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Foreword

The proposed book is one of a series called “A Course of Higher
Mathematics and Mathematical Physics™ edited by A. N. Tikhonov, V. A. Ilyin
and A. G. Sveshnikov.

The book is based on a lecture course which, for a number of years now has
been taught at the Physics Department and the Department of Computational
Mathematics and Cybernetics of Moscow State University. The exposition
reflects the present state of the theory of differential equations, as far as it is
required by future specialists in physics and applied mathematics, and is at the
same time elementary enough.

Animportant part of the book is devoted to approximation methods for the
solution and study of differential equations, e.g. numerical and asymptotic
methods, which at the present time play an essential role in the study of
mathematical models of physical phenomena. Less attention is paid to the
integration of differential equations in elementary functions than to the study of
algorithms on which numerical solution methods of differential equations for
computers are based.

The reader will become acquainted with various methods for the numerical
solution of initial values as well as boundary value problems, and with such
fundamental notions of the theory of numerical methods as the convergence of
difference schemes, approximation and stability. The chapter concerned with
asymptotic methods contains, in particular, information on the so-called
method of singular perturbations (the averaging method), the method of
boundary functions, the WKB method; these methods have rapidly developed
in the last decade in connection with the requirements of such branches of
physics and technology as the theory of automatic control, hydrodynamics,
quantum mechanics, kinetics, the theory of non-linear oscillations, etc.

The English translation of the book includes important changes from the
first Russian edition. The most important ones concern the existence and
uniqueness theorem for the solution of initial value problems. The new proofs
are based on the method of differential inequalities. These same ideas are
applied in the study of the dependence on parameters of solutions of differential
equation systems. The use of the method of differential inequalities consider-
ably simplifies the proofs, makes them more uniform and allows us to state the
results in more general form.

The manuscript of the book was read through by E. A. Grebennikov and
L. D. Kudryavtsev, who made a number of important remarks. Inestimable
assistance in the preparation of the manuscript for publication was rendered by
B.I. Volkov. To all of them the authors express their sincere gratitude.

The authors
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Chapter I
Introduction

§1. The Concept of a Differential Equation

The present book is concerned with differential equations, i. e. relations
between an unknown function, its derivatives and independent variables.
Equations containing derivatives with respect to several independent variables
are called partial differential equations. Equations containing derivatives with
respect to only one of the independent variables are called ordinary differential
equations. This book mainly deals with the properties and solution methods of
ordinary differential equations; only the last chapter is devoted to certain special
classes of partial differential equations.

The independent variable with respect to which the derivatives in an ordinary
differential equation are taken is usually denoted by the letter x (or the letter ¢,
since time often plays the role of the independent variable). The unknown
function is denoted by y(x).

An ordinary differential equation may be written as a relation of the form

dy d"y
I — ey 1=0. .
<X’y’dx’ ’dx"> ()

Besides the unknown function, its derivatives with respect to the independent
variable x and the independent variable x itself, equation (1.1) may involve
additional variables p,. . ., f. In this case we say that the unknown function
depends on the variables py,. .., w as parameters.

The order of the highest order derivative contained in equation (1.1) is known
as the order of the equation. A first order equation is of the form

d
F(x,y,£>=0 (1.2)

and is a relation between three expressions — the unknown function, its derivative
and the independent variable. It is often possible to write this relation in the form

dy B
K_f(x’ »). (1.3)
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Equation (1.3) is called a first order equation resolved with respect to the
derivative. We shall begin our study of the theory of ordinary differential
equations with equation (1.3).

Along with differential equations (1.1)—(1.3) with one unknown function, the
theory of ordinary differential equations deals with systems of equations. A
system of first order equations resolved with respect to the derivatives

dy,
[ o =, ), (1.4)

is called a normal system. Introducing vector functions

y=(y1’~~'ayn)’ f=(.fl”.f;l),

we may write the system (1.4) in vector form

) (1.5)
X

It is easy to see that the n-th order equation (1.1), resolved with respect to the
highest order derivative

dy dy d" 1y

may be reduced to a normal system. Indeed, introducing the notation

B dy dy, d" 'y dy,-y
y(x)=y1(x), a—a-)’z(x),- O el dx =yu(X). (1.7

and using the obvious equality

d"y dy,
dx"  dx’
we obtain the normal system
dy, _
dx =)a2,
dyn—l
p o H (1.8)
dyn
dy :f(X,J’n- ORy yn)
%

corresponding to equation (1.6).
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In equations (1.1)—(1.5), the independent variable will be assumed real. The
unknown functions may be real-valued as well as complex-valued functions of a
real variable.

Obviously, if B _
Y(x) = y(x) +iy(x),
where j(x) and j(x) are the real and imaginary parts of the function y(x)
respectively, then equation (1.3) is equivalent to the following system of ordinary
differential equations for real-valued functions

D Re fe5 D). D=m f(x.5.5).

The solution of the system of differential equations (1.4) is, by definition, any
family of functions which satisfy the equations identically. As a rule, and this will
be clear from examples given below (see §2), if a differential equation is soluble,
then it has an infinite set of solutions. The procedure of finding the solutions is
known as integration of differential equations.

Any solution y;(x) (i=1,...,n) of the system (1.4) may be interpreted
geometrically as a curve in the (n+ 1)-dimensional space of the variables
X, Y1, - ,Yn; this curve is called the integral curve. The subspace of the variables
Vis--.,yais called the phase space, while the projection of the integral curve on
the phase space is the phase trajectory.

Equation (1.4) determines a direction given by the vector t=(1, f;,. . ., f,) at
every point of the domain D. Such a domain in space, with a direction given at
each point, is said to be a direction field. The integration of the system of
equations (1.4) may be interpreted geometrically as finding curves whose
tangents at each point coincide with the direction = determined by the given field
of directions at that point.

As we pointed out above, differential equations have an infinite set of
solutions in general. Therefore, when we integrate the system (1.4), we will find
an infinite set of integral curves contained in the domain where the right-hand
sides of the system (1.4) are defined. In order to distinguish an individual integral
curve in the set of all solutions, thus specifying a so-called particular solution of
the system (1.4), we must impose additional conditions. In many cases such
additional conditions are the initial conditions

yilx)=y!  (i=1,...,n), (1.9)

which determine a point of (n + 1)-dimensional space of the variables x, Vygs s vy Vi
through which the required integral curve passes.

The problem of integrating system (1.4) with initial conditions (1.9) is known
as the initial value problem or Cauchy problem.

In the simplest case of one equation

d X
£=ﬂ&w, (1.10)
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g

the function f(x, y) determines a direction field in the domain D (of the (x, y)-
plane) where the right-hand side of (1.10) is defined. This direction field is given
at each point of the domain D by the vector t(x,y) with slope f(x,y) (tana
=f(x,)) (Fig. 1).

In order to solve the initial value problem with the condition y(x,) = y, in this
case, we must construct, in the domain D, the integral curve y = y(x) which starts
at the initial point (x,, o) and is tangent to the vector t of slope f(x, y) at every
one of its points (x, y).

Theorem 1.1 (Chaplygin’s theorem on differential inequalities). If for
x € [xo, X] there exists a solution of the initial value problem

D e v =0 (1.11)
X

and, if z(x) is a continuous and continuously differentiable function on [x,X|
satisfying
dz
;<f(x, Z)’ X€E [x07 X]’
x
1.12
2(Xo) < Yo, ( )
then we have the inequality

z(x) <y(x), x€(xq, X]. (1.13)

Indeed, by the assumptions of the theorem, inequality (1.13) is satisfied at
the point x,. Therefore, by the continuity of y(x) and z(x), it is satisfied also in
some neighbourhood to the right of the point x,. Assume that x; € [x,, X] is the
nearest point to x, in which the inequality (1.13) fails to hold, i. e. z(x;) = ¥ (x;).
Geometrically, this means that the curves z(x) and y(x) intersect or are tangent

dz
when x=x;. But then we must have d—(x1)>f(x1,y(x,)) which contradicts
(1.12). The theorem is proved.
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Now for some remarks — which will be important later — about the theorem
on differential inequalities just proved above.

Remarks. 1. We assumed that z(x,) < y,, but the theorem remains valid if
z(xo) =yo. In this case, the existence of a neighbourhood (to the right of the point
Xo) in which the inequality (1.13) holds follows from the fact that

d. d
o (%0) < G0, 2(30)) = (30, yo) =2 (30)

The rest of the argument is exactely the same as in the case z(x,) <JYo
2. If the function z(x) satisfies the inequalities

dz
ix =f(x,2), x€[x0, X]
z(Xo) =Yo,

then the sign of the inequality in (1.13) should also be changed to the opposite
one.

3. The theorem remains valid in the case when z(x) is piecewise differentiable
on [xo, X] and the inequality (1.12) is satisfied for the limiting values of the

.o.odz : ; -
derivative ™ at the points of discontinuity.
x

In order to answer a number of questions, it is convenient to reduce certain
problems concerning differential equations to corresponding problems about
integral equations.

Lemma 1.1. Suppose f(x,y) is a continuous function of the point (x,y) in
some rectangle D= {|x —xo|<a, |y —yo|<b}. Then the initial value problem

dy , B
E—f(x»)’)’ }(XO)__VO (114)

is equivalent to the integral equation

Y@ =yo+ | fE (@) de. (1.15)

Proof. Suppose that there exists a solution y(x) of the initial value problem on
the segment |x~x0]Sa and we have y, —b<y(x)<y,+b (these inequalities
mean that for |x — x| < a the integral curve is located within the domain D where
Sf(x,y) is continuous). Substituting y(x) into equation (1.14), we obtain an
identity. Integrating this identity from x, to xe[x, —a, Xo+a] and using the
initial condition y(x,) = y,, we obtain (1.15). Therefore, the solution of the initial
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value problem (1.14) satisfies the integral equation (1.15). On the other hand, if
there exists a continuous solution of the integral equation (1.15) — the function
y(x), where yo —b<y(x)<yo+b, then, by the continuity of f(x,y) and the
continuity of the function f(&, y(£)) as a function of & which follows, the integral
in the right-hand side of (1.15) is a continuously differentiable function of ¢.
Therefore, the left-hand side of (1.15), i.e. the function y(x), possesses a
continuous derivative and this derivative equals f(x, y(x)), so that y(x) is a
solution of equation (1.14). The fact that the initial condition is satisfied can be
checked directly. The lemma is proved.

Remark. A similar theorem on equivalence holds also for systems of
differential equations, i.e. for the problem (1.4), (1.9).

One usually considers systems (1.4) whose right-hand sides are continuous in
some domain D where the unknown functions y; and the independent variable x
vary. Obviously, in this case the solution will be a continuously differentiable
function. However, in applications, one often meets with equations whose right-
hand sides have discontinuities in the variable x (for example, in the description
of instantaneously applied forces or concentrated forces), therefore these
solutions will also possess discontinuous derivatives. It is then natural to
consider, as solutions of (1.4), continuous functions y;(x) with piecewise
continuous derivatives. In substituting them into the equation, they are to be
differentiated everywhere except at points of discontinuity and points where
derivatives do not exist. It is natural to call such solutions generalised solutions.

Lemma 1.1 remains valid in the case when the function f(x, y) is a piecewise
continuous function of the variable x. Then the integral equation (1.15) has a
continuous solution y(x) which is a piecewise differentiable function of x. This
solution satisfies equation (1.14) in those intervals where the function f(x, y) is
continuous.

There are other ways of specifying supplementary conditions which
determine a particular solution of the system (1.4). Among them let us note: the
so-called boundary value problems, in which a particular solution is determined
by certain supplementary conditions at some points of its domain of definition;
the eigenvalue problem, which involves determining certain parameters appear-
ing in the equation so that particular solutions exist and satisfy some
supplementary requirements; and the problem of finding periodic solutions and
a number of other specifications uniquely determining the required particular
solution of the equation.

§ 2. Physical Problems Leading to Differential Equations

In this section we shall present some typical problems in physics and
mechanics whose study, by means of mathematical models, leads to the
investigation of differential equations.
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1. Radioactive disintegration. The physical law which describes the process
of radioactive disintegration states that the rate of disintegration is negative
and proportional to the amount of non-disintegrated matter at the given
moment of time. The coefficient of proportionality «, which is a constant
characterising the given type of matter, does not depend on time and is known as
the disintegration coefficient. The mathematical expression of the law of

radioactive disintegration is

%z —am(t), (1.16)

where m(t) is the amount of non-disintegrated matter at the moment of time 7.
This relation is a first order differential equation resolved with respect to the
derivative.

Itis easy to check (by direct substitution) that there is solution of (1.16) of the

form
m(t)=Ce™™, 1.17)

where C is an arbitrary constant, which may be determined from some
supplementary condition, for example, from the initial condition m(ty) =my
specifying the amount of matter at the initial moment #,. A particular solution of
the corresponding initial value problem is

m(t)=mge * 71, (1.18)

One of the important physical characteristics of the process of radioactive
disintegration is the half-life, the time T needed for the amount of non-
disintegrated matter to decrease by half. It follows from (1.18) that

%=moefﬂ,
so that we get
1
T=&log2 (1.19)

Note that equation (1.16) is the mathematical model not only of the process
of radioactive disintegration, but also of many other processes of splitting or
multiplication characterized by the fact that the rate of splitting (multiplication)
is proportional to the amount of matter at the given moment of time, the
coefficient of proportionality being a certain constant for the given process. As
we shall see, a typical way of setting the problem for this class of equations is the
initial value problem (the Cauchy problem).

2. The motion of a system of particles.  The mathematical models of mo-
tion for a system of particles of mass m;(i=1,...,N), usually accepted in
theoretical mechanics, are the equations of motion which follow from Newton’s
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second law:

dzr,- dr; 3 %
miﬁ.:p‘(t,rj,dt’) @i,j=1,...,N). (1.20)

Here m; are the particle masses, which do not change in time, r; are the radius-
vectors of the particles, and F; is the force vector acting on the i-th particle and
depending, in general, on time, on the coordinates of the i-th particle and the
position of the particles of the system, as well as their velocities. The system
(1.20) is a system of N vector equations of the second order. If the masses of the
particles do not change in the process of motion, then, by denoting the Cartesian
coordinates of the radius-vector r; by x;, y;, z; and introducing new variables v;,
=%, viyz%, Vi =% (the components of the velocity vector of the i-th
particle), we can write (1.20) in the form of a normal system of first order
equations

dx,' dy, _ dZi

=0; 5 — iy —5 =0,
dt de TV dr

(1.21)

dv;, _ 1 dvy, 1 dv,-z_iF.

o m; Y dr mg YAt om,

The difficulty in integrating system (1.21) is mainly determined by the form of
the right-hand sides, i.e. the functional dependence of the components of the
force vectors on the variables #, x;, y;, z;, iy, Uiy, v;.. In many cases it is possible to
obtain the value of a particular solution of the system with a given degree of
precision only by means of numerical methods, using computers. A typical
problem for the system (1.21) is the initial value problem, which consists in
determining the trajectory of the particles when their position and velocity at the
initial moment of time ¢, are given,

ri(to)=r?, v;(1) =v?, (1.22)

the right-hand sides being given functions (given external forces acting on the
system and interaction forces between the particles themselves). Another typical
problem for the system (1.21) is the boundary value problem which consists in
determining the trajectory passing through the given initial and terminal points
in the phase space. This is the problem that must be solved when we calculate the
trajectory of a spacecraft leaving the Earth for the Moon or for some planet.

In a number of cases, other means of specifying a particular solution of the
system (1.21) are considered.

An important special case of the system (1.20) is the oscillation equation of
the physical pendulum. Usually, by a physical pendulum one means an ab-
solutely rigid body, which can rotate, under the action of the force of gravity,
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Z

Fig. 2

about a motionless horizontal axis not passing through the centre of mass C
(Fig. 2).

Consider a section of the solid by a plane perpendicular to the rotation axis
and passing through the centre of mass. Denote the intersection point of the
axis and the plane by O. Obviously, the position of the physical pendulum at any
moment of time may be characterized by the angle ¢ made by the line OC with
the vertical axis z passing through the point O. To deduce the equation of
motion, let us use Newton’s second law, as applied to rotational motion (the
angular acceleration' is proportional to the principal moment of the exterior
forces). Then, ignoring friction forces, we obtain

2
Id%p= —mgd sin ¢, (1.23)
dt
where / is the moment of inertia of the solid with respect to the axis of rotation
and d is the distance from the point O to the centre of mass C.

The general equation (1.23) of oscillation of the physical pendulum is non-
linear. In the case of small oscillations, restricting ourselves to the first term of
the expansion of the function sing, we get

d2
7(” +w*p=0, (1.24)

where @’ denotes the quotient ? = mgd/I. Obviously, from the point of view of
dimension, [w]=sec™!, which justifies this notation. Note that in the case of
equation (1.24) the returning force is proportional to the displacement from the
position of equilibrium.

It is easy to check (by direct substitution) that equation (1.24) possesses
periodic solutions of frequency w

@(t)=Acos wt+ B sin wt, (1.25)
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where 4 and B are arbitrary constants determining the amplitude of periodic
oscillations.

If we take into account friction forces proportional to angular velocity,
equation (1.24) will become an equation of the form

Lo d
= +a—(p+w @=0. (1.26)

As will be shown later (see Chapter 3) equation (1.26) determines damped
oscillations.

3. The transfer equations. Suppose that air flows along a pipe of constant
perpendicular section, whose axis coincides with the x axis, the velocity along the
axis of the pipe at the point x at time ¢ being a given function v(x, ¢). Suppose the
air carries a certain amount of matter whose linear density in the section of the
pipe with coordinate x at time 7 will be denoted by u(x, 7). In the transfer process,
some matter settles on the inner walls of the pipe. We shall assume that the
density of distribution of the matter which settles is given by the expression
S(x,t) u(x,t) (f(x,t) is a given function), i.e. is proportional to the con-
centration of matter; this may be viewed as a linear approximation (to a more
complicated law) valid for sufficiently small ». This means that the amount of
matter settling on the part of the pipe located between the sections x and x + A4x
during time [z, ¢+ A4¢] is given by the expression

x+d4x t+ 4t

[ | fEuE,)dédr.

X

To obtain a differential equation with respect to u, consider the balance of
matter in the domain between the sections x and x + Ax. The process of diffusion
will not be taken into consideration, which is natural if the velocity v is
sufficiently large.

During the period of time A4z, the change in the amount of matter in the
domain under consideration equals

x+A4x

[ (& t4+ A1) —u(&, 0] dé.

X

This change is determined, firstly, by the difference of flows of matter: the
amount which flows in through the section x and equals

t+ At

| vlx,7) ux,7) dr

t
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and the amount which flows out through the section x + Ax and equals

t+ At
j' v(x+A4x,7) u(x+ 4x, 1) dr,

t

and, secondly, by the decrease of the amount of matter due to settling on the
walls of the pipe, which equals

x+Ax t+ At

— [ [ f& ) u, ) dédr.

X

Thus the law of conservation of matter gives

x+A4x t+ 4t
j [u(, 14+ A1) —u(é, 1)] df:f [v(x, 1) u(x,7) —v(x+A4x, 1)u(x+ Ax, 7)]

x+d4x t+ A4t

di— [ [ f(E1) u(é ) déde. (1.27)

X

Using the mean-value theorem of the differential calculus for the expressions
under the integral signs, assuming that continuous partial derivatives of the
given functions exist, and calculating the integrals by the mean value theorem of
the integral calculus, we obtain

0 0
a—l: (x*, 1))y = AxAt = ~x (W0, **Yu(x, 1%%)|, = e Ax At
—fQORRE RRR) y (RRk Rk Ax s (1.28)

where x*, x*¥ yx¥¥k pk ek pkkk gre certain points on the segments [x, x+A4x],
[2, 1+ At] respectively. Dividing the relation (1.28) by 4xAt and assuming that Ax
and 4¢ tend to zero, in view of the continuity of all terms of relation (1.28), we
finally obtain the equation

ou 0
67%-& (uv)+fu=0, (1.29)
or
%l;-kv(x,t) 2—Z+c(x,t) u=0, (1.30)
where
ov .
c(x,t)=$ e D+f(x,0). (1.31)

Equation (1.30) is a first order partial differential equation. The following
problem, for example, may be considered for this equation. Suppose we know



