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“He who loves practice without theory is like the
sailor who boards ship without a rudder and compass
and never knows where he may be cast.”

Leonardo da Vinci, 1452-1519



Preface

Linear models, their variants, and extensions are among the most useful and
widely used statistical tools for social research. This book aims to provide an
in-depth, modern treatment of linear models and related methods. The book
should be of interest to students and researchers in the social sciences; and
while the specific choice of methods and examples reflects this audience, I
expect that the book will also prove useful in other disciplines that employ
linear models for data analysis, and in courses on applied linear models where
the subject-matter of applications is not of special concern.

My major premise in writing this text is that the teaching of social statistics
should combine statistical theory, critical application, and methodology. Too
often, statistical methods are presented to social scientists either as abstract
formalisms or as recipes for research. I feel that there also is an unhealthy
tendency to oppose statistical theory and data analysis. The quotation from
Leonardo da Vinci on the relationship of theory to practice, reproduced at the
front of the book, is therefore doubly apt: First, statistical methods in
application must be properly related to substantive theory and research
concerns. It is difficult in a statistics text to demonstrate concretely the
connection between substance and statistical method, but I have attempted to
select illustrations that make this point in an elementary fashion, and the
connection is raised explicitly at several critical junctures. Second, I think that
the sensitive use of statistical methods for data analysis requires some ground-
ing in statistical theory. Thus, although the style of presentation in this book is
nonrigorous, the statistical theory of linear models is developed alongside (or,
better, underneath) its applications—few results are presented without infor-
mal derivation or intuitive justification.

Throughout the book, general approaches and principles are employed to
emphasize the conceptual unity of the techniques covered. For example, the
maximum-likelihood method is frequently used to derive estimators and tests,
and the vector geometry of linear models is employed to clarify a variety of
topics. In addition, a critical approach is adopted to the use of statistical
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models through explanation of (1) the assumptions underlying the models, (2)
diagnostic procedures designed to assess model adequacy, and (3) means of
respecifying models so that they more adequately represent the data at hand.

The book assumes that readers have been exposed to the elements of
statistical inference and probability. It also assumes some knowledge of
elementary calculus and matrix algebra. With the exception of elementary
calculus, these areas are reviewed and extended in the appendices. Special
attention is paid to topics that are frequently slighted in introductory social-
statistics courses (such as probability distributions and properties of estima-
tors), and to extensions of material presumed to be familiar (e.g., vector
geometry, matrix calculus).

Chapter 1 is devoted to regression analysis, which examines the relationship
of a quantitative dependent variable to one or more quantitative independent
variables. Much of the statistical theory of linear models is developed in this
chapter.

Chapter 2 extends linear models to include qualitative independent varia-
bles. The treatment of analysis of variance in this chapter emphasizes unbal-
anced (i.e., unequal-cell-frequencies) data.

Chapter 3 presents a variety of material on diagnosing and correcting
linear-model problems. The problems examined include collinearity, outliers
and influential data, nonlinearity, heteroscedasticity, and nonnormality. The
chapter contains a discussion of data transformations and an introduction to
nonlinear models.

Chapter 4 takes up structural-equation models, which are systems of linear
equations representing the causal relations among sets of variables, some of
which may exert mutual influence on each other. Attention is paid not only to
the direct application of structural-equation models, but also to the general
data-analytic principles that these models embody. The chapter ends with an
introductory treatment of models that contain specific measurement-error
components and that include multiple indicators of latent variables.

Chapter 5 describes logit models for qualitative dependent variables and
log-linear models for contingency tables, stressing the similarity of these
models to the linear models of earlier chapters. The relationship between logit
and log-linear models is also developed. The chapter includes a discussion of
diagnostic methods for logit models.

Most of the material in this book can be covered in a two-semester course,
the first several weeks of which teach basic linear algebra and elementary
differential calculus (using, e.g., Kleppner and Ramsey’s Quick Calculus).
Chapters 1 through 3 can be covered in a one-semester course that omits some
specialized topics.

In learning statistics, it is important for the reader of a text to participate
actively, both by working through the arguments presented in the book, and by
applying methods to data. Reworking of examples is a good place to start, and
I have presented illustrations in such a manner as to make re-analysis and
further analysis possible.
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Nearly all of the examples employ real data from the social sciences, many
of them previously analyzed and published. The exercises that involve data
analysis also almost all use real data drawn from a variety of areas of
application. A word of warning to readers (and instructors): Many of these
exercises are time consuming,!

Computational matters are occasionally commented on in passing, but the
book generally ignores the finer points of statistical computing in favor of
methods that are computationally simple. I feel that this approach facilitates
learning; once basic techniques are learned, an experienced data analyst has
recourse to carefully designed programs for statistical computations. Similarly,
I think that it is a mistake to tie a general discussion of linear models too
closely to particular programs or packages. In fact, although the marvelous
proliferation of statistical software has routinized the computations for most of
the methods described in this book, the workings of computer programs are
not sufficiently accessible to promote learning. Consequently, I find it useful to
teach APL as part of a course on linear models.

APL is an interactive programming language with powerful operators and
functions, including those for common matrix operations. Similar computa-
tional facilities are available elsewhere, as in the MATRIX procedure of the
SAS statistical program package and in the MINITAB package. Using APL,
students are able to write their own programs for the computationally simpler
methods. They may be provided with subprograms (e.g., for latent roots and
vectors) with which they can construct more complex applications, and for
functions such as plotting and data management.

Many of the data-analytic examples in this book are accompanied by
computer-generated plots and graphs prepared on a typewriter terminal.
Although these figures are less elegant than hand-drawn or computer-drawn
pen-and-ink graphs, facilities for conveniently obtaining line-printer and print-
ing-terminal plots are more widely available: I feel that it is most useful to
display data as they are likely to appear to readers in their own work. The
introduction of sophisticated graphics capabilities into general statistical
packages (such as SAS and SPSS) and the increasing availability of flexible
graphics hardware suggest that this situation will change in the future.

Because the selection of material for a text of this sort must be more than a
matter of personal taste, I would like to comment briefly on some topics that
are omitted from the book. First, although some attention is paid to experi-
mentation, experimental design is not developed systematically and compre-
hensively: There is no discussion of nested designs, random- and mixed-effects
models, variance components, and so on. These omissions reflect my judgment

IStarred exercises (*) are more difficult and are generally theoretical; exercises marked with a
dagger (1) substantially extend the treatment in the text—readers may wish to examine these
problems, even if they are not worked out in detail; and exercises marked with a pound sign (#)
are intended for hand solution (i.e., with a pocket calculator rather than on a computer).
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of which methods are most useful to a general social-scientific readership as
well as the availability of good books on linear models for designed experi-
ments.

Second, 1 have intentionally avoided a discussion of correlated errors in
times-series regression. I feel that an adequate treatment of time-series data
requires methods beyond the scope of this book. Time-series data are em-
ployed, however, to illustrate the problem of collinearity and in an example of
a nonlinear model.

Finally, there is no systematic treatment in this book of multivariate
statistical methods, although principal-components analysis is introduced in
the context of collinearity, and the structural-equation models of Chapter 4
include more than one dependent variable. A serious development of mul-
tivariate statistics requires book-length treatment at a higher level of mathe-
matical sophistication. Also, an understanding of multivariate methods is
predicated on some background in univariate linear models.

Joun Fox

Toronto, Canada
March 1984
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Linear
Regression
Analysis

This chapter develops the theory of regression analysis, a method of wide
applicability and a natural point of departure for a treatment of linear models.
The first section deals with simple regression, which examines the linear
relationship between two numerical variables, one of which is thought to affect,
influence, or predict the other. The second section takes up multiple regression,
which expresses one numerical variable as a linear function of several others.
The remaining sections of the chapter develop topics in linear regression
analysis: random regressors (Section 1.3), model specification error (Section
1.4), and standardized regression coefficients (Section 1.5). Most of the theory
described in the chapter applies generally to linear models.

When we refer to numerical variables, we mean quantitative variables
measured on an interval or ratio scale. The distinction between numerical and
qualitative (i.e., nominal) data is often confused with the distinction between
continuous and discrete data. A numerical variable may be either continuous
(such as temperature) or discrete (such as family size); a qualitative variable
(sex, for example) is necessarily discrete. In data analysis, the discrete—continu-
ous distinction becomes, for practical purposes, a distinction between variables
that take on relatively few values (e.g., an individual’s number of surviving
grandparents) and those that take on relatively many (e.g., dollar income).
Ordinal quantitative data are something of an embarrassment in linear models,
and are frequently dealt with by assigning arbitrary numerical scores to their
values. (This practice is discussed further in Problem 3.12, Chapter 3.)



2  LINEAR REGRESSION ANALYSIS
1.1. SIMPLE REGRESSION

Simple regression analysis is a method of limited usefulness. It is, nevertheless,
of critical importance to us because (1) the limitations of the method suggest
directions in which it may usefully be extended, and (2) many general
properties of regression analysis and linear models may be introduced in the
context of simple regression.

In this section, least-squares simple regression is treated first as a method
for fitting a straight line to a scatter of points that represent a set of
observations for two variables. After this descriptive treatment, we introduce a
statistical model for which the least-squares regression coefficients may serve as
estimators. Upon develf)ping some of the properties of the least-squares
estimators, we show how these estimators may be employed for testing
hypotheses about population regression coefficients. We then introduce the
idea of correlation as a means of assessing the fit of the simple-regression
model to data. Finally, we develop the vector geometry of simple regression
analysis to provide us with a powerful conceptual tool for exploring the
properties of linear models.

1.1.1. Fitting a Least-Squares Line to a Scatter of Points

Suppose that we have a set of n scores for two numerical variables X and Y.
Further suppose that we regard X as a cause of Y, or at least that we wish to
employ X to predict Y. Using practical terms, suppose that Y is dollar income
and that X is years of education, each measured for individuals in a sample of
wage earners. If X and Y were perfectly related, we could then write Y as a
function of X: Y = f(X). Borrowing from mathematical usage, we term X the
independent variable and Y the dependent variable. Although some statisticians
object to this terminology, it is quite firmly entrenched in the literature. We
must be careful, however, to avoid attributing broad meaning to the terms
“independent” and “dependent”. For example, when we introduce several
independent variables in Section 1.2, we do so without implying that these
variables are statistically independent of one another. On occasion, we shall
also refer to X as a regressor.

In virtually all interesting cases in the social sciences, it is unrealistic to
expect that X is the sole cause of Y, or alternatively, that Y is perfectly
predictable from X alone. Nevertheless, X may be one of a number of causes of
Y, or Y may be partially predictable from X. There are, for instance, many
causes of income beyond education: factors such as sex, race, occupation, and
experience in the labor force come easily to mind. If this is the case, then we
cannot expect to represent Y as an exact function of X: Two observations that
are identical in their independent-variable values will in general differ in their
dependent-variable values. We hope, however, to specify a function that
captures the systematic relationship between the variables: ¥ = f(X), where ¥
(read “Y-hat”) is called a fitted value. E, the difference between ¥ and ¥
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FIGURE 1.1, Linear regression of Y on X.

(E=Y - Y), represents that portion of the dependent variable not predict-
able from the independent variable; E is called a residual. Thus, ¥ = f(X) + E.
A common characteristic of the linear models developed in this text is that they
decompose dependent-variable values into fitted and residual components.
Thus far, we have left the functional relation f(X) between Y and X
unspecified. We now specify that this relation is linear: ¥ =4 + BX; or
equivalently, Y = 4 + BX + E. For the ith of our n observations, we have

Y,= A + BX, + E, (1.1)

Here, A and B are respectively the Y-intercept (or constant) and slope of the
regression line relating Y to X, as illustrated in Figure 1.1.

Although it would be naive to suppose that the relationship between two
variables is necessarily linear, straight-line regression is, for several reasons, a
natural point of departure. First, it is useful to start an examination of linear
models with what is reasonably regarded as the simplest interesting case.!
Second, many relationships are in fact linear or approximately linear, or may
be rendered linear by transforming the data. Finally, in the social sciences, we
frequently expect one variable to increase or decrease with another without
being able to specify more precisely the functional relationship between the
two. It seems sensible, in these instances, to entertain linear relationships
because of their simplicity. We should stress at the outset, however, that it is
foolish to blindly fit relations—linear or otherwise—to data. We shall take up
these issues in detail in Chapter 3.

'Even simpler linear models are (1) Y = BX + E (regression through the origin), and (2)
Y = A + E (no relationship between ¥ and X).



