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- Preface

Application of probability and stochastic process theory is playing an ever
increasing role in a number of diverse fields in engineering and the physical
sciences. This is due, in part, to the growing realization that many random.
phenomena observed in physics and engineering are described with reason-
able accurzcy following recent comprehensive advances in stochastic pre-
diction methodologies. As a consequence, the probabilistic approach has
become an important component of practical reasoning in physical sciences’
as well as an integrated part of modern design technology in engineering.

This book is designed to give senior undergraduate and graduate stu-
dents and researchers in engineering and the physical sciences a thorough -
understanding of the modern concepts of stochastic process theory and its
application for predicting statistical characteristics of random phenomena.
Toward this end, emphasis is placed on clarification of basic principles
supporting current prediction techniques and practical application of pre-
diction methods.

No advanced knowledge of probability theory on the part of the reader
is assumed. However, a sound knowledge of advanced calculus and func-
tional analysis is essential in order to Yomprehend the mathematical; analy-
sis. For the readers’ convenience a brief review of certain subjects such as
the Fourier transform, the Hilbert transform, the unit impulse function,.

c., which are useful in understanding the prediction tzchmquds are
summarlzed in the appendices.

This book consists of two parts, although no such.formal dmslon is
designated in the text. The first part consists of Chapters 1 through 8, which
present probability theory relevant to probabilistic analysis of sl,ochasm:
processes. Effort in these chapters is devoted to selecting subjects pe"unem
to predictions appearing in later chapters (the second part of the iext),
rather than to introducing general topics in probability theory. Needless 10
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xvi PREFACE

say, probability theory is a prerequisite for predicting the statistical as well
as the quantitative properties of random phenomena.

Chapter 9 through 17 discuss principles and advanced techniques in the
various subjects in stochastic processes and their application in the analysis
of random phenomena observed in engineering and the physical sciences. In
particular, the principles and procedures of spectral analysis and develop-
ment of the probability density function derived therefrom are discussed in
detail, since these provide the basis for modern probabilistic prediction
techniques. Included also is material found in the recent literature but
which has not been incorporated in textbooks such as higher order spectral
analysis, the joint probability distribution of amplitudes and periods, and
non-Gaussian random processes. Many examples are provided in order to
facilitate understanding of the material.

This book is a direct result of my teaching and rcsearch in stochastic
processes, and I am grateful to the College of Engineering, University of
Florida, for granting me sabbatical leave during which significant progress
in this undertaking was achieved.

I wish to acknowledge the encouragement and suggestions received from
a number of learned scholars in the diverse fields of mathematical statistics,
physics, and engineering. I am especially indebted to Professor Longuet-
Higgins, University of Cambridge, and Professor Emeritus St. Denis, Uni-
versity of Hawaii,; who inspired me to apply in depth the stochastic process
approach to engineering problems. I would like to express my sincere
appreciation to Mrs. Cathy Freeman and Ms. Amanda Graham for typing
the manuscript, and to Ms. Lillean Pieter for drawing the illustrations.
Assistance in editorial work rendered by my wife Margaret for the final
preparation of the manuscript is deeply appreciated.

MicHEL K. OcH!

Gainesville, Florida
October 1989
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CHAPTERI

Elements of Probability

We

1.1 BASIC CONCEPT

The theory of probability deals with the mathematical analysis of quantities
obtained from observations of random phenomena. Here, the termh random
phenomena é&s defined as phenomena that in repeated observations under
identical circumstances do not nearly yield the same outcomes. There is no
deterministic regularity in the occurrence of outcomes; instead, there is a
statistical regularity in the sense that the relative frequency of occurrence of
the outcome may be evaluated. That is, the relative frequency of occurrence
of the event fluctuates, but the degree of the fluctuation decreases, in
general, with the increase in the number of observations and therefore the
frequency setiles to a certain value. .

To elaborate on the above statement, let us consider, as an vxaruple the
magnitude of peak-to-trough excursions of wind-generated waves in the
ocean. As shown in Figure 1.1 g}, the magnitude of the excursion. denoted
by X in the figure, vaties i random fashion fronyrone wave to snother, and
hence it may be said that there s no detersministic regelanty. If the
observed data of X are classified iv 1 /72 m intervals, for exampie, and the
relative frequency of occurrence of X 15 calenlatedd for each wierval, then
we can obtain the relative freguencies as a function of X which s called the
histogram. The shape of the histogiam is inconsistent when the number of
observations is small. However, the degree of inconsistepry is rednced and
converges to a certain shape as shown in Figure 1.1(b) with the' increase in
the number of obsérvations, for example on the order of 200. This may be
called statistical regularity.



2 ELEMENTS OF PROBABILITY

(@)
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Figure 1.1  Time history of ocean waves and histogram of peak-to-trough excur-

sions.

Prior to continuing further discussion on the fundamental concept of
probability, it may be well to give the definition of sample space and a
random event.

Definition 1.1. In the observation of a random phenomenon or random
experiment, a set consisting of all possible outcomes that could occur is
called the sample space and is denoted by Q. A set belonging to the sample
space for which the probability can be defined is called a random event.

Th- r=lztive frequency of occurrence of a random event fluctuates even
though observations (or experiments) are repeated under the same environ-
ment. However, it approaches a stable limit value as the number of
observations becomes large, and this limit value is called the probability of
the random event. _ '

Examgle 1.I. Let 118 consider the simple random experiment of tossing
a fair cors, The outcome of this experiment is either a head, H, or a tail, T.
Hence, the sample space contains two elements, & = {H, T}. Suppose we
are interested in the occurrence of a head, then {H} is a random event.’
Although we cannot predetermine.the result of any particular toss, the
frequency of occurrence of a head will converge to a certain limit value, 0.5,

-



BASIC CONCEPT T 3

after many tosses. This limit value is called the probability of occurrence of
a head. [ ]

Example 1.2. Let us consider the launching of a missile from a subma-
rine. The outcome of this random experiment is either a success, S, or a
failure, F, and hence the sample space for this example is given by
@ = {S,F). This situation is exactly the same as shown in Example 1.1. The
relative frequency of the random event, {S}, will converge to a certain limit
value after many trials, but the value may not necessarily be 0.5. This is
because, unlike the case of a fair coin, a success significantly depends on
various factors such as performance of the launching device and the control
mechanism of the missile. ]

Example 1.3. Let us consider the launching of a missile three times
from a submarine. Although the outcome is either a success, S, or a failure,
F. the sagple space for this case does not consist of only two elements.
Note thst the sample space is a set consisting of all possible outcomes;
hence, for this example, we have a set consisting of eight outcomes:

= {wy, 0y, 0y, Wy, w5, g, W7, Wy}

where w;, =S § S ws=FSS
w,=SSF wg=FSF
w;=SFS w,=FFS
w,=SFF wg=FFF

Suppose we are interested in the possibility of hitting the target (even
one hit is acceptable), then the random event is a set {w,, w,, w,, Wy, ws,
wg, w,}. If we want to know the possibility of hitting the target at least
twice, then the random event is a set { w,, w,, @;, ws}. The relative frequen-
cies of occurrence of the random events for this example will be shown
later. =

Example 1.4. The wind-generated wave profile (the deviation from the
still water level) is observed at a location where the water depth is 5 m. The
sample space of this example consists of elements that take any value
between —5 and co. Suppose we are interested in the possibility that the
wave profile will exceed +2 m, then a set of continuous ranges {(—5, —2)
and (2, 00)} is the random event. B

The discussion thus far briefly outlines the fundamental concept of
probability in a heurictic sense. Modern probability theory, however, has
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“been developed based on a rigorous mathematical foundation that provides
a precise definition of probability, random variables, probability functions,
and so on, so that the outcome of random events or experiments can be
mathematically described. To discuss fundamental probability theory, it is
necessary to use several definitions and terminologies from fundamental set
theory. These are summarized in the following section.

1.2 ALGEBRA OF SETS AND FIELDS

A set is a collection of objectives. Each member, x, of a set A is called an
element of set A, and is denoted by x € 4.

Definition 1.2. If every element of a set A, is also an element of set 4,,
then A, is the subser of the set A, and is denoted by 4, C 4,.

We may write the definition of a subset as follows:
A, C A = {x € A,; x €A, implies x € 4, }

It may be very conveniém to illusirat_e various definitions concerning the
algebra of sets by a pictorial sketch called a Venn diagram. For example,
Figure 1.2 is a Venn diagram indicating the definition of a subset.

Definition 1.3. Two sets 4, and A, are said to be equal, denoted by
A4, =A,,if A, C A4, and 4, C 4,.

Definition 1.4. A set that contains no elements is called the empty set or
null set, and is denoted by 4-= 0. '

Definition 1.5. The set of all elements that belong to at least one of the

sets A, A,,..., A, is called the union of the sets 4,, i = 1,2,..., n, and is
denoted by U7, 4,. '

. }

Fioure 22 Suobsct 4, © 4;.
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Az
Aq -

(@) ®)
Figure 1.3 Unions (a) 4, U 4, and (b) 4, U A, U A;.

We may write the definition as

U4, =(xe4,foratleastonei=1,2,...,n)}
i=1

Figures 1.3(a) and (b) show the unions of 4, U 4, and 4, U 4, U 4,,
respectively.

Definition 1.6. The set of all elements that belong to each of the sets

Ay, Ay, ..., A, is called the intersection of the sets A, 4,,.

,A,, and is
denoted by N/, 4,.

We may write

NA={(xeAd foralli=1,2,...,n)

i)

Figures 1.4(a) and (b) show the intersections 4, N A, and A4, N 4, N 45,
respectively.

Figuse 14" Intersections (a) A, N A4, and (b) A 0V Ay N A;,



