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Preface

T'his text evolved from lecture notes for a two-year course sequence at Purdue and
is intended for both self-study and for a dual-level graduate—undergraduate
classroom use. The features of this book are briefly mentioned here to help the
student and instructor plan their reading. The homework problems appear as
exercises at appropriate places in the text as opposed to a collection of problems at
the end of each chapter. This, I believe, will better involve the reader in the real time
development of the ideas so that the reader may determine his or her level of
understanding of each concept before introducing another. In fact, the whole book
is arranged in order of increasing sophistication of the engineering concepts. As a
result, the topics do not appear in order of sophistication of mathematics. For
example, the linear algebra in Chapter 2 involves the simplest engineering concepts
but not the simplest mathematics. The building of engineering concepts is our focus,
and the mathematical tools are required to fit where needed and are summarized in
theorem form for easy reference.

The reader is presumed to have some background in linear algebra and an
undergraduate course in the Laplace transform and the single-input/output meth-
ods of Evans (root locus), Nyquist, and Bode.

The chapters are arranged as follows. Chapter 2 reviews the needed background
in linear algebra and related mathematics. This is a study of linear systems of
algebraic equations and is the precursor to our study of linear dynamic systems in
Chapters 3 and 4. Chapter 2 should be used as a reference of handy facts and may
be skipped or read lightly on first reading. The instructor may choose selected
lectures from this chapter to set the stage for notation, but it may be boring for the
engineering student to digest al/l the topics of linear algebraic systems before
receiving some of the motivations from linear dynamic systems (Chapters 3 and 4).
Nonetheless, these are the most fundamental concepts of the book and are pre-
sented first to be consistent with the goal of presentation in order of increasing
sophistication of the engineering concepts. Education is an iterative process, and the
student will truly learn Chapter 2 and the power of its applications only by repeated
referrals back to Chapter 2 during the study of each of the subsequent chapters of
the book. In this way the mathematics is learned in the context of its engineering
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viii Preface

use. The student may therefore expect that the difficult Chapter 2 will come alive at
the end of the book rather than at the beginning.

Chapter 3 develops the equations of motion for some simple dynamic systems by
using the language of Chapter 2. This chapter is simply a collection of systems to be
used as examples throughout the text as we develop each new concept. There is no
methodology taught in this chapter.

The first discussion of the properties of linear dynamic systems begins in Chapter
4, and it is possible to begin instruction here if time is short and if the reader has a
good background in linear algebra. After the treatment of the time-varying systems,
this chapter discusses the relationships between state variable and transfer function
descriptions of dynamic systems. This chapter introduces the deterministic concept
of “time correlation” between two vectors, which ties together all remaining
chapters.

Chapter 5 focuses on the fundamental controllability and observability properties
of linear systems.

Chapter 6 provides the concepts of equivalent systems and develops three
different types of equivalence: equivalence with respect to transfer functions, with
respect to output correlations, and with respect to a quadratic performance metric
called the “cost function.” The relationships between these descriptions of a
dynamic system are described. Even though this book is entirely deterministic, the
introduction of a deterministic version of “time correlation” (a simple integral of
two variables) allows the development of mathematical machinery and results that
are strikingly similar to the covariance analysis of stochastic systems. This is one
advantage of this type of treatment of deterministic systems, even though the
student will not realize this advantage until a later course on stochastic processes.

Chapter 7 focuses primarily on two types of stability definitions: Liapunov
stability and bounded-input, bounded-output stability. Connections with Chapter 6
will be obvious by the equivalence of stability properties between the original
system and its simpler cost-equivalent realization.

Chapter 8 uses the least squares theory of Chapter 2 to solve the simplest of all
optimal control problems: quadratic performance measures and linear dynamics.
The method chosen for the derivation of these results is based upon the matrix
calculus and trace identities of Chapter 2, which allow many different control
problems to be viewed within a common framework: state feedback control, output
feedback control, and dynamic controllers. The instructor will find some new results
in Chapter 8, including a completely deterministic theory of optimal dynamic
controllers, which eliminates the prior ad hoc practice of putting observers together
with optimal state feedback control laws.

Chapter 9 introduces the concept of state estimation from measurement data.

Chapter 10 is a most important chapter because it cautions the reader against
misuse of the other nine chapters. Until the tenth chapter the mathematical models
of the underlying dynamic system are presumed accurate. Control in the presence of
inaccurate models is the necessity of every practical application of control theory. In
fact, the limitation in performance of every control design is eventually due to the
effect of modeling errors. Hence, great care must be used in the application of
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Chapters 1 through 9. Chapter 10 charts the care to be taken, and without Chapter
10 the book would fall short of its goal to provide practical and yet theoretically
sound control design techniques. Chapter 10 is an attempt to formally introduce the
very fundamental notion that the modeling problem and the control problem are not
independent. This seemingly innocent concept leads one into a virtual minefield of
potential pitfalls in the use of linear systems theory (Chapters 2 through 9). Hence,
an introduction to linear systems is incomplete (and perhaps even deceitful) without
some elementary introduction to model error concepts and consequences.

The general linear dynamic system is first treated in vector first-order (state)
form. However, there are many engineering applications in circuits, acoustics, and
mechanics in which the dynamics naturally take on a vector second-order form,
MG+ DG + Hq = f. Utilizing the special structure of these systems allows many
results to be greatly simplified, and these results deserve textbook presentation, in
addition to the standard vector first-order theory. For courses that focus only on the
basic theory of state space (vector first-order form), the following sections on vector
second-order systems can be omitted without loss of continuity: Chapter 3, Sections
5.2.14, 5.4.4, 8.7, and 10.2.2.

If this introductory book is used in a transitional course where the students
expect to continue their graduate education afterward, the topics will require two
semesters and a slower more thoughtful pace in which all theorems are proved. If
this book is used in a “terminal” course where students do not expect to continue
their controls education, then the instructor may choose to focus on a presentation
of the facts without developing the proofs so that the topics can be finished in one
semester.

Many Purdue students in A & AE 564 solved numerous example problems. Their
feedback influenced the final text in many helpful ways, and without the interaction
with them and our joint desire to make that interaction successful, this book would
not have been written. It is my pleasure to acknowledge helpful reviews and
suggestions from P. Likins, A. Frazho, M. Corless, T. Dwyer, P. Kabamba, and
S. Meerkov.

ROBERT E. SKELTON



About the Author

Robert E. Skelton is a Professor of Aeronautical and Astronautical Engineering at
Purdue University. He received his B.S. degree in electrical engineering at Clemson
University in 1963, his M.S. degree in electrical engineering at the University of
Alabama, Huntsville in 1970. He worked in Huntsville Alabama from 1963 to 1973
on such spacecraft modeling and control problems as SKYLAB, project THERMO,
Large Space Telescope, and shuttle engine control. He obtained his Ph.D. in
mechanics and structures from UCLA in 1976. He serves on the National Research
Council’s Aeronautics and Space Engineering Board and is a Vice Chairman of the
Applications Committee for the International Federation of Automatic Control. He
is the recipient of a 1986 Fellowship of the Japan Society for the Promotion of
Science and several international research and travel awards from the National
Science Foundation. His short courses on the dynamics and control of flexible
structures have been given in Germany, Italy, Japan, Australia, and many times in
the United States. Most of his 120 journal and conference papers focus on modeling
errors and their effect in control problems, with a special emphasis on errors of
model order and the attendant model reduction problems. His contributions to
control engineering include placement strategies for sensors and actuators, dis-
turbance accommodation, controller reduction, and covariance control.

Xi



Contents

1.

2.

2.1
2.2
2.3
2.4

2.5

2.6
2.7

Introduction 1

Mathematical Preliminaries

Matrix Representations and Linear Spaces 8
Linear Independence of Vectors 13
Geometrical Interpretations of Linear Independence 16
Tests for Determining Linear Independence 18

2.4.1 VECTOR INNER PRODUCTS 19
2.4.2 VECTOR OUTER PRODUCTS 19
2.4.3 VECTOR NORMS 20
2.4.4 THE CAUCHY - SCHWARZ INEQUALITY 21
2.4.5 GEOMETRICAL INTERPRETATION OF p: ANGLES BETWEEN VECTORS 22
2.4.6 SIGN DEFINITENESS OF MATRICES 23
2.4.7 A TEST FOR LINEAR INDEPENDENCE OF TIME-VARYING VECTORS 25
2.4.8 A TEST FOR LINEAR INDEPENDENCE OF CONSTANT VECTORS 27
Orthogonal Bases 28
2.5.1 ORTHOGONAL FUNCTIONS 29
2.5.2 THE GRAM - SCHMIDT PROCEDURE 31
Solutions of the Liner Algebra Problem AXB = Y and Pseudo Inverses 35
Linear Matrix Equations and Least Squares Theory 38
2.7.1 CALCULUS OF MATRICES 39
2.7.1.1 Differentiation of a Scalar with Respect to a Vector 39
2.7.1.2 Differentiation of a Scalar with Respect to a Matrix 40
2.7.1.3 Trace Identities 44
2.7.2 PROBLEM: min||Ax — y|[> 45

2.7.3 PROBLEM: min||x|? SUBJECTTO Ax =y 47
2.7.4 A GEOMETRICAL APPROACH TO LEAST SQUARES PROBLEMS 50
2.7.5 PROBLEM: min||Ax — y||> 52

A

2.7.5.1 Bessel's Inequality 55
2.7.5.2 Parseval’s Equality 56

xiii



Xiv Contents

2.8 Decomposition of Matrices 58
2.8.1 SPECTRAL DECOMPOSITION 58
2.8.1.1 Hermitian Matrices 68
2.8.1.2 Skew-Hermitian Matrices 71
2.8.1.3 Unitary Matrices 72
2.8.2 SINGULAR VALUE DECOMPOSITION 72
2.8.3 SQUARE ROOT DECOMPOSITION 80

3. Models of Dynamic Systems 84
3.1 State Space Realizations 85
3.2 Linearization 86
3.3 A Rocket in Flight 91
3.4 A Space Backpack 94
3.5 An Orbiting Spacecraft 101
3.6 A Rigid Body in Space 103
3.7 Elastic Structures 104

3.7.1 THE CONTINUUM MODEL 105
3.7.2 THE PINNED ELASTIC BEAM 106

3.8 Electrical Circuits 116
4. Properties of State Space Realizations 121
4.1 Developing State Space Realizations for Time-Invariant Systems 121

4.1.1 STATE SPACE REALIZATIONS FOR MIXED-ORDER
DIFFERENTIAL EQUATIONS 122

4.1.2 STATE SPACE REALIZATIONS FROM BLOCK DIAGRAMS 123
4.1.3 PROPERTIES OF TRANSFER FUNCTIONS 128

4.1.4 STATE SPACE REALIZATIONS FROM TRANSFER FUNCTIONS OF
SINGLE-INPUT / SINGLE-OUTPUT SYSTEMS 135

4.1.4.1 Rectangular Form 137
4.1.4.2 Phase-Variable Form 139
4.1.4.3 Modal Form 141

4.2 Coordinate Transformations 143
4.2.1 INVARIANCE OF THE CHARACTERISTIC POLYNOMIAL 144
4.2.2 INVARIANCE OF THE MARKOV PARAMETERS 145
4.2.3 INVARIANCE OF THE TRANSFER FUNCTION 145
4.2.4 INVARIANCE OF THE RESIDUES 146
4.2.5 INVARIANCE OF FUNCTIONS OF THE OUTPUT 148
4.3 Disturbance Models 148

4.4 Solutions of State Equations 155
4.4.1 COMPUTATION OF THE STATE TRANSITION MATRIX FOR CONSTANT A 159
4.4.2 STATE SPACE TRAJECTORIES FOR SECOND-ORDER SYSTEMS 169
4.4.3 PERIODIC LINEAR SYSTEMS 171



Contents

4.5

5.

5.1
5.2

93
5.4

5.5
5.6

6.

6.1
6.2
6.3
6.4
6.5
6.6

7.

7.1
7.2

Evaluating System Responses for Time-Invariant Systems
4.5.1 TIME CORRELATION OF VECTORS 174
4.5.2 THE COST FUNCTION AND ITS DECOMPOSITION 182

4.5.3 EVALUATION OF THE COST FUNCTION IN THE FREQUENCY DOMAIN

Controllability and Observability

Output Controllability

State Controllability

5.2.1 CONTROLLABILITY OF TRANSFORMED COORDINATES
5.2.1.1 Controllability of Modal Coordinates 213

5.2.1.2 Controllability of Controllable Canonical Coordinates

5.2.1.3 Other Controllable Canonical Forms 220
5.2.1.4 Conirollability of Vector Second-Order Systems

Observability

Observability of Transformed Coordinates
5.4.1 OBSERVABILITY OF MODAL COORDINATES 230

5.4.2 OBSERVABILITY OF OBSERVABLE CANONICAL COORDINATES

5.4.3 OTHER OBSERVABLE CANONICAL COORDINATES 234
5.4.4 OBSERVABILITY OF VECTOR SECOND-ORDER SYSTEMS

Adjoint Systems and Duality

On Relative Controllability, Observability

5.6.1 MODAL COST ANALYSIS 240

5.6.2 BALANCED COORDINATES 250

5.6.3 HESSENBERG COORDINATES 255
5.6.3.1 Controllable Hessenberg Coordinates 255
5.6.3.2 Observable Hessenberg Coordinates 259

Equivalent Realizations and Model Reduction

Transfer Equivalent Realizations (TERs)

Output Correlation Equivalent Realizations (COVER)
Cost-Equivalent Realizations

Balanced Model Reduction

Model Reduction by Singular Perturbation

Realizing Models from Output Data

6.6.1 IDENTIFICATION THEORY — A NAIVE APPROACH 293
6.6.2 1-COVER IDENTIFICATION 296 '
6.6.3 FREQUENCY DOMAIN IDENTIFICATION 299

Stability

Liapunov Stability
Bounded-Input / Bounded-QOutput Stability

X0

173

189

200

201
210

226
230

238
239

266

266
271
279
286
289
293

301

301
311



xXvi

7.3
7.4
735
7.6

8.

8.1
8.2
8.3
84
85
8.6
8.7
8.8

8.9
8.10

9.

9.1
9.2
9.3

10.
10.1

10.2

10.3

10.4
10.5

Exponential and Uniform Stability
Stabilizability and Detectability
Pole Assignment

Covariance Assignment

Optimal Control of Time-Invariant Systems

Optimal Covariance Control

Linear Quadratic Impulse (LQI) Optimal Control

The Linear Quadratic (LQ) Optimal Measurement Feedback Control
Modal Methods for Solving Riccati Equations

Root Locus of the LQ Optimal State Feedback Controller

Nyquist Plot and Stability Margin of the LQ Controller

Optimal Control of Vector Second-Order Systems

Disturbance Accommodation
8.8.1 DISTURBANCE UTILIZATION CONTROL 378
8.8.2 DISTURBANCE CANCELLATION CONTROL 381

Optimal Tracking and Servo Mechanisms
Weight Selection in the LQ and LQI Problems

State Estimation

Optimal State Estimation
Minimal-Order State Estimators
Closed-Loop Behavior with Estimator-Based Controllers

Model Error Concepts and Compensation

The Structure of Modeling Errors
10.1.1 THE MODEL ERROR SYSTEM 424

10.1.2 THE STRUCTURE OF ERRORS IN THE CLOSED-LOOP SYSTEM 430

10.1.3 STABILITY MARGINS IN CONTROL 436

First-Order Perturbations of Modal Data
10.2.1 ROOT PERTURBATIONS IN STATE MODELS 443

10.2.2 ROOT PERTURBATIONS IN VECTOR SECOND-ORDER SYSTEMS 448

Sensitivity Analysis and Control
10.3.1 MINIMAL ROOT SENSITIVITY IN LINEAR SYSTEMS 453
10.3.2 TRAJECTORY SENSITIVITY ANALYSIS AND CONTROL 457

Model Error Estimation
Compensation for a Class of Model Errors

Contents

314
315
318
321

328

329
331
344
349
351
356
366
377

383
385

398

401
406
410

414
421

442

453

461
466



Contents

Appendix A: Axiomatic Definition of a Linear Space
Appendix B: The Four Fundamental Subspaces of
Matrix Theory

Appendix C: Calculus of Complex Vectors and Matrices
Appendix D: Solution of the Linear Matrix Equations
0=AX+XB+Q

Appendix E: Laplace Transforms

Index

xXvii
475

476

490
493

497



CHAPTER 1

Introduction

T here is only an ill-defined boundary between that body of knowledge called
“control theory” and that called “systems analysis.” Systems analysis explains why
a system response behaves the way it does. Control theory deals with modifications
to the system which will alter the response in a desirable manner. It is no surprise
then that one’s degree of success in the latter task (control) depends critically upon
the relative completeness of an understanding of the first task (systems analysis).
The system dynamics may be modified (to improve the response) in two fundamen-
tally different ways: (i) by modifying parameters of the system or by (ii) modifying
the forcing functions in the system differential equations. The second approach (ii)
is commonly understood to be the purpose of control theory, but in the discussion
of systems with equivalent behavior (from systems analysis) it may be possible to
obtain the same response by technique (i) or by a simpler combination of (i) and
(i1). A suitable introduction to systems analysis is therefore desirable prior to the
introduction of control methods. Chapters 2-7 focus on system analysis and
Chapters 7-10 introduce control design.

To illustrate these points consider the rocket depicted in Fig. 1.1 whose linear
dynamics are described by these differential equations derived in Chapter 3:

Jé — pLV?a + pLVF#, = FD@,
mF_ + pVi, — Fa = —F9, (1.1)

mfv=F—pV2—mG,

.
=

Horizontal speed

Vertical speed (total speed V = \/#? + F?)
Attitude of vehicle with respect to inertial space

T

Gimbal angle of rocket engine
Magnitude of thrust (assumed constant)
Distance from mass center to engine gimbal
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2 1 Introduction

¥ |nertial reference

Drag and other disturbances

(Position, velocity measurements)
SeNsors = — — — 3= — — — —

Y External control
Controller —_ i? Lpint signals,
pilot commands,
* ground control, etc.
P e e S ) e s ] e =
6 (Signals to )
Thrust
Figure 1.1 Feedback Control Concepts
L Distance from mass center to aerodynamic pressure center
G Gravity constant
pV?  Magnitude of drag force
m Vehicle mass
I Moment of inertia

The typical control problem is find a forcing function 6(¢) so that the responses
a(t), r,(t), r, () are acceptable. If 6(¢) is specified as a function of time, then 6(7) is
called an open loop control policy. If @ is specified as a function of the system
responses, then 8(a, &, r,, 7, rs ) is called a feedback, or a closed loop control
policy. The physical and mathematical device that computes the desired 6, given the
responses (a, &, r, F, r,, I,), is called the controller in Fig. 1.1.

A study of the physwal sciences (electricity, mechanics, thermodynamics, chem-
istry, etc.) prepares the student to apply known physical laws in the derivation of
mathematical models of the physical phenomenon such as shown in Fig. 1.1. This is
the substance of the undergraduate engineering experience: learning of how to model
physical systems; whereas the study of control is concerned with what to do with the
model after it is available. This popular view is much too narrow, of course. It
presumes that the modeling problem and the control problem are separable. They
are not. One cannot know what level of detail is required in the model prior to
knowledge of the accuracy required of the controlled performance and knowledge of
the nature of the forces (or control inputs) required to achieve this performance. For
example, one cannot know whether the coupling between the translational dynamics
(involving 7 ) and the rotational dynamics (involving a) in equations (1.1) is
important prior to knowledge of the precision required of the controlled perfor-
mance and prior to knowledge of the forcing function 8(¢) in (1.1). In fact, for the
same reasons one cannot even know a priori whether the rigid body in (1.1) and Fig.
1.1 should be modeled as an elastic structure. This depends upon the relative
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magnitude (and frequency content) of the applied forces. Yet in feedback control
the forces applied from the control policy for regulating 8 depend upon the model
chosen. The control problem is to find an appropriate 8, given the model (1.1).
Hence, the model that is most appropriate for the control design and the control
design itself must evolve in an iterative fashion. (Do not fall in love with your
model!) Control theory and practice still have not, and cannot, produce a fool-proof
procedure for accomplishing this [1.1], but the value of seeking a sound theoretical
base for the engineer is to help accelerate the convergence of these iterations, with a
blend of theory (in the text) and the engineer’s judgment and insight (developed on
the job). In the first nine chapters of this book we too shall make the traditional
assumptions of absolute correctness of our model and the separability of model
development from the control design problem. The flaw in this unwritten but
commonly evoked separation principle will not be corrected until Chapter 10. Yet it
is important to learn the traditional wisdom of control theory (Chapters 2 through
9) in full light of its premises, which we here state.

Suppose the horizontal speed of the rocket in (1.1) were truly negligible, then the
rotation is governed by

Ji — pLV?a = FD# (1.2)

and the Laplace transform of this equation leads to the transfer function H(s):

a(s) = [W]O(s) = H(s)0(s), (1.3)
where J, p, F, and D are positive quantities. The two methods of altering system
response mentioned above were (i) modifying parameters of the system and (ii)
choosing the forcing function, 6(s) in this case. Method (i) may be illustrated by
changing L, which is positive if the center of pressure is forward of the center of
mass and negative if the center of pressure is aft of the center of mass. The
parameter L may be reduced or made negative by making the nose pointed and the
tail section larger in diameter, or by adding fins on the tail of the rocket. The center
of mass can be made even more forward of the center of pressure (making L more
negative) by moving heavy objects (payload) as far forward as possible. Thus, the
native Indian’s design of an arrow [with rock (heaviest item) on the nose and
feathers (large area) as fins on the tail] makes L as negative as possible. This native
wisdom is verified by noting that this changes the poles of the transfer function
H(s) from the right half-plane (A = +pLV?/J when L > 0) to the imaginary
axis (A = +jyp(—L)V?*/J when L < 0). This is an improvement since it changes
the response from unstable to stable. In fact, aerodynamic damping effects ignored
here in (1.1) would actually place the poles slightly inside the left half-plane yielding
asymptotic stability of the open-loop system [#(z) — 0]. That is, a returns to zero
from some nonzero initial condition. However, the price paid in approach (i) is
possibly to increase the weight of the rocket, which in turn reduces payload
capability. Hence, one possible advantage of feedback control [method (ii) above] is-
the modification of system behavior without adding the weight or other undesirable
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features that a structural parameter change might require. Clearly, a trade-off is
evident between increasing structural design modifications (parameter changes),
which beef up the structure weight, and increasing control sophistication, which
would be required as the basic structure degenerates to “cheapest” to build, lightest
in weight. The arguments taken to the limit of this latter extreme would yield an
absurd design. The control system would fly all the payload, engine, and instrument
components in formation with hardly any structure holding them together at all, all
of the required interaction forces to hold things together being provided by the
addition of multiple control forces (besides the control of ). Hence, even though
this example points to an absurd extreme, it is nonetheless true that as the control
requirements become more stringent in modern systems, it is usually necessary to
add more “actuators” or control variables since those detailed things we wish to
control can be “uncontrollable” with a single actuator. The time domain methods
readily accommodate multiple inputs and outputs, and this is the focus of this text,
whereas transform methods, equation (1.3), more readily treat the single-input/out-
put class of systems.

Having anticipated that multiple actuators and sensors will be needed in a
research frontier pressing for better performance capabilities of a controlled system,
we shall become aware of fundamental limitations and dangers in pressing too far.
As the controller becomes more complex, it may become less reliable, both from the
possibility of failures and from the reliance upon increasing detail of mathematical
models (upon which the control policy is based). Chapter 10 sorts out some of these
difficulties and guards against a misuse of the first theory we learn in Chapters 2
through 9 (where correctness of the model is presumed).

The classical control tools of Bode, Nyquist, and Evans [1.2-1.4], all developed
prior to 1950, are basically graphical in nature, with the following underlying design
strategy: “Design for stability, then check for performance.” These tools function in
the frequency domain. The time domain tools of state space optimal control
developed rapidly two decades later, with an eye on the mean squared performance:
“Design for performance, then check for stability.” These techniques are numerical
rather than graphical. Thus, the early time domain design philosophy and the
frequency domain design philosophy were opposite, and complementary insights are
available by studying both. Of course, this is an oversimplification of the methods
and their power, but nonetheless it is important for a student in control to
enthusiastically embrace both points of view. This text focuses primarily on time
domain methods.

While time domain techniques began their rapid development in the 1960s with
the vector first-order (state) form of differential equations, it was Sir William Rowan
Hamilton in 1835 who introduced state form equations with the presentation of his
theory of “generalized momenta” [1.5]. This replaced the Euler—Lagrange equations

—_—————= . i=1,..., N, T = kinetic energy, Q, = generalized forces,

(1.4)
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which always resulted in systems of equations of a vector second-order form,
M+ D+ Hq=1, (1.5)

by a set of generalized momenta equations,

. 0T (16)
SRTA ‘
which always resulted in systems of equations of a vector first-order form,
p=Ap+f. (1.7)

For a century, dynamicists largely shunned Hamilton’s generalized momenta equa-
tions (1.7) until modern computers were available to provide practical computations
of solutions. His first-order “Hamilton’s canonical” equations,

Xt

g ap;’
where #2 plq — &, 2 T— %+ F, U= potential energy, and %= work done
by nonconservative forces, became popular [1.6] many years after their introduction.
Thus, it is no coincidence that the modern and rapid development of state space
techniques closely followed the development of computers and efficient numerical
methods.

If equations (1.1) were placed in the vector second-order from (1.5), we would
have

J 0 O0|fa 0 pLV 0|[a —pLV? 0 0]fa
0 m 0 fx + 0 pV 0 I"x + —-F 0 0 ¥y
0 0 m|l¥# 0 0 01l7 0 0 0flr
FD | 0 1
=|—Flo+ 0 . (1.8)
0 F—pV?-— mGJ

And if placed in the vector first-order form (state form), we would have, from the
generalized momenta equations,

41
4>
4
P
P>
Iz

(1,7
0
0

0 0
1/m 0
0 1/m
—pLV/m 0
—oV/m 0
0 0

P
P2
P3

’

4

4 «
NI (1.92)
q3 r,
pLV?q, + FDO
Fq,— F8 |, (1.9b)
F—poV?*—mG



