(3l
=Gt

=

s
LV ey
LA OO 0
LS
rilivet
O]
...._....

L

:...:.‘..:.::...: I
AL

L T Y S AR
U Bt

et T 000
[} ’
A

.....:::.

(LL A
DO T T L A
.:::

AU
LU0

At

0

.o

sy

SN fg

'

SNy

SO
as iy

I
N
RO

M sy
LA

J
995

AW
vetedietey gy
annee e

S
.:.:.::...__..........._....:..v“.._._.._,....nﬂ.::.:
.:.:.......... A

N

!

00
:.::

I

::.............

Vevee
NI :
OUAAMLCD R .
seettipp iy Wil R
AN gw::...
$0 I T T0aX
Ao A i
:.................::
Tt DAL e
...4..:......._.: AN:......... R
R
AR + " M0 "
Ao IR
LYY A
" ahd
soou L

T L OO0
) QO

SOOULLULLLONS
ML

et

Iy
&-....:.......
LU RSN

:-ﬂ»- --“.“.:_:.: s
S RN Y
.....:::.......... X% ...».M..;..:_:._.I
000N Gatreniy e’y
Lo S,
A LA
OO AT L0000
RO "

LR VP .‘....:..:.....

AL RO Ly e 0
R AL L LA
AL " % 3
..._.-._....A._:::A RN_...‘:.:........._.A......_.._. e *

L AL AR oA
(1) [} Povaais
Jrues U1 preas
LS A)
KOS ..:::..... N)
AR) AR R
e HEH
e
Heese

0

o
.......-..s
SO0
SO TVALL

vae e,
DU ALY

111104

e
AL

e neney

Oy
Y

X ...,._::..
Vsl
AL

OO0 |

LY

1

et

(0 :::....n.......-:

.:::?;:_:

QO
LO0D

LT AN
e
AL T

._._..:..I..
iy " %
....‘.....-._.—....._-.._.. Vet
XL LY
‘
SRR”...‘.:....w.»...

ONALAOOTY

SOFTWARE ENGINEERING:
ANALYSIS AND DESIGN

Charles Easteal -

University College London

Gordon Davies
The Open University

McGRAW-HILL BOOK COMPANY

London - New York - St Louis - San Francisco - Auckland - Bogotd - Guatamela
Hamburg - Lisbon - Madrid - Mexico - Montreal - New Delhi - Panama
Paris - San Juan - Sdo Paulo - Singapore - Sydney - Tokyo - Toronto

Published by
McGRAW-HILL Book Company (UK) Limited
MAIDENHEAD - BERKSHIRE - ENGLAND

British Library Cataloguing in Publication Data
Easteal. Charles
Software engineering: analysis and design. —
(International software engineering series)
1. Computer systems. Software. Development
I Title II. Davies. Gordon III. Open
University IV. Series
003.1
ISBN 0-07-707202-2

Library of Congress Cataloging-in-Publication Data
Easteal. Charles.
Software engineering.
(The McGraw-Hill international series in software
engineering)
Bibliography: p.
Includes index.

1. Software engineering. I. Davies. Gordon.
I1. Title. III. Series.
QAT76.758 E27 1989 005.1 89-2598

ISBN 0-07-707202-2

Copyright © 1989 McGraw-Hill Book Company (UK) Limited. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system. or transmitted. in any form or by any means. electronic.
mechanical. photocopying. recording, or otherwise, without the prior permission of McGraw-Hili Book

Company (UK) Limited.

1234 WL 8909

Typeset by STYLESET LIMITED - WARMINSTER - WILTSHIRE

Printed and bound in Great Britain by Whitstable Litho Ltd

PREFACE

This book is based on material that was originally written for the Open University
course Fundamentals of Computing; that course assumed no previous knowledge of com-
puting whatsoever. However, the book is aimed more at students who have had some
experience of computing, perhaps as a general introduction in a science or engineering
degree, and who wish to gain further knowledge of how software is produced in the real
world. Such students will not necessarily specialize in computer science while at college
or university, but may well see their future employment as being in the computer
industry.

The book deals with two phases of the Software Life Cycle. After two introductory
chapters, three chapters are devoted to the analysis and specification of requirements;
the final seven chapters deal with software design.

The book has been written with specific objectives for each of the main topics in
mind. At the end of the chapters on analysis and specification of requirements the
reader should have a general appreciation of the importance of this phase and, in par-
ticular, be able to:

1. Analyse a set of initial user requirements into four major categories, and be aware of
the role that each category plays in software development.

2. Use one major technique for further detailed analysis of user requirements and
employ three useful notations for recording the results of the analysis.

3. Compile a detailed specification of requirements to enable the design of the new
software to commence.

On completing the chapters on software design the reader should have acquired an
appreciation of the general principles involved and of the fundamental difficulties that
are encountered. In particular, the reader should be able to:

1. Apply a particular and generally reliable design strategy to a representation of
functional requirements in order to arrive at a first version of an initial design.

2. Refine the initial design by using design heuristics while appreciating the limitations
of this procedure.

xi’

xii PREFACE

3. Convert each of the modules identified by 1 and 2 into algorithmic form and record
the resulting detailed design by means of a natural language or graphical
notation.

4. Design appropriate data structures for the algorithms designed in 3 to work
upon.

5. Construct the appropriate documentation that terminates the design phase.

A number of exercises of varying difficulty are interspersed in the text and the reader
is encouraged to spend a little time in attempting to answer these, as they are encountered,
before studying the solutions which are included at the end of the book.

ACKNOWLEDGEMENTS

We would like to acknowledge the use of the following figures and quotations.

The following extracts from BS 6224:1987 are reproduced by permission of British Standards Institution.
Complete copies of the Standard can be obtained from them at Linford Wood. Milton Keynes. Bucks.,
MK14 6LE. United Kingdom.

Figure 9.1b (BS Fig. 3); Figure 9.4 (BS Figs 5 and 6); Figure 9.9 (BS Fig. 7): Figure 9.11 (BS Fig. 8); Figure
9.7 (BS Fig. 10); Figures 9.2 and 9.3 (adaptation of BS Fig. 44b). Figure 9.5 (BS Fig. 45b). Figure 9.15
(adaptation of BS Fig. 47); Figure E13 (adaptation of BS Fig. 48).

The example_in Section 7.2.3 (page 46) is adapted from J. C. Emery, Organizational Planning and Control
Systems, Macmillan, London, 1969 (pages 18-19).

Figure 8.3 is adapted from G. J. Myers, Reliable Software through Composite Design, Van Nostrand
Reinhold, Wokingham, 1975 (Figs 4.8 and 4.9).

The quotations on page 28 (It is imprecise, wordy...and innuendo’ and ‘It is pidgin
language . . . programming language)’) are both taken from T. DeMarco, Structured Analysis and System
Specification, Prentice-Hall, Englewood Cliffs, New Jersey. 1979 (pages 177 and 179, respectively).

The following are taken (rom E. Yourdon and L. L. Constantine, Structural Design: Fundamentals of a
Discipline of Computer Program and Systems Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1979:
Quotation on page 57 (‘A module is a lexically contiguous ... identifier' from page 37); the adapted
definition of functional cohesion on page 68 (from page 127): Figure 8.9 (similar to Figs 8.7, 8.8, 8.9, 8.10
from pages 153 and 154); Figure 8.19 (adaptation of Figs 10.5 and 10.6 from pages 193 and 196); Figure
8.20 (adaptation of Fig. 10.10 from page 200); Exercise 8.7 (adaptation of Figs 9.9a and 9.9b from pages
175 and 176).

The following are taken from M. Page-Jones, The Practicul Guide to Structured Systems Design. 1st edn,
Yourdon Press, New York. 1980:

Figure 8.4 (adaptation of Fig. 6.3 from page 105): the quotation on page 85 (‘A transaction . .. a new time
slice’ from pages 207-208).

Figure 11.1 is taken from R. S. Pressman, Sofrware Engineering: a Practitioner's Approach, 1st edn.
McGraw-Hill, London, 1982 (adaptation of a whole figure from "Software Design Specification’. pages
133-135).

xiii

CONTENTS

Preface xi
Acknowledgements xiii
1 Introduction 1
2 The software life cycle 3
2.1 User requirement document 4

2.2 Requirements analysis 5

2.3 Specification of requirerents S

24 Design)
2.5 Design documentation 7

2.6 Implementation 7
2.7 Program documentation 8

2.8 Maintenance 8
2.9 Conclusion 9
2.10 Summary 10
Reference 11

3 Requirements analysis . 12
3.1 Preliminary analysis of user requirement document 13

3.2 Dataflow analysis 19

3.3 The practical approach 23

3.4 Supplementary notations 27

3.5 Summary of requirements analysis 33
Reference 33

4 Specification of requirements 34
4.1 Introduction 34

42 Discussion on format 35

vii

viii CONTENTS

S Summary and further reading 1
5.1 Summary of Chapters 1-4
5.2 Further reading

6 Software design
6.1 Review of the software life cycle
6.2 Inputs to the design stage
6.3 Outputs from the design stage
6.4 Aspirations of the systems designer

7 Selection
7.1 Problem-solving and decision-making
7.2 Size of selection
7.3 Design criteria
74 Summary of selection
References

8 Initial design
8.1 Introduction
8.2 Modularity
~ 83 Structure charts
84 Evaluation of partitioning
8.5 Design strategy
8.6 Refining the structure
8.7 Summary of initial design
References

9 Detailed design
9.1 Introduction |
9.2 Detailed design notations
9.3 Summary of detailed design
Reference

10 Data structure design
10.1 Introduction
10.2 Review of simple data structures
10.3 Modelling the real world
10.4 Design notations
10.5 Summary of data structure design
References

11 Design documentation
11.1 Introduction
11.2 The design document
11.3 Other documents
114 Documentation summary
References

37
37
37

39
39
39

41

42
42
43
47
53
54

55
55
56
57

69
88
91
93

94
94
95
118
118

119
119
120
121
129
129
129

130
130
130
133
134
134

12 Summary and further reading II
12.1 Summary of Chapters 6-11
12.2 Further reading

Solutions to exercises

Index

CONTENTS ix

135
135
135
137

159

1

INTRODUCTION

As a member of our target audience, you will almost certainly have written and run
some computer programs. But it is important at this juncture to make three major points
about your achievements:

(a)

(b)

(c)

The programs that you wrote and handled were small. Although, no doubt, you
were quite impressed with what could be achieved with a few lines of code, it is
important to realize that many computer applications involve hundreds or even
thousands of program statements. Indeed, an application consisting of a quarter of
a million statements, say, is by no means unusual.

In writing and running your programs you followed a detailed list of instructions
that had been prepared by computer professionals, such as your lecturers or
instructors. As a resull, the instructions were {ree of ambiguity and left you in no
doubt as to what you were required to do. In practice, of course, the vast majority of
compulter programs are not prepared for computer professionals. They are written
by computer professionals for other types of professional, e.g.. managers, engineers,
accountants, etc. These individuals are generally known collectively, and perhaps
rather loosely, as ‘users’. And this is the term that will be used in referring to any
organization or individual who requests or in any way sponsors, the development of
computer software for practical purposes.

Once the more obvious errors had been removed from a program that you had
written, you were able to regard the job as finished. In the real world of computing,
this is almost never_the case. Just about every substantial piece of software that is
released still contains errors. These will appear intermittently during the life of the
program and will need to be corrected. As the working life of the program will often
far exceed the life of the equipment on which it is first implemented, then it is clear

2 SOFTWARE ENGINEERING: ANALYSIS AND DESIGN

that each program written represents a substantial future commitment for an
organization's computer personnel.

Exercise 1.1 One reason has been given above (and another hinted at) as to why a
program will need intermittent attention throughout its working life. Can you think of
any other reasons why this must be so?

It should be apparent from the solution to the above exercise that the practical
development and continuing efficient running of computer programs is a sizable on-
going task. involving many people. Further. it is a multi-stage process in which the
outputs of one stage are the inputs of the next. This sequence of stages has come to be
known as the software life cycle.

2

THE SOFTWARE LIFE CYCLE

In order to discuss fully the activities involved in the life cycle, it is necessary to adopt a
model of the cycle. The term ‘'model’ may need some explanation. A model of something
is merely a representation of that something that enables one to investigate its properties
in a rerhote way. For instance, if the headlight on your motorcycle fails, even though you
know that the bulb is working, you might be tempted to try and trace the wiring and
hope to find a loose connection. You might be better employed, initially any way, in
looking at the wiring diagram of the machine. You would then be studying something
(the motorcycle wiring) remotely (in a warm kitchen rather than a cold garage) by
means of a model (the wiring diagram). In the example case the model is constructed by
means of a graphical notation, i.e., it is a picture. But often modelling is achieved in
other ways. Natural language and mathematical symbols, for instance, are among the
wide variety of notations that may be used for this purpose.

For example, consider the Lake District, a beautiful part of Nothern England. We
can model the Lake District in two different ways, one using a graphical notation and
one using natural language. An obvious graphical model would be an Ordnance Survey
map; although photographs, provided that they concentrated on the scenery rather than
bands of happy hill-walkers, would be an equally acceptable example. A guide-book
would be a good instance of a natural language model, although you might suggest
Wordsworth’s poetry as being more in keeping with the spirit of the Lake District.

It is convenient for us to use a graphical notation to describe the software life cycle
model and this is shown in Fig. 2.1. o

You should note two basic points at this stage. First of all, the model that we are
using is a graphical representation of a physical process. Not everyone will view the
process in exactly the same way, so that you will find many variations on this model in
textbooks. You should not allow this to confuse you, for the fundamental activities that

4 SOFTWARE ENGINEERING: ANALYSIS AND DESIGN

Requirements ; . .
analysis Design Implementation Maintenance

| Y Y

User Specification Design Program
requirement of documentation documentation
cument ire s -
docum requirements :
Time

(not to scale)
Figure 2.1 A simple model of the software life cycle.

are modelled will always be the same. The second point relates to the use of the adjective
‘simple’ in the figure title. You will probably infer that the life cycle may sometimes be
more complex and, of course. you will be quite correct. But the reasons for the added
complexity will not become clear until later in the book. As we have modelled the cycle
itis apparent that it is a consecutive sequence of phases: requirements analysis, design,
implementation and maintenance. The beginning and end of each phase is marked by
the introduction or production of documents: the user requirement document,
specification of requirements, design documentation and program documentation. The
essential aspects of the simple model will now be described briefly.

2.1 USER REQUIREMENT DOCUMENT

The cycle commences with the receipt of this document by the body of individuals who
are mandated to develop software for the user organization. The body may be an
external contractor or a separate department of the user organization. The document
should include statements of functional requirements. In other words, it should state
clearly and unambiguously what is required of the software but not how this is to be
achieved. For instance, a requirement might be that the proposed software should
update a table. This is a perfectly acceptable expression of desired functionality. A state-
ment which specifies the representation of the table in the computer is not, and it may

be necessary to argue strongly for its exclusion. Just to reinforce this point, consider
each of the following statements: is each one a ‘what’ or a ‘how’?

THE SOFTWARE LIFE CYCLE §

Pop down to the newsagent and get me The Times.
Pop down to the take-away on your bike and get me a portion of the specnal
fried rice.

The different nature of the purchases mentioned here is. of course, quite irrelevant.
What is different is that the first statement is expressing a need: the second is expressirg
a need and giving explicit instructions as to the means of transportation to be used.
Thus the first requirement is a "what' and the second is a ‘how'.

Usually. the user requirement document will also include some non-functional
requirements. Most of these are acceptable and. indeed. may make life easier for the
computer professionals of the development team later in the life cycle. A requirement
that the average response to an enquiry of the database should not exceed five seconds,
would come into the non-functional category. The distinction that we make between
functional and non-functional requirements will become more clear in Sec. 3.1 of the
next chapter.

2.2 REQUIREMENTS ANALYSIS

This represents a period of interaction between the user and the analyst. the latter being
the computer professional assigned to work with the user during this phase. The
orniginal requirements are examined and tested for internal consistency. In other words.
any contradictions or ambiguities among the requirements are discussed with the user
until they are resolved to the satisfaction of both parties. The requirements are then
refined until the user and the analyst are in complete agreement as to the expected
detailed behaviour of the new software. It is important to remember that the majority of
real-world programs that are written are replacements. They are intended to replace
procedures that for various reasons have become obsolete. The procedures to be
replaced may be manual or. increasingly. automated processes that no longer meet
current needs. In these circumstances the behaviour of the existing system needs to be
examined, for much of its existing functionality will need to be duplicated in the
new system.

Exercise 2.1 How would you set about determining the behaviour of an existing pro-
cedure such as a group of clerical routines?

From the answer to Exercise 2.1 you will gather that requirements analysis can be a
time-consuming exercise. Many man-months of effort may be necessary before the
functionality of an existing system can be thoroughly understood. Finally, you should
note that the emphasis of the work is still on what the software should do. The question
of how it is to do it is premature at this stage.

2.3 SPECIFICATION OF REQUIREMENTS

The production of this document ostensibly signals the end of the requirements

6 SOFTWARE ENGINEERING: ANALYSIS AND DESIGN

analysis stage. In fact, the matter is not quite that simple but the reservation implied in
the previous sentence need not concern us at the moment.

It is important to appreciate that the specification of requirements fulfils a dual role. On
the one hand, it represents a form of contract between the user and the agency responsible
for developing the new software. Consequently, the very substantial part of the
specification that deals with the expected function must be written in a notation that is
familiar to, and understandable by, the user. A notation based on English, or the
appropriate natural language, suggests itself. On the other hand, it represents the
starting point for the design phase and must therefore be easily interpreted by the
software designer; a more formal graphical notation with less scope for ambiguity
would seem more suitable. A notation that perfectly fulfils both roles has never been
developed and probably never will be, although many attempts have been made.
However, the combination of notations suggested in Chapter 3 enables a fairly good
attempt to be made at achieving the ideal.

Of course there are some circumstances where a graphical notation is used publicly
in preference to natural language. This is most likely to happen where there is a need to
address people who have different natural languages, particularly if the message is to be
put across without delay — hence the international convention for road signs and
symbols on dashboards.

2.4 DESIGN

With the commencement of the design stage the attention of the software developers
focuses on the question of how the user’s requirements are to be implemented. This
means that ideas on the structure of the programs and the data structures on which they
will work are generated, and the best ideas are selected for further development. This is
not as simple as it sounds. Consider a fairly simple design problem, the need to add
three numbers. In how many ways could this be accomplished? (In other words: how
many possible designs are there?)

The answer is four. If we let 4, B, and C represent the numbers, we could add 4 and B,
and then add the sum to C. Similarly, we could calculate4 + Cand add itto B, orB + C
and add it to 4. Finally, we could calculate 4 + B + C in one fell swoop, thus making the
fourth design.

But let us now take this design problem a little further and ask ‘Roughly how many
designs are there if we wish to add fifty numbers?

If you arrived at the answer, ‘quite a lot, then this would be acceptable; for the
answer is 6.85 x 10*. As a matter of interest, this is several magnitudes higher than the
estimated number of atoms in the universe.

This g:Ves some idea of t’[’te ttué magnitude of apparently simple design ptoblems
(Emery, 1969). In the casé 'f softwaré the number of distinct designs that could ‘be con-
sidered is also immense — probably running into thousands for a small system;
millions for a large one. This implies that a designer needs to use a design strategy in
order that design may be accomplished in a reasonable time. The second feature that
complicates the design process is the need to demonsrate that one design is superior to
all others. This can only be achieved convincingly if the designer is able to measure

THE SOFTWARE LIFE CYCLE 7

competing designs against some appropriate ‘yardstick’. This illustrates the need for
design criteria, of which, unfortunately, there is no shortage.

The need for design criteria arises in many other situations. For example, what
criteria do you think are used by the designer of motor cars?

Without knowing anything about this subject whatever, we presume that the design
criteria include economy of running, certain aspects of road speed, safety, comfort,
emission rates of noxious fumes, and so on.

The point that we wish to make is that comparing designs becomes increasingly dif-
ficult as the number of criteria increases. Hence the word ‘unfortunately’ in the sentence
at the top of the page. The answer to Exercise 2.2 takes the matter a little further.

Exercise 2.2 What qualities, attributes or properties do you think should be taken into
account in comparing software designs?

Detailed consideration of strategy and criteria must await a later chapter. For the
moment it is sufficient to note that when the design stage is completed, the necessary
documentation is available to enable the next phase, implementation, to proceed.

2.5 DESIGN DOCUMENTATION

The design document provides a channel of communication between the designer and
the programmers who will convert the design into working computer programs. As such
it will need to be expressed in a notation, or combination of notations, that leaves no
shadow of doubt in the programmer's mind as to how the programs should function.
Clearly, the notations need to be more formal at this stage and, consequently, less
intelligible to the casual reader. Strictly speaking, there is no necessity for the user to
understand this particular document so that its rather insular format need be of
little concern.

However, it is sometimes the practice to issue other documents at this stage and these
may have a wider readership. The systems manual is intended to provide a guide should
changes need to be made to the system once it is in operation. It may need to be targeted,
in part, at the non-expert user, particularly if the new software interfaces closely with
clerical or manual routines. A user manual must be produced at some stage and the end
of the design phase is often most appropriate. As its name implies, it is intended as the
key reference to the system for the people who will actually use it. Finally, the user per-
sonnel need to learn how to use the system. Accordingly, a user guide or tutorial is often
produced at this time.

2.6 IMPLEMENTATION

This phase involves a number of activities, of which writing and documenting programs
is only one of the more important. It is commonly acknowledged that large software
systems are best designed as a set of small, more easily handled pieces known as

8 SOFTWARE ENGINEERING: ANALYSIS AND DESIGN

modules. As most of you will, by now, be used to writing computer programs, you will
have encountered the concept of program modules before. The name that was given to
them will vary. depending on the language you used.

Modules are equivalent to sub-routines, in the broadest sense, and there are specific
programming language variants, e.g.. procedure (Pascal and PL/1); function (Fortran);
sub-program, section or paragraph (Cobol).

The testing and debugging of individual program modules is a critical activity, as is
the system test. The latter is a full-scale attempt to ensure that all the program modules
work together harmoniously and satisfy the user’s requirements.

If the new software is a replacement for existing procedures, a possibility that we
mentioned in Sec. 2.2. then the introduction into service of the new system may be
regarded as being part of implementation. This is commonly referred to as cur over or
conversion. It needs to be planned very carefully to ensure that the transition takes place
smoothly and does not entail any loss or corruption of data.

Exercise 2.3 Can you think of one or two possibie strategies for conversion?

2.7 PROGRAM DOCUMENTATION

A number of documents may be produced at this stage and various authorities have dif-
ferent views as to what they should be. Essential to the following maintenance phase are
listings of the source code for the program modules and the zest log, the latter being an
account of the test procedures to which the modules have been subjected. and the results
obtained. Also emerging from implementation may be updated versions of documents
that originated earlier in the cycle. For instance, it may have been necessary to modify
the user and systems manuals and issue new versions.

2.8 MAINTENANCE

In Chapter 1 we noted that software will continue to receive attention throughout its
working life and in Exercise 1.2 we examined the reasons why this should be so. An
interesting statistic is provided by a number of practitioners and researchers in the
subject. They seem to be largely in agreement that maintenance, on average, accounts
for about 70 per cent of the total life-cycle costs of a piece of software. In other words,
more than twice as much is spent on changing it as on building it in the first place. It is
not surprising, therefore, that in recent years considerable effort has been devoted to
reducing the costs incurred in maintaining software. Much work has been done on
improving documentation téchniqués and providing better software tools for the
developers. Software tools are computer programs that are intended to improve the
efficiency of analysts, designers and programmers. They include text editors, arguably
the most important, and packages to assist with debugging, testing, and so on. However,
it has been realized that one of the best ways to check excessive maintenance costs is to
accept that maintenance will always be necessary, and design with this fact in mind. In

