, allowing them to be used as references on
specific subjects.

The structured organization of computers, as a hierarchy of levels, is the theme
of this book. At the bottom level is the true hardware, whose function is to execute

XV




Xvi PREFACE

interpreters called microprograms. The language interpreted by the microprograms
is the one most people think of as the “machine language” and is the one described
in the manufacturer’s machine reference manual. Thus, this “machine language”
is already one level removed from the language directly executed by the electronic
circuits. We call the lowest level “the microprogramming level” (Chapter 4) and the
level it supports “the conventional machine level” (Chapter 3).

Most computers have an operating system that runs on the conventional machine
level. The operating system provides its users with an “extended” or “virtual” machine
that has instructions and facilities not present at the conventional machine level.
These include file manipulation instructions, instructions for parallel processing (multi-
tasking) and virtual memory. The set of features and instructions available to the user
of the operating system can be regarded as defining a new level, “the operating system
machine level” (Chapter 5).

The fourth level is the symbolic assembly language level. Unlike levels 2 and 3,
which are supported by interpretation, this level is implemented by a program called
an assembler (Chapter 6), which translates level 4 programs to one of the levels below
it. Still higher levels, not covered in this book, are the levels deﬁned by problem-
oriented languages.

Chapter 7 examines the construction and applications of multilevel computers
as a whole, in contrast to Chapters 3-6, each of which deals only with a single level.
Chapter 8 is a guide to further study.

The IBM 370, CDC Cyber 70, and DEC PDP-11 computers are used as running
examples throughout the text. These machines are used for illustrative purposes only,
and no prior experience with any of them is expected.

There are a few algorithms written in a simple subset of PL/I, but these should be
immediately understandable to anyone familiar with FORTRAN or ALGOL.
PL/I was chosen as a compromise, since it is both widely used and suitable for
structured programming. My own first choice was ALGOL 68, but few sophomores
know it, unfortunately.

Many people have made contributions to this book. At times I have felt more like
an editor than an author. Two people stand out above the others. Jack Alanen read
the first handwritten draft in its entirety, and kept many bad ideas from even getting
as far as the typewriter. He also made numerous suggestions for improving both the
content and presentation. I especially thank Jack for teaching me a lot about teaching.
Kim Gostelow went over a later version with a fine-tooth comb, commenting exten-
sively, correcting errors, and trying to turn my prose into something resembling
English. Nearly every single paragraph in the entire manuscript was marked with
some suggestion for improvement. I am deeply indebted to both of them.

Reind van de Riet and Mitchell Tanenbaum also read and criticized the complete
manuscript, providing me with different points of view. John W. Carr III, Arnie
Falick, Dick Grune, Jim van Keulen, Bob Rosin, Carel Stillebroer and Wayne Wilner
each offered suggestions and help with specific sections. I would also like to thank my
students, especially Arie de Bruin, Wim Harmsen, Ad Ko6nig, Sape Mullender, Johan



PREFACE Xvii

Stevenson, and Hans van Vliet for providing feedback. Mrs. Homburg-Knieper did
a fine job of typing several versions of the manuscript.

I would like to express my appreciation to the International Business Machines
Corporation, the Control Data Corporation, the Digital Equipment Corporation and
the Burroughs Corporation for permission to adapt material from their copyrighted
publications as follows: IBM—“IBM System/370 Principles of Operation Manual”
and engineering drawings for the IBM 3125 CPU; CDC—*“Control Data Cyber 70
Models 72, 73, 74 Computer Systems Reference Manual”; DEC—“PDP-11/45
Processor Handbook” and PDP-11/40 engineering drawings; Burroughs—“B1700
Systems Reference Manual.” Any errors in the descriptions of these computers are
my responsibility.

Finally, I want to thank Suzanne for encouragement, support, help, and especially
patience throughout my long period of self-imposed exile from the human race during
the preparation of this book. I also would like to thank her for breaking up the long
hours with an uitgeperste sinaasappel.

ANDREW S. TANENBAUM




CONTENTS

PREFACE XV
INSTRUCTOR’'S PREFACE xviii
INTRODUCTION 1
1.1 Languages, Levels, and Virtual Machines 3

1.2 Contemporary Multilevel Machines 4

1.3 Historical Evolution of Multilevel Machines 7

1.4 Hardware, Software, and Multilevel Machines 10

1.5
1.6

Processes 12
Outline of this Book 14

COMPUTER SYSTEMS ORGANIZATION 18

2.1

2:2

2.3

2.4

Processors 18

2.1.1 Instruction execution 19

2.1.2 Parallel instruction execution 22

Memory 24

2.2.1 Bits 25

2.2.2 Memory addresses 25

2.2.3 Metabits 28

2.2.4 Secondary memory 29
Magnetic tapes 29
Magnetic disks 30
Magnetic drums 32
Optical memories 32

Input/Output 33

2.3.1 I/O devices 33

2.3.2 I/O processors 33

2.3.3 Character codes 34

2.3.4 Error-correcting codes 34

2.3.5 Frequency-dependent codes 38

Transfer of Information 41

2.4.1 Data paths 41

2.4.2 Telecommunications 42



X

CONTENTS

Modulation 43
Asynchronous and synchronous transmission

45

Simplex, half-duplex, and full-duplex transmission
2.5 Computer Networks 47
2.6 Distributed Computers 49

THE CONVENTIONAL MACHINE LEVEL

3.1

3.2

3.3

34

3.5

3.6

Examples of the Conventional Machine Level

3:.1
3.1.2
3.1.3

IBM System/360 and System/370 57
CDC 6000, Cyber 70, and Cyber 170 62
DEC PDP-11 65

Instruction Formats 70

321
3.2.2
323

Design criteria for instruction formats 71
Expanding opcodes 73
Examples of instruction formats 75

Addressing 79

3:3.1
3:3.2
3.33
334
3.8.5
3.3.6
337

3.3.8
339

Immediate addressing 80

Direct addressing 81

Register addressing 82

Indirect addressing 82

Indexing 84

Base registers 85

Stack addressing 87

Reverse Polish 89

Evaluation of reverse Polish formulas 90
Addressing on the PDP-11 93
Discussion of addressing modes 97

Instruction Types 98

3.4.1
3.4.2
3.4.3
344
345
3.4.6
3.4.7

Data movement instructions 99

Dyadic operations 100

Monadic operations 102

Comparisons and conditional jumps 104
Procedure call instructions 106

Loop control 107

Input/output 108

Representation of Data 111

3.5.1
3.52
353
354
3.55
3.5.6

Integers 112

Floating-point numbers 112
Booleans 112

Characters 113

Strings 113

Arrays 116

Dope vectors 116

Marginal indexing 117

Flow of Control 119

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5

Sequential flow of control and jumps 119
Procedures 120

Coroutines 125

Traps 130

Interrupts 131

56

46



CONTENTS

4 THE MICROPROGRAMMING LEVEL

4.1

4.2

43
44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Processor Components 142

4.1.1 Registers 142

4.1.2 Buses 143

4.1.3 Gates 143

4.1.4 Clocks 144

4.1.5 Memory ports 145

4.1.6 Arithmetic and logical units 146

4.1.7 Packaging of processor components 147

Basic Operations 148

4.2.1 Register transfer 148

4.2.2 Memory read/write 150

4.2.3 Bit testing 150

A Hypothetical Target Level 150

A Hypothetical Host Level 153

4.4.1 The host level’s registers 153

4.4.2 The host level’s ALU 155

4.4.3 The host level’s gates and data paths 155

Gate Sequences 157

4.5.1 Subcycles 157

4.5.2 Gate sequences for the ADD instruction 158
Microprogrammed Gate Control 160

4.6.1 Microinstructions 161

4.6.2 Execution of microprograms 162

4.6.3 A two-level machine 164

A Language for Microprogramming 165

4.7.1 Notation for GATE microinstructions 165

4.7.2 Notation for TEST microinstructions 166

The Interpreter for the Target Machine 167

4.8.1 Interpretation of the multiplication instruction 171
4.8.2 Interpretation of the division instruction 172

4.8.3 Perspective 175

Design of the Microprogramming Level 175

4.9.1 Encoded fields 176

4.9.2 Horizontal versus vertical organization 177

4.9.3 Memory cycle ratios and overlapped execution 180
4.9.4 Nanomemories 183

4.9.5 Universal versus specific microprogramming levels 185
49.6 Review of microprogramming level organization 186
Advantages and Disadvantages of Microprogramming 188
The IBM 370/125’s Microprogramming Level 190

4.11.1 Architecture of the IBM 370/125 microprogramming level 190
4.11.2 IBM 3125 microinstructions 194

The PDP-11/40 microprogramming level 196

4.12.1 Architecture of the PDP-11/40 microprogramming level 196
4.12.2 UNIBUS operation 199

4.12.3 PDP-11/40 microinstructions 201

The Burroughs B1700 204

4.13.1 Architecture of the B1700 206

4.13.2 The B1700 instruction set 209

xi

141




xii

CONTENTS

THE OPERATING SYSTEM
MACHINE LEVEL

5.1 Implementation of the Operating System Machine Level 215
5.2 Virtual I/O Instructions 218
5.2.1 Sequential files 219
5.2.2 Random access files 220
5.2.3 Implementation of virtual i/o instructions 221
5.2.4 1IBM 370 virtual i/o 226
5.2.5 Cyber 70 virtual i/o 229
5.2.6 PDP-11 virtual i/o 235
5.2.7 Comparison of level 3 i/o 236
5.3 Virtual Instructions Used in Parallel Processing 237
5.3.1 Process creation and destruction 238
5.3.2 Race conditions 239
5.3.3 Process synchronization using semaphores 242
5.3.4 Instructions for interprocess communication 245
5.4 Other Level 3 Instructions 246
5.4.1 Directory management instructions 246
5.4.2 Reconfiguring the level 3 machine 247
5.5 Virtual Memory 249
5.5.1 Paging 250
5.5.2 Implementation of paging 252
5.5.3 Demand paging and the working set model 256
5.5.4 Page replacement policy 259
5.5.5 The dirty bit 261
5.5.6 The hardware map 261
5.5.7 Page size and fragmentation 262
5.5.8 Cache memory 263
5.5.9 Segmentation 264
5.5.10 Virtual memory on the PDP-11 268
Checkerboarding 271
5.5.11 The MULTICS virtual memory 273
5.5.12 Virtual memory on the IBM 370 277
5.5.13 Segmented virtual memory and file i/o 278
5.6 Job Control Languages 279

THE ASSEMBLY LANGUAGE LEVEL

6.1 Introduction to Assembly Language 289
6.1.1 What is an assembly language? 289
6.1.2 Format of an assembly language statement 290
6.1.3 Comparison of assembly language and PL/I 293
6.1.4 Program tuning 293
6.2 The Assembly Process 296
6.2.1 Two-pass assemblers 296
6.2.2 Pass one 297
6.2.3 Pass two 301
6.3 Searching and Sorting 303
6.3.1 Searching 303
6.3.2 Linear searching 304

215

288



6.4

6.5

CONTENTS

6.3.3 Binary searching 305

6.3.4 Sorting 307

6.3.5 Hash coding 308

6.3.6 Hashing functions and collisions 312
6.3.7 Comparison of association techniques 315
Macros 316

6.4.1 Macro definition, call, and expansion 316
6.4.2 Macros with parameters 319

6.4.3 Conditional macro expansion 320

6.4.4 Nested macro calls 322

6.4.5 Recursive macro calls 323

6.4.6 Nested macro definitions 325

6.4.7 Implementation of a macro facility in an assembler 326
Linking and Loading 328

6.5.1 Tasks performed by the linker 329

6.5.2 Structure of an object module 332

6.5.3 Binding time and dynamic relocation 333
6.5.4 Dynamic linking 336

MULTILEVEL MACHINES

7.1

7.2

73

7.4

7.5

Methods of Implementing New Levels 344

7.1.1 Interpretation 344

7.1.2 Translation 346
General-purpose macro processors 347

7.1.3 Procedural extension 349

Design Strategies for Multilevel Machines 349

7.2.1 Top-down design 350

7.2.2 Bottom-up design 352

7.2.3 Middle-out design 354

Program Portability 354

7.3.1 A universal programming language 355

7.3.2 The brute force approach 356

7.3.3 UNCOL 357

7.3.4 Do-it-yourself virtual machines 360

7.3.5 Emulation 363

7.3.6 Networks 364

Self-Virtualizing Machines 364

7.4.1 1IBM VM/370 system 365

7.4.2 Goals of self-virtualizing machines 367
Self-virtualizing machines and time sharing 368
Operating system testing 368
Protection of confidental data 369

7.4.3 TImplementation of a self-virtualizing machine 370
Exceptions and virtual machine faults 370
Simulation of virtual machine i/o 372
Self-modifying channel programs 372
Shadow page tables 373

High-Level Machine Architecture 375

7.5.1 Addressing and descriptors 377

7.5.2 High-level machine instructions 381

7.5.3 Advantages and disadvantages of high-level machines 383

xiii

344



xiv CONTENTS

SUGGESTIONS FOR FURTHER
READING AND BIBLIOGRAPHY

8.1 Suggestions for Further Reading 387
8.1.1 Addressing and instructions 387
8.1.2

8.1.4
8.1.5
8.1.6
8.1.7

Computer organization 390

Deadlocks 393
8.1.8 File systems 393
8.1.9 High-level machines 394
8.1.10 Input/output 395
8.1.11 Linkers and loaders 395
8.1.12 Macros 396
8.1.13 The microprogramming level 397
8.1.14 Multilevel computers 398
8.1.15 Networks 399
8.1.16 Operating systems 400
8.1.17 Parallel processing 401
8.1.18 Self-virtualizing machines 402
8.1.19 Symbol tables 403
8.1.20 Telecommunications 405
8.1.21 Virtual memory 405

8.2 Alphabetical Bibliography 407

APPENDIX

FINITE-PRECISION ARITHMETIC
AND BINARY NUMBERS

A.1 Finite-Precision Numbers 413

A.2 Radix Number Systems 415

A.3 Conversion from One Radix to Another
A.4 Negative Binary Numbers 420

A.5 Binary Arithmetic 421

APPENDIX

B FLOATING-POINT NUMBERS

APPENDIX

C BOOLEAN ALGEBRA

INDEX

The conventional machine level 391

387

Assemblers and assembly language programming 388
8.1.3 Binary numbers and arithmetic 389
Character codes, redundant and nonredundant 390

413

416

424

432

436



l INTRODUCTION

A digital computer is a machine that can solve problems for people by carrying
out instructions given to it. A sequence of instructions describing how to perform
a certain task is called a program. The electronic circuits of each computer can
recognize and directly execute a limited set of simple instructions into which all its
programs must be converted before they can be executed. These basic instructions
are rarely much more complicated than

add two numbers
check a number to see if it is zero

move a piece of data from one part of the computer’s memory to another

Together, a computer’s primitive instructions form a language in which it is
possible for people to communicate with the computer. Such a language is called a
machine language.

The people designing a new computer must decide what instructions to include in
its machine language. Usually they try to make the primitive instructions as simple
as possible, consistent with the computer’s intended use and performance require-
ments, in order to reduce the complexity and cost of the electronics needed. Because
most machine languages are so simple, it is difficult and tedious for people to use
them.

There are two principal ways to attack this problem; both involve designing a
new set of instructions that is more convenient for people to use than the set of
built-in machine instructions. Taken together, these new instructions also form a

1




