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INTERNAL MODEL CONTROL — THEORY
AND APPLICATIONS

M. Morari
California Institute of Technology, Pasadena, California, USA

Abstract. Process control is characterized by severe modelling nroblems.
Therefore, robustness of the control system, that is, stability and accent—
able performance in the event of plant narameter changes and sensor and/or

actuator failure is of paramount imnortance.

During the nast few years a

multivariable control system design method, Internal Model Control (m™Mc),

has been developed which addresses snecifically these issues.

The IMC

scheme is transparent, can be easily adiusted on-line and is therefore
readily accepted by the operating nersonnel.

The basic theoretical nrincinles behind I!C are described and narallels are
drawn to other design schemes (Model Algorithmic Control, Dynamic Matrix

Control, Linear Ouadratic Ootimal Control, Smith Predictor, etc.).
sions of IMC to nonlinear systems are indicated.

Exten-
Annlications of IMC both

in simulations and on pilot vlants are discussed.

Teywords,
systems, nonlinear control systems.

INTRODUCTION

HMany of the modern controller design techni-
ques have not found their way into the nro-
cess industries desnite nroven success in
aerospace applications. The reasons are the
different underlying systems on one hand and
the different performance requirements on the
other. Snace structures are notorious for
their large number of modes most of which are
only slightly damped. On the contrary, most
systems found in the nrocess industries are
sluggish, overdamped and their dynamic
characteristics can generally be approximated
well by a first or second order lag combined
with a dead time. A second imnortant dis-
tinguishing feature is that many chemical
processes are strongly nonlinear and can only
be poorly modeled, while the mathematical des-
crintions of sattelite motions are usuallv
quite accurate. The requirements on the
closed loop transient response of a chemical
processing system are generally auite lose;
the steady state nerformance is of maior
importance (no offset). On the other hand,
in space applications the problem is most
often of the servotype and there is no steady
state to worry about. Another imvnortant
requirement is that for controllers to be
accented by the process industries they have
to be easily adjustable on-line by onerating
personnel without university level training.
A final important issue is that the onerating
region of a chemical nlant is usually highlv
constrained and a controller must be able to

Process control, robustness, time lag svstems, samnled data

take the constraints into account exnlicitly
in order to keen the nlant safelv within the
nrescribed bounds.

The dissatisfaction with the abilitv of the
available control svstem design methods to
deal effectively with these issues and the
increased power of readily available comnuter
hardware have led a number of research grouns
in industry and academia to search for new
alternatives. The prominent ones have become
known as Model Algorithmic Control (Richalet,
1978), Dynamic Matrix Control (Cutler,
Ramaker, 1980), Inferential Control (Brosilow,
1979) and Internal Model Control (Garcia,
Morari, 1982). Though this was clearly not
recognized by most of the develoners the
principle features which give these methods
their power, are identical and will be eluci-
dated next. The key issue is the capability
of the new techniaues to combine the advan-
tages of open-loovp (feed forward) and feed-
back control and to eliminate their disadvan-
tages.

The advantage of the onen loon scheme (Fig.
1A) is that the stability question is trivial
(the system is stable when both the control-
ler and the system are stable) and that the
controller is easy to design (gc=g"l). The
disadvantages are the sensitivity of the
performance to modelling errors and the
inabilityv to cope with unmeasured disturbances.,
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With the feedback arrangement (Fig. 1B) the
situation is reversed. Modelling errors and
unmeasured disturbances can be dealt with
effectively but the tuning is complicated by
the closed loop stability problem.

We can now augment the open-loop and closed-
loop systems as indicated in Fig. 1 C & D
without effecting their performance: 1In Fig.
1C, 3=0, and therefore the system is still
open-loop, in Fig. 1D the two blocks g (g
indicates a model of the plant g) cancel each
other. Comparing Fig. 1C and D and using

the appropriate definitions we arrive at the
general structure in Fig. 1E which has all
the advantages of both the open-loop and the
closed-loop structures: When the model of
the plant is perfect (g=g) and there are no
disturbances (d=0), feedback is not needed

and structure E behaves identically as
structure A, When there are modelling errors
and/or disturbances feedback is needed and
structure E behaves identically as structure
B. Because the plant model g appears expli-
citely in E, this structure is referred to

as the Internal Model Control (IMC) structure,
As a first approximation we can say that the
controller go in E can be designed with the
simplicity of an open-loop controller but
that the structure E has all the nice perfor-
mance characteristics of a feedback system.
Obviously, the situation is not quite as
straightforward, but this argument should
provide sufficient motivation to explore the
theoretical properties of the IMC structure
in more depth. Striving for clarity rather
than generality in this expository paper we
will start with a discussion of continuous
single-input-single-output (SISO) systems.
After that the results will be extended to
multi-input-multi-output (MIMO) and sampled
data systems. The paper will conclude with

a number of comparative simulation and ex-
perimental studies.

SISO SYSTEMS

From the block diagram for the IMC structure
(Fig. 1E) follow the relationships

8c

LT TR s w
_ g28¢c _
Y= TGy TsmdH 2

The advantages of the IMC structure discussed
qualitatively in the introduction can be
stated more precisely in the form of three
properties which can be proved easily from
(1) and (2).

Property P1 (Dual Stability): Assume the
model is perfect (g=g). Then the closed loop
system in Fig. 1E is stable if the controller
g. and the plant g are stable.

Morari

Property P2 (Perfect Control): Assume that
the controller is equal to the model inverse
(gc=§_1) and that the closed loop system in
Fig. 1E is stable. Then y(t) = yg(t) for all
t > 0 and all disturbances d(t).

Property P3 (Zero Offset): Assume that the
steady state gain of the contoller is equal
to the inverse of the model gain
(gc(0)=§(0)_1) and that the closed loon
system in Fig. 1E is stable. Then for an
asymptotically constant setpoint

(%ig y4(t)=yg) and asymptotically constant

disturbances there will be no offset
(1im  y(t)=yg).
>

Pl simply expresses the fact that unless
there are modelling errors and as long as the
open loop system is stable, the stability
issue is trivial. P2 reasserts that the
ideal open-loop controller leads to nerfect
closed-loop performance when the IMC struc-
ture is employed. P3 states that integral-
type control action can be easily achieved
without the need of introducing additional
tuning vparameters.

Superficially these properties seem too good
to be true. However, it should be emphasized
that structures B and E are ecuivalent (Fig.
1) as is apparent from the following trans—
formation equations

__c¢
Hig 1+cg (3)
8c
- Be 4
c s, (4)

and therefore the properties can be easilv
explained. Whatever is possible with struc-
ture B is possible with structure E and vice
versa. We know intuitively that P2 requires
an infinite controller gain and this is con-
firmed by substitutin% gc = & in (4). By
setting g.(0) = g(0)”" as postulated for P3
we find c¢(0) = © which implies integral con-
trol action as expected.

The advantage of the IMC structure is two-
fold. 1In simplified terms we can say the
larger the '"gain'" the better the performance.
In the conventional structure B the objective
is to make the "gain'" as large as possible
without causing instability. Simultaneously
attention is to be paid to other criteria
like robustness to modelling errors and to
constraints like input saturation. Accord-
ing to P2, with IMC we can start with a
stable closed loop system with perfect con-
trol. Thus the first design problem is
eliminated altogether and full attention can
be devoted to the additional criteria and
constraints. The second advantage of

IMC is that the design philosophy lends
itself much better to be extended to multi-
variable and nonlinear systems as we will

see later,
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There are several reasons why the "perfect
controller" implied by P2 cannot be realized
in practice.

1) Right half plane (RHP) zeros: If the
model has a RHP zero, the controller gc = g~
has a RHP pole and if g = g the closed-— -loop
system will be unstable according to PIl.

-l

2) Time delay: If the model/plant contains
a time delay, the controller 8. = g~ is
predictive and cannot be reallzed by a physi-
cal system.

3) Constraints on the manipulated variables:
If the model is strictly proper then the
perfect controller Bc = §'1 is improper which
implies iig Igci = ©. Thus infinitesirally

small high frequency disturbances would give
rise to infinitely large excursions of the
manipulated variables which is physically
impossible.

4) Modelling error: If g # g, Pl does not
hold and the closed loop system will general-

~

ly be unstable for the controller 8c = 8 L

In order to deal with these four issues the
ideal of perfect control has to be abandoned.
This is done in two steps.

1) The model g is factored
g = §+ - (5)

such that g_'is stable and causal and
§+(0) = 1,

2) The controller is

B = BT & (6)
where f is an adjustable low-pass filter
which guarantees that g. is proper and the
closed loop system is robust. By definition
of the factorization (5) gc 1s realizable.

The design of the IMC controller involves as
a first step the factorization of g in some
suitable manner and subsequently the selec-—
tion and tuning of the filter f. 1In the
design procedure we have developed, a
perfect model is assumed for the first step
and the factorization is performed to opti-
mize some performance measure., In the
second step the filter is selected to make
the closed loop system robust against model-
ling errors.

Factorization of g

In the absence of modelling error (g=g) and
with g, = g:l the control error e is

e =y - yg = (g4-1)(yg-d) (@)

8+ can be selected to minimize some function

of the error for a specific input (vs—d),
for example

[7 et = = [ (gy-1)% (yg-d) 2w ®)
o [e]

Frank (1974) proposes a general procedure
for this optimization which is valid for
arbitrary inputs. In summary, the integral
square error optimal factorization for sten
inputs is as follows.

Theorem 1 (Frank, 1974): Let

(s=z1) (s=z2) *** (s-z) (9)
(s=p1) (s=p2) *** (s-p,)

g =

where z;, ...z; > 0 and Zitls +eeZy < O.

Then the ontimal g, minimizing (8) is

(=stz1) *e+ (-s+z4)

B+ T Te¥z1) <o (stzy) (10)
i
The optimal ISE is 2 e
j=1“]
Theorem 3 (Frank, 1974): Let
—0)s
g = f;§§§ e ? (11)

where n(s) and d(s) are polynomials. Then
the ontimal g, minimizing (8) is

g4 = e_GS (12)

Filter Design

The filter is required to make the controlled
8c proper and thus realizable and to make
the closed loon system robust to modelling
errors. For realizability the order differ-
ence between numerator and denominator
polynomial of the filter should be at least
n-m (c.f. (9)). 1In the absence of modelling
errors the closed loop response is

y = g, f (ys—d) + d (13)
and the filter could be selected to minimize,
for example

[7 e%at = %f (g f-D)2(yg-d)? do  (14)
(o] o

Frank (1974) provides a table of ootimal
filters with one adjustable parameter which
has a direct effect on the speed but not the
shape of the closed loop response. The main
objective of the filter however is to
guarantee reasonably good and at least stable
behavior in the presence of plant/model
mismatch.



4 M. Morari

The model uncertainty is commonly assumed to
be of the multiplicative type

g(s) = g(s) (1+4(s)) (15)

where 2(s) is constrained by a real non-
negative function

[LGiw) | € T (W) (16)
or

This implies that the Nyquist plot of the
plant g(s) can lie within a band around the
Nyquist plot of the model §(s). This band
is described by a set of circles centered at
g(iw) with radius [§(iw)| T (w) (Fig. 2).
At high frequencies the model is essentially

always of lower order than the plant. There—
fore
lim ¥ (w) = 1 (18)

w>r

For the controller (6) and the uncertainty
(16,17) the closed loop expression (2)
becomes

g f (1+2)

y = 175, €4 (yg=d) + d (19)

Theorem 3: The closed loop system is stable
for all uncertainties Z(s\léatisfying (16,17)

. < -
if and only if If(iw)l T

Proof: Follows the same outline as in Garcia
and Morari (1984). Thm. 3 provides a design
rule for the filter given a specifit uncer-
tainty range for the plant. Tt guarantees
stability but for adequate performance it is
desirable to limit the maximum peak of the
closed loop transfer function

£ |
W s1+a, Yw (20)

where a ® 0.4 would be a reasonable require-—
ment for process control applications.
Except for very simple analytic expressions
for 2, the search for the filter f to satis-—
fy (20) has to be performed numerically,

According to P3 the requirement for integral
control is that

]

8c(0) = EZ1(0)£(0) = 71 (0) (21)
and because of g,(0) = 1, f(0) = 1. Tt then
follows from Thm. 3 that integral control is
impossible if the steady state gain error
can exceed 100% (E(0)>l). This is expressed
more precisely in Thm, 4.

Theorem 4 (Morari, 1583a): There exists a
stabilizing filter with f(0) = 1 for the
closed loop system in Fig. 1E with the con-
troller (6) if and only if g(0)8(D)~! > 0 or
with other words if the steady state gain of
the model and the svstem have the same sign.

IMC and the Smith Predictor

A look at IMC for systems with a time delay
(Fig. 3A) shows the completeequivalence with
the Smith Predictor (Fig. 3B) where

1 f
TR T ==
This leads to a number of important con-
clusions:

® IMC includes time delay compensators in
a natural manner,

® The factorization (5) implied by the
Smith Predictor is only optimal in the
sense of ISE for step inputs.

® Robustness studies via the IMC structure
have led to very simple filter design rules
for the case that the modelling error is
only in the time delay (Brosilow, 1979;
Clinch, 1982). Let the possible time
delay error be *ec and let a first order
filter 1/(ts+l) be sufficient to make the
controller g. realizable. If T is select-
ed equal to (1.4 times) €, then the maxi-
mum closed loop amplitude ratio peak will
not exceed 2 (l1.4). With these filter
settings it can be shown that the combina-
tion of a TI controller with a Smith Pre-
dictor always outperforms a PID controller
alone. Therefore all the reports about
the impracticality and poor performance of
Smith Predictors because of their sensiti-
vity are myths generated by incorrect
tuning procedures.

Summarz

The IMC design procedure consists of two
steps.,

Step 1: Factor the model transfer function
into an invertible part g_ and a noninverti-
ble part g,. If the factorization is per—
formed according to Thm. 1 & 2 and if f is

a low pass filter chosen to make 8. DProper
the controller g, = §-'f minimizes the ISE
for step changes in the inputs.

Step 2: 1In the presence of model uncertain-
ty the filter time contants have to be
increased to satisfy the condition ot Thm,
3.

The simplicitv of the design procedure should
be apparent. In the absence of modelling
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errors there is only one adjustable parameter,
the speed of response determined by the
filter, which can be selected by the designer
at will, If modelling errors are present

the problem of robustness has to be addressed
by adjusting the filter,

The tuning is so transparent because the
designer selects the closed loop transfer
function gy f directly (see (13)). A "fast"
filter pushes the system hard and increases
the possibility of an instability if the
model is inaccurate. If not much is demanded
from the system (conservative filter) it

will be stable even when the modelling errors
are severe. The same could be accomplished
with the classic feedback structure (Fig. 1B)
but IMC uses the inverse of g_ explicitely
instead of approximating it indirectly by
selecting a high controller gain. Also in the
classic structure a series of parameters in

¢ would have to be adjusted simultaneously

to have the effect of the single IMC filter
parameter,

Several questions of theoretical and practi-
cal interest are currently the focus of our
research efforts:

1) The uncertainty description (17) destroys
phase information and can therefore lead to
very conservative control systems,

2) No simple, practically effective filter
design methods to satisfy criteria like (20)
have been proposed yet,

3) In deciding on the optimal factorization
(5) attention should be paid to modelling
errors and not only to the ISE. This can
have a profound effect on the performance
(Brosilow, 1983) but only demostrative case
studies and no fundamental analyses are avail-
able to date.

MIMO SYSTEMS

The basic structure, properties, relation-
ships and design philosophy carry over to the
multivariable case and will not be elaborated
on in detail. Transfer functions are replac-
ed by transfer matrices which will be denoted
by canital letters, Again all systems will
be assumed to be strictly open-loop stable
and to have the same number of inputs and
outputs. Then for the IMC structure multi-
variable equivalent of Fig, 1E we find

¥ = G(I4G¢ (6-6)) 716 (yg=d) + d (23)

u = (T4G, (6-8)) 716 (yg-d) (24)

Properties P1-P3 carry over simply by substi-
tuting matrices for scalars, The factoriza-
tion of G into an invertible and a noninver-
tible part and the design of the robustness
filter need special attention., It should

be pointed out at this point that zeros of
transfer matrices can be defined in a number
of ways (MacFarlane, 1974) but that in
general they bear no connection to the zeros
of the individual transfer matrix elements.
For stable systems the RHP zeros can be
determined from the determinant of the trans-
fer matrix. The factorization of time
delays is complicated by the fact that in
general the time delays in the different
matrix elements are different.

Factorization of G

In princinle G4 could be determined again by
minimizing a scalar function of the error

—e =y - yg = (64=I) (yg-d) (25)

e.g. the ISE. Though such a nrocedure has
been develoned (Frank, 1974) it is not recom-
mended in oractice because it is extremely
cumbersome and also requires a relative
weighting of the different outout errors
which is usually quite arbitrary. The
following simple results have emerged from
the investigations by Holt and Morari (1983,

1984)., Note that without modelling errors,
and for
_ 1l
G, =G_ F (26)

reduces to
y=G4 F (ys—d) + d (27)

Thus, the type of factorization determines
directly the closed loop response.

Theorem 5 (Holt and Morari, 1984): Let the
MIMO system G(s) have RHP zeros at s=zi,
z2, +..Z4y. Then, in general, the "bad"
effect of the RHP zeros can be localized to
any particular output,

l'
. 0
My Y on faan )
G, =|=zrrur= : STZL xeeex | (28)
(s+z1)eee(stzy) 1,
0 o1

where all the off-diagonal elements are zero
excent in the row which contains the RFP
Zeros.

For example, consider the system

1 1

i
G(s) = —
st | 1425 2

which has a zero at s = 1/2, Three possible
factorizations are shown below together with
the ISE resulting from a unit step change

in both set points
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FZS+1
. 2s+1 0 ) 1 o
G+(S) - 0 -2s+1 ; G+ Tl 8s  —2s41)}
| 2s+1 2s+1 2s+1
ISE = 8 ISE = 4
Bt
2s+1 2s+1
Gi =
0 1
ISE = 1

The optimal G, can be found using the men-
tioned matrix factorization procedure
(Frank, 1974):

. 1 5-6s 8s 4
G¥(s) = e ; ISE = —
+ 5(1+2s) 8a 5465 5

For a different set of inputs or a different
weighting of the outputs the ISE-optimal
factor G, (s) would be different. Thus
striving for ISE optimality does not appear
a very practical proposition. Factorizations
of the type G+l, 6,2 & G+3 are much easier
to obtain and allow the designer to clearly
indicate his preference. If a decoupled
response is sought G+l(s) is the answer. If
output 1 is more important G+2 should be
selected, if output 2 is critical G+3 is

the best candidate,

Similarly, in the case of time delays a
trade-off between the speed of the closed
loop response and decoupling is possible.
For example three possible factorizations for

0 e—25
G =
_e—ZS 1
are
1 e—&s 0 e—ZS 0
= . 2 =

G+ 0 e—Zs ’ G+ (l_e—ZS) -2s
; e—4s e—ZS(l_ —ZS)
G =

= 0 1

G indicates that output 1 can react only
after two time invervals, output 2 can react
immediately. These figures are a lower
bound on the response time but they are not
an indication of the actual settling time,
If both outputs are equally important and
decoupling is chosen, G+1 provides an upper
bound on the settling time., This is veri-
fied by G 2, where preference is given to
the first output which settles in minimum
time (cf. G), at the cost of decoupling and
a maximum settling time for the second out-
put (cf. G+1). Analogously, in G+?preference

Morari

is given to the second output. Holt & Morari
(1983) have shown that a diagonal G which
renders G_' causal is "optimal" if and only
if the rows and columns of G can be rearrang-
ed such that the smallest time delay of each
row is on the diagonal. For example, the
Wood & Berry (1973) distillation column has
the transfer matrix

12.8 ™% --18.9 & 38
16.7s+1 21s+1
G(s) = . (29)
T T R
10.9s+1 14, 4s+1

Here the smallest time delays are on the
diagonal and therefore G, = diag(e”S, e=3s)
is "ontimal'". The lower and upper bounds on
the settling time coincide.

Contrary to the results obtained for systems
involving RHP zeros, the effects of time
delays are structured, i.e. they are general+
ly associated with a particular outnut and
cannot be shifted around.

Filter Design

Again the function of the filter is twofold:
It serves to make the controller G, (26)
proper and thus relizable and to provide
robustness against modelling errors for the
closed loop system. The realizability issue
can be resolved trivially simply by providing
enough poles in the filter. The main objec—
tive of the filter, namely to guarantee
reasonably good, but at least stable behavior
is the presence of plant-model mismatch is
more difficult to accomplish.

As shown in Fig. 4 the multivariable multi-
plicative uncertainties can act either on
the imputs (LI) or the outputs (LO)

G(s) = G(s) (I+L(s)) (30A)
G(s) = (I+L0(s))€(s) (30B)
174 (G-E)Il < 21 (w) (311)
TGE-8)E < 25 W) (31B)

where 27, QO are scalar functions defined on
the positive reals. These functions do not
allow to distinguish between uncertainty
localized in one element and uncertainty
"spread" over all elements. This might of
might not be disadvantageous depending on

how much uncertainty information is available.
Also let us define

T (w) = Max (4 (), Ko(w)) (32)

What norms whould be used will deoend on
the application. Here we will use the
spectral norm
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el = max Ai% (G*G) (33)
1

which is compatible with the Euclidean vector
norm. We will employ the following notation
for the singular values,

1
5

Amax(G*G)

oy (6)

1/2
Om(G) Amin(G*G)

It can be shown that

Gm(G) lull < lGul < oy (6) lull (34)

Thus the maximum singluar value is a natural
definition of gain for multivariable systems.
Substituting the uncertainty description
(30-32) and the controller (26) into (23)

the following guidelines emerge for the
design of the multivatiable filter.

Theorem 6 (Grossmann & Morari, 1983): The
closed loop system is stable for all uncer—
tainties (30A) or (30B) satisfying (31A) or
(31B) and (32) if

1
Il < I (35)

where

Y(® = e = 2 Eﬁg (36)
m

is the condition number of . <y is a measure

of singularity.

Comparing Thm. 6 with Thm. 3 we note that the
bound on the filter gain is not only inverse-
ly proportional to the uncertainty (%) but
also to the condition number. Because y > 1
this implies that ill-conditioned systems can
amplify modelling errors in a manner unknown
in SISO systems. This is probably the main
source of design difficulties in MIMO systems,

Thm. 6 guarantees stable but not necessarily
good performance. In our experience (35) is
generally too conservative because the un-—
certainty description (30), (31) is inherently
conservative, Tt is likely that some recent
results by Doyle (1983) lead to a more prac-—
tical result,

According to P3 the requirement for MIMO
integral control is that

G.(0) = BN (OF(0) = T (0) (37)

and if we define §+(O) =TI, F(0) = I, Thus
when v (G(0))2(0) > 1 the existence of a
filter with unity steady state gain (F(0)=1I)
is not guaranteed any more., Two tighter
theorems provide more information.

Theorem 7 (Morari, 1983a):

There exists no
stabilizing filter with F(0) = I for the MIMO
closed loop system in Fig., 1E with the con-
troller (26) if det(G(0)&(0)~!) < 0.

Theorem 8 (Morari, 1983a): There exists a
stabilizing filter with F(0) = I for the

MIMO closed loop system in Fig. 1E with the
controller (26) if all the eigenvalues of the
matrix product G(0)E(0)~' are in the RHP.

Comparing Thm's. 4 and 7 we note that in
MIMO system the eigenvalues of the steady
state gain matrix play a similar role as the
gain of SISO system. 1In SISO system the sign
of the gain is usually known from physical
arguments and thus the condition postulated
in Thm. 4 can be satisfied easily. In ill-
conditioned MIMO systems the accuracy of &
required by Thm. 8 can often be excessive.
Also, Thm, 8 is only sufficient while Thm. &4
was also necessary., When the number of
eigenvalues of G(0)G(0)~! 4in the LHP is odd
there clearly exists no stabilizing filter
(Thm. 7), when it is even there could exist
one,

MIMO TMC and Multivariable Time Delay
Compensation

After many attempts in the literature
(Alevisakis & Seborg, 1973; Ogunndike &

Ray, 1979) of varying degree of success and
restrictiveness the IMC structure points out
a new way of multivariable time delay com-
pensation. For the case of equal time delays
in all transfer matrix elements the IMC pro-
posed compensator structure (Fig. 3B) reduces
to that of Alevisakis & Seborg (1973) or
Ogunnaike & Ray (1979). Otherwise it
generally does not remove all time delays
from the transfer matrix but does so selec—
tively (see the definition of &_). This
always leads to significant performance im-
provements as will be demonstrated in the
example section., More details are available

from Holt and coworkers (1984). To date the
robustness results (Thm. 6) have not been
translated into simple filter design rules
to guarantee satisfactory performance in the
presence of time delay modelling errors.

Summarz

The TMC design procedure for MIMO systems
consists of two steps:

Step 1: The model transfer matrix has to be
factored into an invertible part G_ and a
noninvertible part C+. In this factorization
the designer has some flexibility to localize
the detrimental effect of the nonminimum
phase elements on one or the other output

and to choose a decoupled response or to
allow full or partial interactions.
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Step 2: 1In the presence of model uncertainty
a low pass filter has to be introduced, for
example of the form

ky
F = diag(l/(t3s+1) ) (38)

By choosing the filter time constants and the
filter order sufficiently large, Thm. 6
guarantees that the system can be stabilized
without sacrificing integral control action
as long as the condition of Thm. 8 is satis—
fied.

The tuning procedure is inherently simple and
transparent, If the filter (38) is used then
for each output there is a single tuning
parameter T; which affects directly the speed
of response of the particular output, If a
fast response is demanded, a good model is
required.

The technique bears some resemblance to the
method of "decoupling" prominent in process
control applications. The analysis here has
shed light onto the old question when com-—
plete decoupling might be detrimental to
performance, This is the case when time
delays or RHP zeros are present in the trans-—
fer matrix. Furthermore some insight has
been gained into the question of robustness.

In terms of open research questions the same
types of problems as listed for SISO systems
await solution, Some help should be avail-
able from the works of Zames (1981) and
Doyle (1982).

DISCRETE TIME SYSTEMS

Most modern control systems acre micropro~
cessor or minicomputer based and unless the
sampling rate is very fast a discrete time
domain analysis and synthesis is more appro-
priate. All the results derived for SISO and
MIMO continuous systems in the preceding
sections can be easily rederived for discrete
time systems. In most cases equivalent
properties and theorems are found -~ now
formulated in terms of z~transforms instead
of Laplace Transforms. However, it turns

out that Thm. 8 can be considerably strength-
ened for sampled data systems.

Theorem 9 (Garcia & Morari, 1984): Assume
that the robustness filter F(z) is diagonal
and of the exponential type

F(y) = diag sty

<
l—-OLiz" 0 s OLi < 1 (39)
and that G, = §Z* F. There exists an o*
(0Sa*< 1) such that the system is closed
loop stable for all oy in the open interval
o0*<S o; < 1 if and only if G and & satisfy

Re{Aj GWT@W™) > o0 v (40)

where kj(A) denotes the jth eigenvalue of A,

Because of the discrete nature a first order
filter is sufficient for stability as long as
(40) is satisfied. Depending on the type of
uncertainty a higher order filter can be
required for continuous systems. Also, the
condition (40) is necessary and sufficient
for the existence of a range of ai's

(a* < o, < 1) for which the system is closed
loop stable. Note, however, that some
specific set of a.'s (instead of the open
interval extending to 1) might exist which
stabilizes the closed loop system even when
(40) is not satisfied. 1In this case the
system will become unstable when the o.'s
are increased. This conditional stability
makes the on-line tuning much more difficult
and is highly undesirable.

The role of the filter for the robustness of
SISO control systems is illustrated by Reid
and coworkers (1979) in a specific case
study, but the general theoretical explana-
tion offered by Thm. 9 is not provided.

The IMC structure starts to display its full
power when instead of simply translating

from continuous to discrete time, specific
use is made of the discrete formulation in
the computation of the control law. The
controller (26) is composed of the inverse of
the invertible part of the model and the
filter. This combination can be interpreted
as an approximate inverse of the model con-
structed to be stable and to avoid excessive
actions of the manipulated variable or at
least to be realizable. We can find approxi-
mate inverses in an alternate manner which
offers increased flexibility.

The process model can be employed to predict
the outputs resulting from a series of in-
puts. Or alternatively, desired outputs can
be prescribed and the inputs could be calcu-
lated such that the predicted outputs follow
the presctibed outputs in some "optimal'
manner. If one requires the predicted values
to agree with the prescribed ones exactly

the system inputs resulting from the solution
of this matching problem will be the same as
would be obtained by an inversion of the
process model. TIf one requires the predicted
values only to be close to the desired ones
in the least square sense, for example, the
solution of the optimization problem will
provide an approximate inverse of the process
model., The characteristics of the approxi-
mate inverse can then be affected by the
choice of weighting matrices in the least
squares objective function. This method of
computing the control law is referred to in
the literature as "model-predictive control
law formulation".

We can pose the following problem to be
solved at time k subject to the model equa-
tions relating u and y



