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PREFACE

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe-
matics. It is a translation with updates and editorial comments of the Soviet Mathematical
Encyclopaedia published by ‘Soviet Encyclopaedia Publishing House® in five volumes in
1977—1985. The annotated translation consists of ten volumes including a special index
volume, g

There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type
articles dealing with the various main directions in mathematics (where a rather fine subdivi-
sion has been used). The main requirement for these articles has been that they should give a
reasonably complete up-to-date account of the current state of affairs in these areas and that
they should be maximally accessible. On the whole, these articles should be understandable to
mathematics students in their first specialization years, t0 graduates from other mathematical
areas and, depending on the specific subject, to specialists in other domains of science, en-
gineers and teachers of mathematics. These articles treat their material at a fairly general level
and aim to give an idea of the kind of problems, techniques and concepts involved in the area
in question. They also contain background and motivation rather than precise statements of
precise theorems with detailed definitions and technical details on how to carry out proofs and
constructions. _

The second kind of article, of medium length, ‘contains more detailed concrete problems,
results and techniques. These are aimed at a smaller group of readers and require more back-
ground expertise. Often these articles contain more precise and refined accounts of topics and
results touched upon in a general way in the first kind of article.

Finally, there is a third kind of article: short (reference) definitions.

Practically all articles (all except a few of the third kind) contain a list of references by
means of which more details and more material on the topic can be found. Most articles were
specially written for the encyclopaedia and in such cases the names of the original Soviet
authors_are mentioned. Some articles have another origin such as the Great Soviet Ency-
clopaedia (Bol'shaya Sovetskaya Entsiklopediya or BSE). : - :

Communication between mathematicians in various parts of the world has certainly greatly
improved in the last decennia. However, this does not mean that there are so-to-speak ‘one-to-
one onto’ translations of the terminology, concepts and tools used by one mathematical school
to those of another. There also are varying traditions of which questions are important and
which not, and what is considered a central problem in one tradition may well be besides the.
point from the point of view of another. Even for well-established areas of mathematical
inquiry, terminology varies across languages and even within a given language domain. Fur-
ther, a concept, theorem, algorithm, . .., which is associated with one proper name within one
tradition may well have another one in another, especially if the result or idea in question was
indeed discovered independently and more-or-less simultaneously. Finally, mathematics is a
very dynamic science and much has happened sii.ce the original articles v ..e finalized
around 1977). This made updates desirable (when needed). All this, as well as providing
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PREFACE

additional references to Western literature when needed, meant an enormous amount of work
for the board of experts as a whole; some indeed have done a truly impressive amount of work.
I must stress though that I am totally responsible for what is finally included and what is not of
all the material provided by the members of the board of experts. :

Many articles are thus provided with an editorial comment section in a different and some-
what smaller typeface. In particular, these annotations contain additional material, amplifica-
tions, alternative names, additional references, . . . . Modifications, updates and other extra
material provided by the original Soviet authors (not a rare occurrence) have been incorporated
in the articles themselves. ;

The final (10-th) volume of the ENCYCLOPAEDIA OF MATHEMATICS will be an index volume.
This index will contain all the titles of the articles (some 6600) and in addition the names of all
the definitions, named theorems, algorithms, lemmas, scholia, constructions, . . ., which occur
in the various articles. This includes, but is by no means limited to, all items which are printed
in bold or italic. Bold words or phrases, by the way, always refer to another article with
(precisely) that title.

All articles have been provided with one or more AMS classification numbers according to
the 1980 classification scheme (not, for various reasons, the 1985 revision), as have all items
occurring in the index. A phrase or word from an article which is included in the index always
inherits all the classification numbers of the article in question. In addition, it may have been
provided with its own classification numbers. In the index volume these numbers will be listed
with the phrase in question. Thus e.g. the Quillen — Suslin theorem of algebraic K-theory will
have its own main classification numbers (these are printed in bold; in this case that number is
18F25) as well as a number of others, often from totally different fields, pointing e.g. to parts
of mathematics where the theorem is applied, or where there occurs a problem related to it (in
this case e.g. 93D15). The index volume will also contain the inversion of this list which will,
for each number, provide a list of words and phrases which may serve as an initial description
of the ‘content’ of that classification number (as far as this ENCYCLOPAEDIA is concerned). For
more details on the index volume, its structure and organisation, and what kind of things can
be done with'it, cf. the (future) special preface to that volume.

Classifying ‘articles is a subjective matter. Opinions vary greatly as to what belongs where
and thus this attempt will cerfainly reflect the tastes and opinions of those who did the clas-
sification work. One feature of the present classification attempt is that the general basic
concepts and:definitions of an area like e.g. SSN (Homology and Cohomology theories) or 60J
(Markov processes) have been assigned classification numbers like 55NXX and 60JXX if there
was no finer classification number different from ...99 to which it clearly completely belongs.

Different parts of mathematics tend to have differences in notation. As a rule, in this

(ENCYCLOPAEDIA in a given article a notation is used which is traditional in the corresponding

field. Thus for example the (repeated index) summation convention is used in articles about
topics in fields where that is traditional (such as in certain parts of differential geometry (tensor
geometry)) and it is not used in other articles (e.g. on summation of series). This pertains
especially to the more technical articles.

For proper names in Cyrillic the British Standards Institute transcription system has been
used (cf. Mathematical Reviews). This makes well known names like S. N. Bernstein come out
as Bernshtein.

In such cases, especially in names of theorems and article titles. the traditional spelling has
been retained and the standard transcription version is given between brackets.

Ideally an encyclopaedia should be complete up to a certain more-or-less well defined level
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PREFACE

of detail. In the present case I would like to aim at the completeness level whereby every
theorem, concept, definition, lemma, construction which has a more-or-less “constant and
accepted name by which it is referred to by a recognizable group of mathematicians occurs
somewhere, and can be found via the index. It is unlikely that this completeness ideal will be
reached with this present ENCYCLOPAEDIA OF MATHEMATICS, but it certairly takes substantial
steps in this direction. Everyone who uses this ENCYCLOPAEDIA and finds items which are not
covered, which, he feels, should have been included, is invited to inform me about it. When
enough material has come in this way supplementary volumes will be put together.

The ENCYCLOPAEDIA is alphabetical. Many titles consist of several words. Thus the problem
arises how to order them. There are several systematic ways of doing this of course, for in-
stance using the first noun. All are unsatisfactory in one way or another. Here an attempt has
been made to order things according to words or natural groups of words as they are daily used
in practice. Some sample titles may serve to illustrate this: Statistical mechanics, mathemati-
cal problems in; Lie algebra; Free algebra; Associative algebra; Absolute continuity;
Abstract algebraic geometry; Boolean functions, normal forms of. Here again taste plays a
role (and usages vary). The index will contain all permutations. Meanwhile it will be advisable
for the reader to try out an occasional transposition himself. Titles like K-theory are to be
found under K, more precisely its lexicographic place is identical with ‘K theory’, i.e. *-’
‘space” and comes before all other symbols. Greek letters come before the corresponding Latin
~ ones, using the standard transcriptions. Thus x2-distribution (chi-squared distribution) is at the

beginning of the letter C. Ax as in C*-algebra and x-regular ring is ignored lexicographically.
Some titles involve Greek letters spelled out in Latin. These are of course ordered just like any
other ‘ordinary’ title.
This volume has been computer typeset using the (Unix-based) system of the CWI, Amster-
“dam. The technical (mark-up-language) keyboarding was done by Rosemary Daniéls,
Chahrzade van 't Hoff and Joke Pesch. To meet the data-base and typesetting requirements of
this ENCYCLOPAEDIA substantial amounts of additional programming had to be done. This was
done by Johan Wolleswinke! Checking the translations against the original texts, and a lot of
desk editing and daily coordiiation was in the hands of Rob Hoksbergen. All these persons, the
members of the board of experts, and numerous others who provided information, rgmarks and
material for the editorial comments, I thank most cordially for their past and continuing efforts.
The original Soviet version had a printrun of 150,000 and is completely sold out. I hope that
this annotated and updated translation will turn out to be comparably useful.

Bussum, August 1987 . MICHIEL HAZEWINKEL



ICOSAHEDRAL SPACE - The three-dimensional
space that is the orbit space of the action of the binary
icosahedron group on the three-dimensional sphere. It
was discovered by H. Poincaré as an example of a
homology sphere of genus 2 in the consideration of
Heegaard diagrams (cf. Heegaard diagram). The
icosahedral space is a p-sheeted covering of S* ramified
along a torus knot of type (g,r), where p,q,r is any
permutation of the numbers 2, 3,5. The icosahedral
space can be defined analytically as the intersection of

Svsptios 23+23+23 =0

in C* with the unit sphere. Finally, the icosahedral

space can be identified with the dodecahedral space.
A.V. Chernavskii

Editorial comments.

References
[A1] Serrert, H. and THRELFALL, W.: Lehrbuch der Topologie,
Chelsea, reprint, 1947.

AMS 1980 Subject Classification: 57-XX

ICOSAHEDRON - One of the five regular polytopes.
An icosahedron %as 20 (triangular) faces, 30 edges and
12 vertices (at each of which 5 edges meet). If a is the
length of an edge of the icosahedron, then its volume is

given by
V= —1§2-a3(3+ V5) = 2.18174".

N>

MO

N

Editoriai comments. The regular polytopes are also
called the Platonic solids.

The symmetry group of the icosahedron plays a role in
various branches of mathematics, and led F. Klein to his
famous book [AZ].

" References

[A1] Coxerer, H.S.M.: Regular polytopes, Dover, reprint, 1973.

' [A2] KiLEIN, F.: Lectures on the isocahedron and the solution of

equations of the fifth degree, Dover, reprint, 1956 (translated
from the German).
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IDEAL - A special type of subobject of an algebraic
structure. The concept of an ideal first arose in the
theory of rings. The name ideal derives from the con-
cept of an ideal number.

For an algebra, a ring or a semi-group 4, an ideal 1
is a subalgebra, subring or sub-semi-group closed under
multiplication by elements of 4. Here an ideal is said
to be a left (or right) ideal if it is closed under multipli-
cation on the left (or right) by elements of 4, that is, if

Al = I (or IA = A),
where

Al = {ab: aeA, bel}, IA = (ba: ac4, bel}.

An ideal that is simultaneously a left ideal and a right ™
ideal (that is, one that is preserved under multiplication
by elements of A) is said to be two-sided. These three
concepts coincide in the commutative case. Every asser-
tion about left ideals has a corresponding dual asser-
tion about right ideals (subsequent statements will refer
only to the ‘left case’).

Two-sided ideals in rings and algebras play exactly
the same role as do normal subgroups (cf. Normal sub-
group) in groups. For every homomorphism f:4-3B,
the kernel Ker f (that is, the set of elements mapped to
0 by f) is an ideal, and conversely every ideal / is the
kernel of some homomorphism. Moreover, an ideal /
determines a unique congruence (in algebra) x on A of
which it is the zero class, and thus determines the
image Af of the homomorphism f of which it is the ker-
nel uniquely (up to an isomorphism): Af is isomorphic
to the quotient ring or quotient algebra A/x, denoted
also by 4 /1. Ideals of multi-operator groups have simi-
lar properties in relation to homomorphisms. In a



multi-operator §2-group 4 an ideal is defined to be a
normal subgroup of its additive group satisfying the
following property: For evefy n-ary operator w, arbi-
trary elements bel and a,,...,a,€4, the relation

@ - aq)t(a; - ai1(bt+a)a;y, - - aw)el
holds for i=1, ... ,n. (This concept reduces to that of
a two-sided ideal for rings and algebras.)

On the other hand, the two-sided ideals of a semi-
group do not give a description of all homomorphic
images of the semi-group. If a homomorphism f of a
semi-group A4 onto a semi-group B is given, then only
in the case where B is a semi-group with zero it is pos-
sible to associate with f a two-sided ideal in'a natural
way, namely f~!(0); however, this association need not
determine f uniquely. Nevertheless, if 7 is an ideal of 4,
then among the quotient semi-groups of 4 having the
class of I as an element there exists a maximal one,
written A/I (and called the ideal quotient). The ele-
ments of this semi-group are the elements of the set
A \ I and the ideal [ itself, which is the zero in A/ 1.

For an arbitrary subset XCA one can define the
ideal Iy generated by X as the intersection of all ideals
that contain X. The set X is said to be a basis of the
ideal Iy. Different bases can generate one and the same
ideal. An ideal generated by a single element is said to
be a principal ideal.

The intersection, and for semi-groups also the union,
of left (two-sided) ideals is again a left (two-sided)
ideal. For rings and algebras, the set-theoretical union
of ideals need not be an ideal. Let /; and I, be left or
two-sided ideals in a ring (or algebra) A. The sum of the
ideals I, and I, is the ideal I, +I1,={a+b: acl,,
bel,}; it is the smallest ideal of A containing I, and
I,. The set of all (left or two-sided) ideals of a ring (or
algebra) forms a lattice under the onerations of inter-
section and taking sums. Many classes of rings and
algebras are defined by conditions on their ideals or on
the lattice of ideals (see Principal ideal ring; Artinian
ring; Noctherian ring). :

An ideal of the multiplicative semi-group of a ring
may or may not be an ideal of the ring. A semi-group
A is a group if and only if 4 has no (left or two-sided)
ideal other than A. Thus, the abundance of ideals in a
semi-group characterizes the degree to which the semi-
group differs from a group.

For a k-algebra 4 (an algebra over a field k), an
ideal of the ring 4 need not be an ideal of the algebra
A. For example, if A is a k-algebra with zero multipli-
cation, the set of ideals of the ring 4 is the set of sub-
groups of the additive group of 4, while the set of
ideals of the algebra A is the set of all subspaces of the

vector k-space A. However, when A is an algebra with

identity, these concepts of an ideal coincide. Therefore
many results have identical statements for rings and
algebras.

A ring not having any two-sided ideal is said to be a
simple ring. A ring without proper one-sided ideals is a
skew-field. Left ideals of a ring 4 may also be defined
as submodules of the left A-module A. Some properties
of rings remain unchanged when right ideals are substi-
tuted for left ideals. For example, the Jacobson radical
defined in terms of left ideals is the same as the Jacob-
son radical defined in terms of right ideals. On the
other hand, a left Noetherian ring can fail to be right
Noetherian.

The study of ideals in commutative rings is an
important part of commutative algebra. With every
commutative ring with identity one can associate the
topological space SpecA whose elements are the proper
prime ideals of A. There is a one-to-one correspondence
between the set of all radicals of ideals of 4 and the set
of closed subspaces of SpecA.

The concept of an ideal of a field occurs in commu-
tative algebra, more precisely, that of an ideal of a field
relative to a ring. Here A is a commutative ring with
identity and without zero divisors, and Q is the field of
fractions of A. An ideal of the field Q is a non-zero sub-
set J CQ that is a subgroup of the additive group of Q
closed under multiplication by elements of A (that is,
abel whenever a€A and bel) and such that there
exists an element geQ such that ¢/ CA. An ideal is
said to be an integral ideal if it is contained in 4 (and
then it is an ordinary ideal of 4); otherwise it is a frac-
tional ideal.

An ideal of a lattice is a non-empty subset I of a lat-
tice such that: 1) if @, bel, then a+bel; and 2) if
c<ael, then cel. A dual ideal (or a filter) of a lattice
is defined in the dual manner (a, beJ implies abeJ;
c¢=ael implies ceJ). The ideals of a lattice also form
a lattice under inclusion. A maximal element of the set
of all proper ideals of a lattice is called a maximal
ideal. 1f f is a homomorphism of a lattice onto a par-
tially ordered set with a zero, then the complete inverse
image of the zero is an ideal. It is called the kernel ideal
of f. An ideal S of a lattice L is said to be a standard
ideal if for arbitrary a,bel, seS, the inequality
a<<b+s implies that a=x+¢, where x<b and t€S.
Every standard ideal is a kernel ideal. A kernel ideal of
a relatively complemented lattice (see Lattice with com-
plements) is standard. An ideal 7 is called a prime ideal
if ael or bel whenever abel. Each of the following
conditions is equivalent to primality for an ideal I of a
lattice L: a) the complement A \ / is a filter; or b) I is
the complete inverse image of zero under some
homomorphism of L onto a two-element lattice. Every
maximal ideal of a distributive lattice is prime.



The concept of an ideal in a partially ordered set sis
not in full agreement with the preceding definition. In
fact, instead of 1), a stronger condition is required to
hold: For every subset of the ideal, the supremum
(join) of the set (if it exists) is also in 1.

An ideal object A of a category with null morphisms
is a subobject (U, p) of A such that p=kera for some
morphism a:A4—B. This ideal can be identified with
the set of all monomorphisms that are kernels of some
morphism (see also Normal monomorphism). The con-
cept of a co-ideal object of a category is defined in the
dual way. The concept of an ideal for Q-groups is a
special case of that of an ideal object in a category.

A left ideal of a category  is a class of morphisms
containing, with every morphism ¢ of it, all products
a¢ with ae®, if these are defined in ®. Right ideals of a
category are defined in the dual way. A mwo-sided ideal
is a class of morphisms that is both a left ideal and a
right ideal.
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Editorial cornments. There is some disagreement about

the correct definition of an ideal / in a partially ordered set

A. Instead of the definition given above, some authors would

allow / to be an arbitrary lower set (if a<bel, then ael);

others require edditionally that / be directed (if ac! and bel,

then there exists a cel/ with a<c and b<c). The latter

definition has the advantage of agreeing with the usual one
in the case when A is a lattice (or a join semi-lattice).

For a Boolean algebra A, a subset / of A is an ideal in
the lattice-theoretic sense if and only if it is an ideal of the
Boolean ring A. It was this equivalence which led M.H.
Stone [A1] to extend the use of the term ‘ideal’ from rings
to lattices. Since then, the study of ideals has played an
important role in lattice theory, and particularly in the theory
of distributive lattices.
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IDEAL NUMBER - An element of the semi-group D
of divisors (cf. Divisor) of the ring A of integers of an
algebraic number field. The semi-group D is a free
cominutative semi-group with identity; its free genera-
tors are called prime ideal numbers. In modern termi-
nology, ideal numbers are known as integral divisors of
A. They can be identified in a natural way with the
ideals (cf. Ideal) of 4.

Ideal numbers were introduced in connection with
the absence of uniqueness of factorization into prime
factors in the ring of integers of an algebraic number
field. For every acA, the factorization of the
corresponding’ divisor ¢{a) into the product of prime
ideal numbers can be looked at as a substitute for
unique factorization into prime factors if factorization
in 4 is not unique.

For example, the ring A of integers of the field
QU \/—) consists of the numbers a+bV—5 with
integers a and b. In this ring, the number 6 has two dif-
ferent factorizations:

6=21=(a=V=SX1¥ V-3

where the numbers 2, 3, 1— \/:?, and 1+V—5 are
pairwise non-associated irreducible (prime) elements of
A; thus factorization into irreducible factors in 4 is not
unique. However, in D the elements ¢2), ¢3),
o(1+ \/_—), and ¢(1— \/—) are not irreducible; in
fact,  o@Q=p}, GD=pby,  H1=V=5)=pik,
&1+ V —=5)=p,p;, where p;, b, and p; are prime
ideal numbers in D. Thus, the two factorizations of 6
into irreducible factors in 4 give rise to one and the«
same factorization ¢(6)=ptp,p; in D. .
The concept of an ideal number was introduced by
E. Kummer in connection with his investigation of the
arithmetic of cyclotomic fields (see [1], [2]). Let
K=Q({) be the p-th cyclotomic field for some prime
number p and let 4 =Z[{] be the ring of integers of K.
The ideal numbers for 4 were defined to be the pro-
ducts of prime ideal numbers, and the latter as the
‘ideal’ prime divisors of natural prime numbers. To
construct all the prime ideal numbers contained in a
given natural prime number g, Kummer’s theorem (cf.
Kummer theorem) was used Kummer used the fact that
A has basis 1, ¢, . .., {72 over Z to investigate the fac-
torization of the p-th cyclotomic polynomial F,(X) in
the ring (Z/¢Z)[X]. The ideal numbers dividing g are
in one-to-one correspondence with the irreducible fac-
tors of F,(X) in (Z/qZ)[X] (the case p=gq required a
somewhat different approach). A special method was



" IDEAL NUMBER

applied to determine the exponent with which a given
prime ideal number occurs in a given a€Ad. He
developed a similar method for creating a theory of
divisibility in fields of tuc form Q(,m'’?), where
meQ(?).

The extension of the theory of ideal numbers to the
case of arbitrary algebraic fields is due mainly to L.
Kronecker and R. Dedekind. A division of the theory
of ideal numbers into the theory of divisors (the
approach of Kronecker) and the theory of ideals begins
to appear in_their papers. Dedekind associated with
every ideal number a unique ideal of the ring A, which
was defined by him as the subset of A consisting of 0
together with all a that are divisible by this ideal
number. If ay,...,a, are generators for the ideal I,
then the ideal number corresponding to I is the greatest
common divisor of the ideal numbers ¢(a,), . . . ,¥(an)-

Later, the concept of an ideal was extended to the
case of an arbitrary ring A; rings for which the con-
cepts of an ideal and a divisor coincide are now called
Dedekind rings (cf. Dedekind ring).
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IDEAL POINT, improper point, point at infinity,

inﬁniter-distam point - A point that completes the .

plane in order to describe certain geometrical relations
and systems. For example, an inversion is a one-to-one
mapping of the/Euclidean plane completed by an ideal
point; completion of the affine plane by ideal points
leads to the concept of a projective plane. See also
Infinitely-distant elements.

A.B. Ivanov
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IDEAL SERIES of a semi-group S - A sequence of
sub-semi-groups

A, CA,C---CA, =S ™)

such that A4; is a (two-sided) ideal of A4,

i=1,...,m—1. The sub-semi-group 4, and the Rees

factor semi-groups A4;1/A; (sec Semi-group) are called
the factors of the series (*). Two ideal series are said to
be isomorphic if a one-to-one correspondence can be
established between the factors such that corresponding
factors are isomorphic. An ideal series

B,CB,C---CB, =S

is said to be a refinement of (*) if every A; occurs
among the B;. An ideal series is a composition series if
it does not have proper refinements. Any two ideal
series of a semi-group have isomorphic refinements; in
particular, in a semi-group having a composition series
all such series are isomorphic (the analogue of the
theorems of Schreier and Jordan—Holder for normal
series in groups, see [1], [2]). An ideal series is a chief
series if its terms are ideals in the whole semi-group
and if it has no proper refinements consisting of ideals
of the semi-group. If a semi-group has a composition
series, then it also has a chief series; the converse is
false. In a semi-group with a chief series, its factors are
isomorphic to the chief factors (cf. Principal factor) of
S.

As for normal series in groups, the concepts men-
tioned above (as well as their properties) naturally gen-
eralize to the case of infinite systems of nested sub-
semi-groups. In particular, an ascending ideal series in a
semi-group S is a totally ordered sequence

A|C+ - CA,CAuyC--~CAp =S5,

where at limit points there stand the unions of the
preceding members, and A4, is an ideal of 4,4 for all
a<p.
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IDELE - An invertible element of the ring of adeles
(cf. Addle). The set of all ideles forms a group under
multiplication, called the idéle group. The elements of
the idele group of the field of rational numbers are
sequences of the form

a= (am)aly siple ’api v ¢ '),
where a,, is a non-zero real number, g, is a non-zero
p-adic number, p=2,3,5,7, ..., and | a, | =1 for all
but finitely many p (here | x |, is the p-adic norm). A
sequence of ideles
a®zt (o af) i a5 )
is said to converge to an idele a if it converges to a

componentwise and if there exists an N such that
| @, 'af | ,=1 for >N and all p. The idéle group is a



locally compact topological group in this topology. The
idele group of an arbitrary number field is constructed
in an analogous way.

The multiplicative group of the field of rational
numbers is isomorphically imbedded in the idele group
of this field. Every rational number r#0 is associated
with the sequence

(£ ST s e
which is an idele. Such an idele is said to be a principal
idele. The subgroup consisting of all principal ideles is
a discrete subgroup of the idele group.

The concepts of an idele and an adele were intro-
duced by C. Chevalley in 1936 for the purposes of alge-
braic number theory. The new language proved useful
in the study of arithmetic aspects of the theory of alge-
braic groups. To those ends, A. Weil generalized the
definitions of an adeéle and an idele to the case of an
arbitrary linear -algebraic group defined over a number
field.
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Editorial comments. Let / be an index set and for each
iel let there be given a locally compact topological ring or
group G, and an open compact subring or subgroup B;. The
restricted direct product G=TT] G; of the G, with respect to
the B; consists of all families (g))i.; such that geB; for all
but finitely many /. G becomes a locally compact group
(ring) by taking as a basis of open neighbourhoods of the
identity (zero) the sets ]__I,_U, with U; open in G; for all i and

U,= B, for all but finitely many i. For each finite set SC/ let
Gs=]1,, G XTI .sB- Then G'is the union (direct limit) of
the Gs. g

Now let k be a number field (or, more generally, a global
field). Let / be the set of all prime divisors of k (both finite
and infinite ones). For each pe/ let k, be the completion of
k with respect to the norm of p, and let A, be the ring of
integers of k,. (Set A, =k, it b is infinite.) Then the res-
tricted product of the k, with respect to the A, is the ring of
adéles Ay of k.

Now for each pel let k, be the group of non-zero ele-
ments of k, and let U, be the group of units of k; (if b is
infinite take U‘,=k5). The restricted product of the k, with
respect to the U, is the group of idéles of k. As a set the
group of idéles I is the set of invertible elements of A,. But
the topology. on |, is stronger than that induced by Ay.

The quotient of I, by the diagonal subgroup k°= {(a)e/}
of principal idgles is called the idéle class group; it is impor-
tant in class field theory.

The name idele derives from ideal element. This got
abbreviated id.el., which, pronounced'in French, gave rise
to idele.
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IDEMPOTENT, idempotent element - An element e of
a ring, semi-group or groupoid equal to its own square:
e?=e. An idempotent e is said to contain an idempo-
tent f (denoted by e=/) if ef=e = fe. For associative
rings and semi-groups, the relation = is a partial order
on the set E of idempotent elements, called the natural
partial order on E. Two idempotents u and v of a ring
are said to be orthogonal if uv=0=vu. With every
idempotent of a ring (and also with every system of
orthogonal idempotents) there is. associated the so-
called Peirce decomposition of the ring. For an n-ary
algebraic relation «, an element e is said to be an idem-

_potent if (e - - - e)w=e, where e occurs n times between

the brackets. O.A. Ivanova

Editorial comments. An algebraic operation w is some-
times said to be idempotent if every element of the set on
which it acts is idempotent in the sense defined above.
Such operations are also called affine operations; the latter
name is preferable because an affine unary operation is not
the same thing as an idempotent element of the semi-group
of unary operations. In the theory of R-modules; the affine

. operations are those of the form

n
(X ion vk N B 1
=1

with 237 r=1.
AMS 1980 Subject Classification: 16A32, 08A40

IDEMPOTENTS, SEMI-GROUP OF, idempotent
semi-group - A semi-group each element of which is an
idempotent. An idempotent semi-group is also called a
band (this is consistent with the concept of a band of
semi-groups: An idempotent semi-group is a band of
one-element semi-groups). A commutative idempotent
semi-group is called a semi-lattice; this term i3 con-
sistent with its use in the theory of partially ordered
sets: If a commutative idempotent semi-group S is con-
sidered with respect to its natural partial order, thén ab
is the greatest lower bound of the elemenis a, bes.
Every semi-lattice is a subdirect product of two-¢lement
semi-lattices. A semi-group S is said to be singular if S
satisfies one of the identities xy =x, xy =y; in the first
case § is said to be left-singular, or to be a semi-group
of left zeros, in the second case it is called right-singular,
or a semi-group of right zeros. A semi-group is said to
be rectangular if it satisfies the identity xyx =x (this
term is sometimes used in a wider sense, see [1]). The
following conditions are equivalent for a semi-group S:
1) S is rectangular; 2) S is an ideally-simple idempotent
semi-group (see Simple semi-group); 3) S is a
completely-simple semi-group of idempotents; and 4) S
is isomorphic to a direct product L XR, where L is a
left-singular and R is a right-singular semi-group. Every
idempotent semi-group is a Clifford semi-group and
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splits into a semi-lattice of rectangular semi-groups (see
Band of semi-groups). This splitting is the starting point
for the study of many properties of idempotent semi-
groups. Every idempotent semi-group is locally finite.

Idempotent semi-groups have been studied from vari-
ous points of view, including that of the theory of
\varieties. The lattice of all subvarieties of the variety 8
of all idempotent semi-groups has been described com-
pletely in [4] - [6]; it is countable and distributive, and
every subvariety of B is defined by one identity. See
the figure for the diagram of this lattice; also indicated
in this figure are the identities giving in %8 the varieties
on some of the lower “floors’.

Zyz=xyxz @ TyZ=x2y2
Iyx=1Ty Iyr=yr
Tyz=12y .’ﬂ' Iyz=yxz

zy=x ‘@ Ty=y
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IDENTICAL TRUTH, logical truth, tautology - A pro-
perty of formulas in the language of predicate calculus,
meaning that the formulas are true in all interpretations
and for all admissible values of their free variables. For
- example, for a formula containing only one 2-place
" predicate symbol p and variables of one sort (that is,

variables which are interpreted in the same domain of
variation), any pair (M, R), where M is an arbitrary
- non-empty set and RCM XM is an arbitrary binary
relation on M, is an interpretation. Arbitrary elements
of M are admissible values for the free variables. Truth
of a formula ¢(x, . . . ,x,) at values ay, . . . ,a, (n=0)
of the varigbles x, . . . ,x,, respectively, is defined by
induction on the structure of the formula, as follows.
(Here the free variables run through the set M and the
predicate symbol p denotes the relation R.)
Suppose that a formula ¢ is given, as well as a finite
sequence X =(xj,...,x,) of variables containing all

the free variables of ¢; let | ¢; X | denote the set of all
finite sequences (ay, . . . ,a,) of elements of M at which
¢ is true in (M, R). A set of the form | ¢;X | can be
constructed inductively as follows (here it is assumed
that the logical symbols in ¢ are A\, —, 3):

;x| = (@, -..,a): (a,a)eR)}
if ¢ has the form p(x;, x;);
[ a1 AdX | = |oX | N |25% |5

|-X | =M"\ | $:%|;
[y X | = prass | B33y |,
where (M), \, pr,+; denote, respectively, intersection,
difference and projection along the (n + 1)-st coordinate
(that is, the image with respect to the mapping
@1, ... a5 ay41)ay, . . . ,a,)) of sets.

Identical truth for a formula ¢ with free variables
X1,...,X, then means that for any interpretation
(M, R), every sequence (ay, . .. ,a,) of elements of M
belongs to the set | ¢;x;,...,x, |. For n=0 the set
| ;X | is either empty or a singleton. For example, the

forfiuity 3y Vx p(x, y) D Vx3y p(x,y)

is an identical truth. The converse implication is not an
identically-true formula.

In the case where an interpretation is fixed, a for-
mula is sometimes called identically true if it is true in
the given interpretation for any values of its free vari-
ables.
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IDENTITY PROBLEM - The algorithmic problem of
recognizing the equality (identity) of words in an alge-
braic system (group; semi-group, and others) with given
generators and defining relations.

Editorial comments. This problem is better known as the
word problem or word identity problem.

AMS 1980 Subject Classification: 08AS50, 03D40,
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ILL-POSED PROBLEMS, incorrectly-posed problems,
improperly-posed problems - Problems for which at least
one of the conditions below, which characterize well-
posed problems, is violated. The problem of determining
a solution z=R(u) in a metric space Z (with metric
pz(,)) from ‘initial data’ u in a metric space U (with
metric py(,)) is said to be well-posed on the pair of
spaces (Z, U) if: a) for every ueU there exists a solu-
tion z€Z; b) the solution is uniquely determined; and



¢) the problem is stable on the spaces (Z, V), i.e.: For
every €>0 there is a &@e)>0 such that for any
uj,uselU it follows from py(u;.uz)<8() that
pz(21,22)<¢, where z; =R(u;) and z, =R(u3).

The concept of a well-posed problem is due to J.
Hadamard (1923), who took the point of view that
every mathematical problem corresponding to some
physical or technological problem must be well-posed.
In fact, what physical interpretation can a solution
have if an arbitrary small change in the data can lead
to large changes in the solution? Moreover, it would be
difficult to apply approximation methods to such prob-
lems. This put the expediency of studying ill-posed
problems in doubt.

However, this point of view, which is natural when
applied to certain time-depended phenomena, cannot
be extended to all problems. The following problems
are unstable in the metric of Z, and therefore ill-posed:
the solution of integral equations of the first kind; dif-
ferentiation of functions known only approximately;
numerical summation of Fourier series when their coef-
ficients are known approximately in the metric of /;;
the Cauchy problem for the Laplace equation; the
problem of analytic continuation of functions; and the
inverse problem in gravimetry. Other ill-posed prob-
lems are the solution of systems of linear algebraic
equations when the system is ill-conditioned; the
minimization of functionals having non-convergent
minimizing sequences; various problems in linear pro-
gramming and optimal control; design of optimal sys-
tems and optimization of constructions (synthesis prob-
lems for antennas and other physical systems); and
various other control problems described by differential
equations (in particular, differential games). Various
physical and technological questions lead to the prob-
lems listed (see [7]).

A broad class of so-called inverse problems that arise
in physics, technology and other branches of science, in
particular, problems of data processing of physical
experiments, belongs to the class of ill-posed problems.
Let z be a characteristic quantity of the phenomenon
(or object) to be studied. In a physical experiment the
quantity z is frequently inaccessible to direct measure-
ment, but what is measured is a certain transform
Az =u (also called outcome). For the interpretation of
the results it is necessary to determine z from u, that is,
to solve the equation

Az = u 1)
Problems of solving an equation (1) are often called
pattern recognition problems. Problems leading to the
minimization of functionals (design of antennas and
other systems or constructions, problems of optimal
control and many others) are also called synthesis prob-
lems.

ILL-POSED PROBLEMS

Suppose that in a mathematical model for some phy-
sical experiments the object to be studied (the
phenomenon) is characterized by an element z (a func-
tion, a vector) belonging to a set Z of possible solutions
in a metric space Z. Suppose that z7 is inaccessible to
direct measurement and that what is measured is a
transform, Azr =ur, urcAZ, where AZ is the image of
Z under the operator A. Evidently, zr =4 ~'ur, where
A~ is the operator inverse to A. Since ur is obtained
by measurement, it is known only approximately. Let u
be this approximate value. Under these conditions the
question can only be that of finding a ‘solution’ of the
equation i’y @
approximating zr.

In many cases the operator A is such that its inverse
A~ is not continuous, for example, when A4 is a
completely-continuous operator in a Hilbert space, in
particular an integral operator of the form

b
j K(x, s)z(s) ds.

Under these conditions one cannot take, following clas-
sical ideas, an exact solution of (2), that is, the element
z=A"'4, as an approximate ‘solution’ to zr. In fact: a)
such a solution need not exist on Z, since u need not
belong to AZ; and b) such a solution, if it exists, need
not be stable under small changes of u (due to the fact
that 4" is not continuous) and, consequently, need
not have a physical interpretation. The problem (2)
then is ill-posed.

Numerical methods for solving ill-posed problems. For
ill-posed problems of the form (1) the question arises.
What is meant by an approximate solition? Clearly, it
should be so defined that it is stable under small
changes of the original information. A second question
is: What algorithms are there for the construction of
such solutions? Answers to these basic questions were
given by A.N. Tikhonov (see [1], [2]). :
'The selection method. In some cases an approximate
solution of (1) can be found by the selection method. It
consists of the following: From the class of possible
solutions M C Z one selects an element z for which Az
approximates the right-hand side of (1) with required
accuracy. For the desired approximate solution one
takes the element z. The question arises: When is this
method applicable, that is, when does

Pu(Az, AZT) <$é

gk b2z, 21) < (),

where €(8)—0 as §—0? This holds under the conditions
that the solution of (1) is unique and that M is compact
(see [3]). On the basis of these arguments one has for-
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mulated the concept (or the condition) of being Tikho-
nov well-posed, also called conditionally well-posed (see
{4]). As applied to (1), a problem is said to be condi-
tionally well-posed if it is known that for the exact value
of the right-hand side u =uy there exists a unique solu-
tion zz of (1) belonging to a given compact set M. In
this case 4 ~! is continuous on M, and if instead of ur
an element us is known such that py(us, ur)<é and
us€AM, then as an approximate solution of (1) with
right-hand side u=u; one can take zz=A 'u;. As
80, z; tends to z7.

In many cases the approximately known right-hand
side u does not belong to AM. Under these conditions
equ~tion (1) does not have a classical solution. As an
approximate solution one takes then a generalized solu-
tion, a so-called quasi-solution (see [5]). A quasi-solution
of (1) on M is an element zeM that minimizes for a
given u the functional py(Az, #) on M (see [6]). If M is
compact, then a quasi-solution exist for any ueU, and
if in addition u€AM, then a quasi-solution z coincides
with the classical (exact) solution of (1). The existence
of quasi-solutions is guaranteed only when the set M of
possible solutions is compact.

The regularization method. For a number of applied
problems leading to (1) a typical situation is that the
set Z of possible solutions is not compact, the operator
A7 is not continuous on AZ, and changes of the
right-hand side of (1) connected with the approximate
character can cause the solution to go out of AZ. Such
problems are called essentially ill-posed. An approach
has been worked out to solve ill-posed problems that
makes it possible to construct numerical methods that
approximate solutions of essentially ill-posed problems
of the form (1) which are stable under small changes of
the data. In this context, both the right-hand side # and
the operator 4 should be among the data.

In what follows, for simplicity of exposition it is
assumed that the operator 4 is known exactly. At the
basis of the approach lies the concept of a regularizing
operator (see [2], [7]). An operator R(u, 6) from U to Z
is said to be a regularizing operator for the equation
Az =u (in a neighbourhood of u=uy) if it has the fol-
lowing properties: 1) there exists a §, >0 such that the
operator R(u, d) is defined for every 8, 0<<6<4,, and
for any us € U such that py(us, ur)<d; and 2) for every
e>0 there exists a &;=8y(c, ur)<d; such that
pu(us, ur)<8<d8, implies. pz(zs, zr)<e,  where
25 =R(us, 8).

Sometimes it is convenient to use another definition
of a regularizing operator, comprising the previous one.
An operator R(u, @) from U to Z, depending on a
parameter a, is said to be a regularizing operator (or
reg- 'arization operator) for the equation Az=u (in a
neigivourhood of u =uy) if it has the following proper-

ties: 1) there exists a 8, >0 such that R (u, a) is defined
for every a and any wuseU for which
py(us, ur)<6<49,; and 2) there exists a function
a=a(d) of & such that for any €>0 there is a §(¢)<<;
such that if wuseU and py(us, ur)<d(e), then
p:(zs, zr)<e, where z5 = R(us, a(8)). In this definition it
is not assumed that the operator R(u, a(d)) is globally
single-valued.

If py(us, ur)<<d, then as an approximate solution of
(1) with an approximately known right-hand side U,
one can take the element z,=R(us, a) obtained by
means of the regularizing operator R(u, a), where
a=a(d) is compatible with the error of the initial data
ug (see [1], [2], [7]). This is said to be a regularized solu-
tion of (1). The numerical parameter « is called the reg-
ularization parameter. As §—0, the regularized approxi-
mate solution z,(8)=R(us, a(d)) tends (in the metric of
Z) to the exact solution zp.

Thus, the task of finding approximate solutions of (1)
that are stable under small changes of the right-hand
side reduces to: a) finding a regularizing operator; and
b) determining the regularization parameter a from
additional information on the problem, for example,
the size of the error with which the right-hand side u is
given.

The construction of regularizing operators. It is
assumed that the equation 4z =ur has a unique solu-
tion z7. Suppose that instead of 4z =ur the equation
Az=ug is solved and that py(us, ur)<8. Since
pu(Azr, us)<40, the approximate solution of Az =u; is
looked for in the class Zz of elements zz such that
pu(Az, us)<9d. This Z; is the set of possible solutions.
As an approximate solution one cannot take an arbi-
trary element z5 from Zj, since such a ‘solution’ is not
unique and is, generally speaking, not continuous in 8.
As a selection principle for the possible solutions ensur-
ing that one obtains an element (or elements) from Z,
depending continuously on § and tending to zy as -0,
one uses the so-called variational principle (see [1]). Let
Q[z] be a continuous non-negative functional defined
on a subset Fy of Z that is everywhere-dense in Z and
is such that: a) z; € F,; and b) for every d>0 the set of
elements z in F, for which Qfz]<d, is compact in F),.
Functionals having these properties are said to be sta-
bilizing functionals for problem (1). Let Q[z] be a stabil-
izing functional defined on a subset F of Z. (F; can

‘be the whole of Z.) Among the elements of

F,5=F,(\Zs one looks for one (or several) that
minimize(s) £[z] on F, ;. The existence of such an ele-
ment z; can be proved (see [7]). It can be regarded as
the result of applying a certain operator R(us,d) to
the right-hand side of the equation Az=us, that is,
z25=R(us, d). Then R(u,d) is a regularizing operator
for equation (1). In practice the search for z; can be



carried out in the following manner: under mild addi-
tional restrictions on Q[z] (quasi-monotonicity of Q[z],
see [7]) it can be proved that infQfz] is attained on ele-
ments z; for which py(A4zs, us)=96. An element z; is a
solution to the problem of minimizing Qz] given
pu(Az, us)=34, that is, a solution of a problem of condi-
tional extrema, which can be solved using Lagrange’s
multiplier method and minimization of the functional

Mu[z9 uB] = p%}(sz lla)'.'l!ﬂ[l].

For any a>0 one can prove that there is an element z,
minimizing M®(z, us). The parameter o is determined
from the condition py(Az,, us)=8. If there is an a for
which py(Azg,us)=8, then the original variational
problem is equivalent to that of minimizing M%|z, uz},
which can be solved by various methods on a computer
(for example, by solving the corresponding Euler equa-
tion for M®[z,us]). The element 2z, minimizing
M®[z, u] can be regarded as the result of applying to
the right-hand side of the equation Az=u; a certain
operator R,(us,a) depending on «a, that s,
z4=Ry(us,@) in which a is determined by the
discrepancy relation py(A4z,, ug)=48. Then R;[u,a] is a
regularizing operator for (1). Equivalence of the origi-
nal variational problem with that of finding the
minimum of M°[z, us] holds, for example, for linear
operators A. For non-linear operators 4 this need not
be the case (see [8]).

The so-called smoothing functional M®[z, us] can be
introduced formally, without connecting it with a con-
ditional extremum problem for the functional ©[z], and
for an element z, minimizing it sought on the set F) 5.
This poses the problem of finding the regularization
parameter « as a function of 8, a=a(8), such that the
operator  Ry(u, «(8)) determining the element
z,=R,(us, a(8)) is regularizing for (1). Under certain
conditions (for example, when it is known that
pu(us, ur)<8 and A is a linear operator) such a func-
tion exists and can be found from the relation
py(Az,, us)=38. There are also other methods for find-
ing a(d).

Let Ty be a class of non-negative non-decreasing
continuous functions on [0, 8], zr a solution of (1) with
right-hand side u=ur, and 4 a continuous operator
from Z to U. For any positive number ¢ and functions
Bi1(®) and B,(8) from Tj such that B,(0)=0 and
82/ B1(8)<pB,(8), there exists a 8 =8(e, B1, B2) such
that for uze U and 8<§y it follows from py(us, ur)<$o
that pz(z%, zr)<e, where z*=R;(us, a) for all a for
which 8 /8,(®)<a<pB,(8).

Methods for finding the regularization parameter
depend on the additional information available on the
problem. If the error of the right-hand side of the equa-
tion for ug is known, say py(us, ur)<$, then in accor-
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dance with the preceding it is natural to determine a by
the discrepancy, that is, from the relation
pul(Aza, us)= 9la) =9.

The function ¢(a) is monotone and semi-continuous
for every a>0. If 4 is a lincar operator, Z a Hilbert
space and Qz] a strictly-convex functional (for exam-
ple, quadratic), then the clement z,, is unique and ¢(a)
is a single-valued function. Under these conditions, for
every positive number 8<<py(Azo, us), where zge{z:
Qz]=inf, . Qy]}, there is an «(8) such that
PulAzg, tp) =8 (see [7)).

However, for a non-linear operator A the equation
() =8 may have no solution (see [8]).

The regularization method is closely connected with
the construction of splines (cf. Spline). For example,
the problem of finding a function z(x) with piecewise-
continuous second-order derivative on [a,b] that

minimizes the functional Qz]= [ (2"} dx and takes
given values {z;} on a gnd {xi},ais equivalent to the
construction of a spline of the second degree.

A regularizing operator can be constructed by spec-
tral methods (see [7], [8]), by means of the classical
integral transforms in the case of equations of convolu-
tion type (see [10], [7]). by the method of quasi-
mappings (see [11]), or by the iteration method (see
[12]). Necessary and sufficient conditions for the
existence of a regularizing operator are known (see
(13-

Next, suppose that not only the right-hand side of
(1) but also the operator A is given approximately, so
that instead of the exact initial data (4, u7) one has

Ay, ug), where
s 1) pulus, ur) < 6,

PR puldnz, Az) Bl
b AT AN
Az 0.
Under these conditions the procedure for obtaining an
approximate solution is ‘the same, only instead of
M*®[z, us] one has to consider the functional
M®(z, ug, Ay] = ph(Apz, us)+alz].

and the parameter a can be determined, for example,
from the relation (see [7])
ph(Apz, us) = B+h{Qz 1) *)
If (1) has an infinite set of solutions, one introduces
the concept of a normal sclution. Suppose that Z is a
normed space. Then one can take, ior example, a solu-

tion Z for which the deviation in norm from a given ele-
ment zg € Z is minimal, that is,

lZ—20 |z = inf |j z =20 ||2.
zeZ

An approximation to a normal solution that is stable
under small changes in the right-hand side of (1) can
be found by the regularization method described above.
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ILL-POSED PROBLEMS

The class of problems with infinitely many solutions
includes degenerate systems of linear algebraic equa-
tions. So-called badly-conditioned systems of linear
algebraic equations can be regarded as systems
obtained from degenerate ones when the operator 4 is
replaced by its approximation A4,. As a normal solution
of a corresponding degenerate system one can take a
solution z of minimal norm ||z ||. In the smoothing
functional one can take for §[z] the functional
Qzi=|lz|>. Approximate solutions of badly-
conditioned systems can also be found by the regulari-
zation method with Qfz]= || z ||? (see [7)).

Similar methods can be used to solve a Fredholm
integral equation of the second kind in the spectrum,
that is, when the parameter A of the equation is equal
to one of the eigen values of the kernel.

Instability problems in the minimization of functionals.
A number of problems important in practice leads to
the minimization of functionals f[z]. One distinguishes
two types of such problems. In the first class one has to
find a minimal (or maximal) value of the functional.
Many problems in the design of optimal systems or
constructions fall in this class. For such problems it is
irrelevant on what elements the required minimum is
attained. Therefore, as approximate solutions of such
problems one can take the values of the functional f[z]
on any minimizing sequence {z,}.

In the second type of problems one has to find ele-
ments z on which the minimum of f[z] is attained.
They are called problems of minimizing over the argu-
ment. E.g., the minimizing sequences may be divergent.
In these problems one cannot take as approximate
solutions the elements of minimizing sequences. Such
problems are called unstable or ill-posed. These include,
for example, problems of optimal control, in which the
function to be optimized (the object function) depends
only on the phase variables.

Suppose that f[z] is a continuous functional on a
metric space Z and that there is an element zoeZ
minimizing f[z]. A minimizing sequence {z,} of f]z] is
called regularizing if there is a compact set Z in Z con-
taining {z,}. If the minimization problem for f[z] has
a unique solution zg, then a regularizing minimizing
sequence converges to zg, and under these conditions it
is sufficient to exhibit algorithms for the construction
of regularizing minimizing sequences. This can be done
by using stabilizing functionals Q[z].

Let Q[z] be a stabilizing functional defined on a set
F\CZ, let inf,.f flz]=flzo] and let zo€F,. Fre-
quently, instead of f[z] one takes its §-approximation
fslz] relative to Q[z], that is, a functional such that for

every zeF,, | folz]1-flz]| < 89Uz}
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Then for any a>0 the problem of minimizing the
functional
- Me(z, fs] = folz]+afc]

over the argument is stable.

Let {8,} and {a,} be null-sequences such that
8,/ a,<g<1 for every n, and let {z, ;5 } be a sequence
of elements minimizing M* |z, f5 ]. This is a regulariz-
ing minimizing sequence for the functional f3[z] (see
[7]), consequently, it converges as n—e to an element’
zg. As approximate solutions of the problems one can
then take the elements z, 5 .

Similarly approximate solutions of ill-posed problems
in optimal control can be constructed.

In applications ill-posed problems often occur where
the initial data contain random errors. For the con-
struction of approximate solutions to such classes both
deterministic and probability approaches are possible
(see [7], [15]).
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