'WARD BOOK, $12.95

%

PASCAL PROGRAMMING
""FOR THE APPLE

Hoe T TG tEiUs

A step-by-step guide witﬁ ready-to-run programs—
brings you up to date on the very Ia_tgtheehnology!

Pascal Programming
for the Apple

T. G. Lewis
Oregon State University

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

Library of Congress Cataloging in Publication Data

Lewis, Theodore Gyle
Pascal programming for the Apple.

Includes index.

1. PASCAL (Computer program language)
2. Microcomputers—Programming. I. Title.
QA76.73.P2L48 001.64°24 80-25382
ISBN 0-8359-5455-2
ISBN 0-8359-5454-4 (pbk.)

© 1981 by Reston Publishing Co., Inc.
A Prentice-Hall Company
Reston, Virginia

All rights reserved. No part of this book

may be reproduced, in any way or by any means,
without permission in writing from the publisher

10 9 8 76 5 4

Printed in the United States of America

Preface

Pascal is the most influential contribution to programming made in the
past 25 years. It is not only a programming language, but is also a statement
about programming style. Thus, one major aspect of Pascal is its impact upon
the way programs are conceived and then composed.

Second, the VLSI revolution in hardware is made dramatically available
through Pascal software; and UCSD Pascal represents the first of a new genera-
tion of software systems for microcomputers. When combined with a micro-
computer, Pascal is the greatest microcomputer software advance made since
BASIC.

The Apple computer has capitalized on these most recent advances in
technology in both hardware and software. lts graphics and sound reproduction
hardware are intimately tied to the UCSD Pascal software. Their combined
utilization is synergistic — greater than their sum. For example, the data-
structures capabilities of Pascal naturally provide easy-to-use graphical symbols.
The type COLOR = (BLACK, WHITE, BLUE, GREEN, VIOLET, ORANGE)
fits into the graphics hardware support without language “extensions” usually
found as nonstandard features in other languages.

It was because of this emerging synergism between hardware and soft-
ware that this book was written. The following chapters are devoted to clarify-
ing concepts of computing, programming style, devices, and information storage/
retrieval. In particular, sections are devoted to teaching fundamentals of the
Pascal System (Chapters 1-3), reviewing the Pascal language (Chapter 4), and
applying this fundamental knowledge to many applications (Chapters 5-10).

Chapters 5-10 were designed to sharpen programming skills while simul-
taneously introducing new programming techniques. Financial applications are
introduced in Chapter 5 and text processing using Pascal strings in Chapter 6.
Chapter 7 explores a very important area of concern in small systems: how to
implement large programs on small computers.

Chapter 8 covers the graphics modules provided in TURTLEGRAPHICS,
and Chapter 9 is a short introduction to the musical tone generator, NOTE. Fi-
nally, in Chapter 10, we unify and bolster the file structure operations casually
described throughout the book.

vi PREFACE

Using and learning about the Apple implementation of UCSD Pascal has
been a tremendously stimulating experience. | have had great assistance from
many people: Dr. John Couch and Susan Wells at Apple Computer, Evan Sakey
at UCSD, and the helpful contributions of Dorothy Hyde, Sharon Bassett and
the office staff at Oregon State University. Thanks go also to Peg Vorderstrasse
and Ann Puig for their typing.

I hope you will enjoy reading the pages to follow. | know you will benefit
from the experience if you take time to study each program in detail.

T. G. Lewis

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Preface V

THE FRENCH CONNECTION (THE SYSTEM) 1

1.1 Pascal the Man (1623-1662), 1

1.2 Pascal the Language (1971-), 3
1.3 Pascal the Machine, 6

Twenty Questions, 10

Answers, 11

WALKING THE PASCAL TREE (THE TOOLS) 12
2.1 First Encounter (Filer), 12

2.2 Second Blush (Editor), 18

2.3 The Moment We’ve Waited For (Compile-Run), 22
Twenty Questions, 25

Answers, 25

THE SHAPE OF THINGS TO COME 27
3.1 The Shell of a Pascal Program, 27

3.2 Type Casting the Data, 33

3.3 Learn to Think in Pascal, 39

3.4 The Nitty Gritty Stuff, 43

Twenty Questions, 48

Answers, 49

PASCAL SPOKEN HERE (THE NOVICE) 50
4.1 Simple Sequence (Assignment), 50

4.2 Make Up Your Mind (Choice), 58

4.3 Count the Ways (Looping), 61

Twenty Questions, 65

Answers, 67

MONEY, MONEY, MONEY! (FINANCIAL
APPLICATIONS) 68

5.1 Home Mortgage Payments, 68
5.2 Charting the Stock Market, 75

i

iv CONTENTS

5.3 Real Estate Cash Flow Analysis, 89
Twenty Questions, 97
Answers, 97

Chapter 6 FOR THE DROW PUNDIT (TEXT PROCESSING) 99

6.1 Sticks and Stones, 99

6.2 May | See the Menu, Please? 106
6.3 Parlez-Vous Frangais? 119
Twenty Questions, 131

Answers, 131

Chapter 7 PROGRAMMING IN THE LARGE 133
7.1 The Gambler, 133
7.2 The Link Expert, 141
7.3 Segments Everywhere, But Not a Byte to Spare, 149
7.4 Bonus Features, 154
Twenty Questions, 156
Answers, 157

Chapter 8 STAR-SPANGLED GRAPHICS 159
8.1 Pixel Land, 159
8.2 The Electric Artist, 163
8.3 Once Is Not Enough, 170
8.4 A Little Geometry, 178
Twenty Questions, 182
Answers, 182

Chapter 9 MAKING MUSIC 184

9.1 Theory of Music, 184
9.2 Listen to the Music, 188
Twenty Questions, 194
Answers, 195

Chapter 10 FILE STRUCTURES SUPREME 196

10.1 Meanwhile, Back to Files, 196
10.2 The Versatile B-Tree, 203
10.3 Never Sort a File, 222
Twenty Questions, 225

Answers, 226

Chapter 11 BASIC VERSUS PASCAL 228

11.1 Interpretation Versus Compilation, 228
11.2 Syntactic Comparisons, 229

INDEX 232

Chapter 1

The French Connection
(The System)

“l chose the name because Blaise Pascal was the first (perhaps one of the
first) person to build what we may reasonably call a digital calculator. He did so
around 1642 to speed up the tedious calculations when helping his father who
was a tax collector.”

Professor Niklaus Wirth
July 16, 1979

1.1 PASCAL THE MAN (1623-1662)

He was a sickly child, raised by his father who intended to educate him in
the classics and literature. But 12-year-old Blaise Pascal surprised his father by
secretly teaching himself geometry. One day he showed his father proof of
Euclid’s thirty-second theorem — that is the sum of the angles of a triangle
equals 180 degrees — and that began his scientific training. He wrote a book on
geometry (conic sections) before he was 16 and invented the calculator at 19
years of age.

The seventeenth century was a time of great scientific advancement. It
might be compared with the post-World-War-Il period of expansion in scientific
knowledge. Many great inventions and ideas were being thrust onto the English
and French societies during Pascal’s lifetime.

William Harvey, Galileo, Newton, Descartes, Boyle, Napier, Kepler, Huy-
ghens, and others lived about the same time as Pascal. Thus it is not unusual that
Pascal’s genius led him to the formulation of Pascal’s Law {hydrostatic pressure
is proportional to a cross-sectional area of a fluid) and Pascal’s Triangle (coeffi-
cients of the binomial expansion).

It may be surprising that Pascal invented an early version of mechanical
calculators, since this required the design and construction of precision gears;
but about 1641, at the age of 19, Pascal developed a working calculator similar

Personal correspondence with Niklaus Wirth concerning the name of his new pro-
gramming language.

2 THE FRENCH CONNECTION (THE SYSTEM)

to the odometer system of gears used in speedometers today. It had been 1600
years since the previous advance in such machinery was made by Hero of Alex-
andria. Pascal constructed about 50 models of his calculator, of which 6 or 7
still exist.

Pascal led the way in “reasoning” machines while others of his time were
inventing pendulum clocks (Huyghens, 1656), barometers (Torricelli, 1644), and
fountain pens (1657). Even though he was awarded a patent for his calculator,
the device was too costly and unreliable to become a commercial success; but
his work set the stage for modern computer technology. Indeed, Pascal foresaw
the modern-day implications of his invention when he remarked, “The arith-
metical machine produces effects which approach nearer to thought than all the
actions of animals.””* This implication drove Pascal to question the power of the
human mind. His contemporary, Descartes, asserted that reason alone separated
mankind from unthinking machines and animals. Pascal, on the other hand,
believed his calculator to be an example of a machine that could “reason” as
well as function as an accountant.

Only free will distinguished humanity from the animal world. This notion
caused him to ask questions about God and mankind’s place in the world. In
fact, Pascal was tormented by religious questions. On November 23, 1654, he
experienced a two-hour vision during which his “heart felt God.” He recorded
the details of this experience and sewed a note to himself into the lining of his
clothing. Unfortunately for science, this revelation convinced Pascal to abandon
the world. He converted to Jensenism and produced his most notable work,
Pensés, while contemplating his religious beliefs. In 1662 at the age of 39, Pascal
died believing in the importance of both the heart and the mind. The mind is
limited in what it can understand, Pascal wrote, while the remaining mysteries of
the universe can only be understood through faith in God.

A thread of history connects the primitive calculator invented by Pascal to
the sophisticated machines that run Pascal programs described in this book.
Charles Babbage (1792-1871) was influenced by Blaise Pascal, Gottfried Leibniz,
and Joseph Jacquard. Babbage’s calculating engine was a mechanical computer
capable of computing while under the control of a program. In 1937, while a
graduate student at Harvard University, Howard Aiken became aware of Bab-
bage’s work. Aiken, with financial support from IBM, was responsible for con-
structing MARK 1, the first general-purpose electronic computer. The micro-
computers of today are descendants of the MARK |.

In some sense we have returned full circle to Blaise Pascal. Pascal, the man,
believed in both reason and blind faith; the language Pascal is both a scientific
tool based on simple reasoning about computing and a humanly understandable
language based on the belief that simple, efficient languages are the most reliable

*]. Bonowski, and B. Mazlish, The Western Intellectual Tradition, Harper Torch-
books, N.Y., 1975, p. 240.

PASCAL THE LANGUAGE 3

tools for writing computer programs. In the pages to follow we will be con-
cerned about the programmer as well as the computer when implementation
issues arise. For example, simple explanations for straightforward methods will
be preferred over technically rigorous explanations. We will use examples that
are easy to read rather than examples that demonstrate sophisticated algorithms.
Finally, we will employ short programs rather than lengthy, complete programs
so that the concepts will be illuminated.

1.2 PASCAL THE LANGUAGE (1971-)

Niklaus Wirth invented Pascal for two reasons:*

“. .. to make available a language suitable to teach programming as a sys-
tematic discipline based on certain fundamental concepts clearly and naturally
reflected by the language.”

“. .. to develop implementations of this language which are both reliable
and efficient on presently available computers. . .”

It was the expressly stated goal of Wirth to develop a tool for “. . . the
understanding of programs by human readers and the processing by computers.”
This is also the goal of this book. We wanted to develop a document for
human understanding of the Pascal language and for understanding the Pascal
environment, which consists of both the Pascal system and the Apple computer.
It is important to understand not only the language Pascal but also the
environment of the Pascal System, because the environment influences how the
language is used. Figure 1.1 gives a user’s view of the levels to be found within

System Initialization (Start-up Level)

Commands (Operating System Level)
Pascal Compiler Editor P-code
Translate Input a Execute
a Program Program a Program
Linker Filer
Combine Store
Programs Programs

Figure 1.1. The Pascal Environment

*N, Wirth, “The Programming Language Pascal,” Acta Informatica, 1,35-63 (1971).

4 THE FRENCH CONNECTION (THE SYSTEM)

the Pascal environment. These levels constitute a kind of Pandora’s Box with
additional boxes inside.

Each box is at a level within the environment, and each level contains
boxes for designing and implementing Pascal programs. We have shown only a
few of the innermost boxes in Figure 1.1. For an in-depth description of these
boxes, skip to Chapter 2.

The Pascal environment is automatically initialized when the Apple com-
puter is started. The system is loaded from disk into the computer’s main mem-
ory. When ready, the screen on your computer will announce itself:

Welcome APPLE1: TO

U.C.S.D. Pascal System I1.5

Current Date Is 15-DEC-79
Command:E(dit,R(un,F(ile,C(omp,L(ink,X(exute,A(ssemble,D(ebug ?[1.5]

This prompt puts the Pascal System in the Command level where it waits
for input of the first letter of the command desired. To open the editor box,
type E, and to open the compiler box, type C, etc. Each command is accepted
in its abbreviated form (usually first letter).

Figure 1.1 illustrates only the first 3 levels of the Pascal environment. In
the next chapter we will examine each box in more detail, but for now we will
explain the purpose of the boxes at level 1.

Assembler The Pascal environment includes a generalized machine language
symbolic assembler. While we will not be concerned about its use here, it
can be used to produce machine code programs. These programs may be
tightly coded routines which are used by Pascal programs. In order to
combine them with Pascal, we must use the Assembler and then the
Linker.

Compiler All Pascal programs must be converted into an intermediate (con-
densed) form called P-code. The Compiler does this by reading a text file
created by the user (see Editor), converting it into P-code equivalents and
writing the P-code file out onto disk. The converted P-code version is pro-
cessed further by first Linking its parts together and then interpreting the
Linked parts using a P-code simulator (see execute).

Debugger This command is used to set breakpoints in Assembler programs.
This is an aid to debugging programs; but since we are not concerned with
the use of the Assembler, we will not use the Debugger.

Editor The Pascal environment includes several editor programs. We will de-
scribe only one editor — the screen editor. This program is used to prepare
Pascal programs. It allows the user to type Pascal statements, edit errors,
and save the edited programs on disks.

PASCAL THE LANGUAGE 5

Filer The Filer is a program used to save programs on disk files, copy files,
delete files, examine files, and set the date (calendar). Each file is named
by the user using a dot notation.

VOL:NAME.TYPE

Thus, the disk volume VOL: is given first, followed by the file name
NAME and the file extent .TYPE. The most common file extents are pro-
gram text, .TEXT, program P-code, .CODE, and program data, .DATA.

Linker The Link command is used whenever separately compiled program units
are to be combined into a single P-code module. If a program uses another
program unit, then the Linker must combine the two into a single unit be-
fore either can be executed.

Run This command is actually three commands rolled into one. The most fre-
quent commands — Compile, Link, and eXecute — are carried out in se-
quence whenever R is entered. The Compile step is skipped if the workfile
(see Figure 1.2) is already compiled. The Link step is also skipped if not
needed. The eXecute step is carried out by running the P-code file.

eXecute This command causes the P-code simulator to begin interpreting the
P-code workfile, or some other .CODE file specified by the user.

? This command displays additional (less frequently used) commands:

User Restart

Initialize

Halt

? (return to command level)

The H command is particularly useful because it allows graceful termina-
tion of a session.

The explanations above discuss a workfile and a P-code simulator. What
exactly are they?

The workfile is the single most important object in the Pascal environment
(Figure 1.2). The commands available at the Command level access the workfiles
as shown in Figure 1.2. To input a Pascal program the Editor builds a SYSTEM.
WRK.TEXT file by accepting keyboard input and writing the lines of text to the
workfile. The Filer may be used to erase the workfile, transfer it to another file,
etc.

The Compiler takes text from the .TEXT workfile and translates it into
P-code, which is written to the .CODE workfile. The Linker combines other P-
code units with the SYSTEM.WRK.CODE file in preparation for the eXecutor
program. (While the Pascal environment defaults to the workfile to process the
commands we give it, we can also divert it to other files in the system.)

6 THE FRENCH CONNECTION (THE SYSTEM)

SYSTEM.WRK.TEXT

DE

SYSTEM.WRK.CO

LIBRARY.CODE

Figure 1.2. The Workfile: SYSTEM.WRK

The Pascal System is a language and a set of tools for developing programs,
debugging them, and running them. The Pascal System is mostly independent of
the machine environment used to run Pascal programs because of P-code. There-
fore, we turn our attention to P-code before exploring the Pascal system in more
detail in Chapter 2. Since knowledge of P-code is not essential to understanding
Pascal, the reader may choose to skip the next section.

1.3 PASCAL THE MACHINE

One of Wirth’s goals was to construct the Pascal System so that it could be
easily implemented on a variety of computers. Clearly, the differences among
computers are large and, if implemented directly on each machine, would con-
sume years of intense labor. Instead, Wirth cleverly implemented the Pascal
System on a hypothetical machine called the P-code machine.

The P-code machine did not exist when the first Pascal System was devel-
oped. Instead the Pascal System needs a P-code simulator before it can work. We
must either turn every existing machine into a P-code machine or else build
new machines to interpret the P-code produced by the Pascal System. The pros-
pect of selling a P-code machine to everyone who wanted Pascal did not seem
like an attractive alternative, so a series of P-code machine simulators was
developed instead.

At University of California at San Diego, a group headed by Kenneth
Bowles initially developed P-code simulators for LSI-11 microcomputers. Later,
other simulators (8080, Z80) were developed so that the Pascal System could be

PASCAL THE MACHINE 7

run on low-cost microcomputers. These simulators were mainly responsible for
the widespread acceptance of Pascal.

The UCSD system developed by Kenneth Bowles is actually a dialect of
the original Pascal System. Many features have been changed or eliminated be-
cause of the problems unique to such restricted machines. Thus the UCSD Pascal
System is only an approximation of the full Pascal System as originally imple-
mented on a large machine. Successive versions of UCSD Pascal are released
under different numbers to indicate an increasingly powerful version.

The P-code simulator employed in the Apple computer uses a very dif-
ferent set of P-code ‘“‘instructions” from the original. It is not necessary to
understand P-code in order to use the Pascal System, but it may help to explain
the internal behavior of the Pascal System if the general idea of P-code is under-
stood.

Pascal Program

Compile

P-code Program

eXecute

P-code Simulator

Hardware

Figure 1.3. Relationship Between P-code and Pascal.

The P-code “machine’” simulates a 16-bit word stack machine. A stack is a
memory which allows push and pop operations as well as data processing opera-
tions like add, subtract, and move. A push loads (copies) a word from one loca-
tion in the stack onto the top of the stack (tos), as shown in Figure 1.4. A pop
copies a value from the tos (top of stack) word and places it in some other word
in memory.

Figure 1.4 also shows a HEAP for storing lists (discussed later) and the
relative locations in main memory of the P-code simulator and the Pascal system.
Note that memory overflow occurs whenever the HEAP grows upward to meet
the downward-growing stack.

We can demonstrate how a stack operates by example. Suppose a Pascal
program for adding and subtracting is translated into stack operations:

X:=(A+B)/(C-D); (*Pascal statement *)

THE FRENCH CONNECTION (THE SYSTEM)

Base
(SP) 1—

tos Pointer —— =

L

High Address

PASCALSYSTEM
(in P-code)

Stack

Heap for Dynamic
Data Allocation

P-code Simulator
and Machine-dependent
routines

Low Address

Figure 1.4. The P-code Stack

The corresponding stack operations are:

PUSH
PUSH
ADD
PUSH
PUSH
SUB
DIV
POP

A
B

X

; load (tos) with A

)

load (tos+1) with B
(A+B) is put in (tos)
load (tos+1) with C

; load (tos+2) with D
; (C-D)is putin (tos+1)

(A+B)/(C-D) is put in (tos)

; (tos) is putin X.

These operations are managed by a special P-code register called the SP
(stack pointer). The SP points to the current tos (top of stack) word in the
stack. Figure 1.5 shows what happens when the stack operations above are

performed.

In the actual P-code machine there are several versions of the PUSH and
POP instructions depending on the type of values manipulated and the location
of the variables A,B,C,D, and X. We will translate X:=(A+B)/(C-D) into P-code
by assuming global locations for integers A,B,C,D, and X. This allows us to use
LDO to push a word onto the stack, SRO to pop a word, ADI (add integer), DVI
(divide integer), and SBI (subtract integers). The Pascal example is then con-
verted into the following P-code.

PASCAL THE MACHINE

(a) PUSH A; PUSH B;

(b) ADD

(c) PUSH C; PUSH D;

(d) SUB

(e) DIV

(f) POP X;

SP ——

Sp—

SP——»

Sp——

Sp—

SP —»

(A+B)

(A+B)

(A+B)/(C—D)

Figure 1.5. Interpret X:=(A+B)/(C-D)

Mnemonics Operand
LDO A
LDO B
ADI
LDO C
LDO D
SBI
DVI
SRO X

Comment
; push A
; push B
; (A+B)
: push C
5 push D
; (C-D)

: (A+B)/(C-D)
: X:=

10 THE FRENCH CONNECTION (THE SYSTEM)

The simple example above disguises many of the elaborate instructions
in P-code designed to address a variety of locations in the P-code memory, han-
dle a variety of data types (integers, real, characters), and handle segments, pro-
cedures, and functions in Pascal. However, it does reveal an interesting substruc-
ture of the Pascal System.

Since all Pascal Systems can run on top of a P-code simulator, we can
move a Pascal System from one machine to another by “implementing” the P-
code simulator on any new machine. The simulator is much easier to imple-
ment than the entire Pascal environment. This is the main advantage of Wirth’s
(and subsequently Bowles’) plan. The disadvantage, of course, is that some
performance is lost due to the slow simulation process.

We are now equipped with enough knowledge to use the Pascal System.
Each box at the Command level can now be opened and studied. This will allow
us to enter, modify, examine, and run Pascal programs.

TWENTY QUESTIONS

Use this test to review your comprehension of the ideas and facts of Chap-
ter 1.
Who invented Blaise Pascal?
Who invented the programming language Pascal?
Why did the inventor name the language after the person?
What was Jansenism?
What was the first purpose of the Pascal language?
What do we mean by the Pascal Environment?
What does the C(omp command do?

I I

What is the purpose of the L(ink command?
Why is the E(dit command used?
. What is the form of a file name?

[

. What command is used to copy a file?

i
N

. What three commands are combined by R(un?
. What is the file name of the workfile?
. Is P-code a machine or a program?

— b
v W

. In Figure 1.3 the commentsareenclosedin ?

=
(o))

. The push and pop operationsuse a.c..uu.... memory.

—_
~

. The abbreviation “tos” means unnn. ?

—_
oo

. What is the main advantage of P-code?

