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Editor’s Message

Tkuo Nakata
Editor-in-Chief

This is the second issue of Advances in Software Science and Technology, an
annual journal published by the Japan Society for Software Science and Technology
(JSSST). The Society was founded in 1983 as a professional society dedicated to
the advancement of the science and technology of computer software.

Unparalleled progress in hardware technology has been a driving force in mod-
ern computer technology. It has dramatically improved the performance and reli-
ability, increased the level of complexity and sophistication, and created numerous
new applications for computer systems. Progress in software technology, on the
other hand, has been much more conservative. By and large, the volume and the
quality of current software production depend on the skills and dedicated crafts-
manship of programmers. With ever-increasing demand for software production,
our ability to build and use computer systems is now limited mainly by our ability
to produce software.

Advancing software technology requires active research efforts toward scientific
understanding of software systems, organized efforts to improve the current practice
of software production, and drastic improvement of software education and training
programs. The JSSST was founded to provide leadership, to promote and exchange
ideas and experience, and to develop and organize concerted efforts in this direction.

The society has published a domestic bimonthly journal, Computer Software,
since 1984. This contains original technical contributions that are refereed by the
normal scientific review process. In addition, it contains survey papers, tutorials,
conference reports, and miscellaneous articles. The journal covers a broad range of
computer software. Topics featured in recent issues include algorithms, theory of
programs, programming languages and methodology, operating systems, computer
architecture, software engineering, artificial intelligence, and natural language pro-
cessing.

Advances in Software Science and Technology is the second journal published by
the JSSST. It is an annual publication with the same scope as Computer Software,
and is intended to give international exposure to the activities of JSSST and to
promote exchange of ideas and information among professionals and the public
world-wide. Each issue of the journal contains original technical contributions as
well as contributions that have appeared in previous issues of Computer Software
in Japanese. The JSSST forms a special editorial committee for each issue of this
journal; members of the committee for the second issue are listed in the front page
together with those of Computer Software.

Like the previous issue of the journal, this issue describes a variety of activities,
primarily in Japan. Software problems. however, are something we must all face

ix
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today; and international collaboration and exchange are absolutely necessary. We
very much look forward to publishing contributions from a wide variety of authors
in future issues.
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Attachment of a First-Order Data Constructor
and Its Application

Hiroyuki Sato

Summary. Today, categorical frameworks are widely used to repre-
sent datatypes in computer science. In order to provide simple and
uniform representation, this article introduces a first-order data con-
structor. A first-order datatype is constructed as the left adjoint to
the corresponding diagram. In Set, the framework implements the ab-
stract datatype theory. In our approach, induction steps on an abstract
datatype are separated from the induction basis. This provides a sim-
pler representation of parameterized types than the universal algebra
approach. Moreover, a first-order datatype is proved to be the initial
solution of a certain domain equation. Using these constructions, we
also apply conditional expressions to first-order datatypes.

1 Introduction

Today, categorical frameworks are widely used to represent datatypes in computer
science. One standard framework is the cartesian closed category (ccc), which is
exactly the typed A-calculus [7]. Because of its simple machinery, ccc serves as
the engine of a number of computation systems [1, 5]. It is, however, too weak to
express some important concepts in computer science such as subtypes and abstract
datatypes.

To increase its expressive power, we have taken various approaches. One is
to add ad hoc objects, morphisms, and axioms. Another is to add systematically
constructors of morphisms and objects such as equalizers and adjoints. The former
corresponds, in A-calculus, to é-rules. This approach allows arbitrary discussion,
but it destroys much of the effect of introducing the framework of category theory.

Systematic construction of objects and morphisms allows the simple and uni-
form extension of ccc, because we can still work in the framework of category
theory. The expressive power of ccc-engines such as CAM [1] can systematically be
strengthened along these lines. CPL [4] is a typical example. It uses the theory of
(co-)algebras and provides a general framework. It defines objects and morphisms
by using initiality or finality in a specially-structured category.

This article presents yet another categorical framework. First-order diagrams
are defined and free constructions are discussed. Our approach is compatible with
ccc-engines such as CAM. Our concern lies mainly in the categorical definition
of datatypes, while CAM utilizes ccc as a reduction engine, not as a datatype
definition scheme.

Copyright (©) 1991 by Academic Press, Inc. and

1 Iwanami Shoten, Publishers.
All rights of reproduction in any form reserved.
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2 Advances in Software Science and Technology 2, 1990

From this viewpoint, our approach resembles CPL. CPL gives a general frame-
work for a datatype definition scheme that is closely connected with the way of
computation. As regards its relation to computation, our approach is to first
present a domain equation for a given diagram. By using this equation, we can
define conditional expressions on the constructed type. In CPL, conditional ex-
pressions are defined on sum types. With our method, they can also be applied to
abstract types. With this simple machinery, we obtain equally strong expressive
power.

Another advantage of our approach is that we separate the induction steps from
the induction basis. In the theory of universal algebra, the two are not treated
separately. Our diagram exactly represents the induction step for the constructed
type. This separation is suited, for example, to the definition of parameterized
types.

In Section 3, first-order diagrams are defined. Datatype constructors are defined
by means of first-order diagrams, and some examples are given in Section 4. The
relation to existing theory is discussed in Section 5. Section 6 defines a domain
equation for a datatype constructor. Section 7 compares our construction with
CPL and interprets conditional expressions as an application of our construction.

2 Preliminaries

This section gives definitions and notations used in subsequent sections. Details
are available elsewhere [9, 3].

Notation 1. Given a category C, oC denotes its class of objects. The class of
morphisms from object a to b is denoted by C(a,b).

Notation 2. To denote that f € C(a,b), we sometimes write dom(f) = a and
codom(f) =b.

Notation 3. Given fo: Vo — W, -+, fr_1: V1 — W, we denote by [f;]
naturally defined morphism to W from [[y<;<,, Vi-

0<i<n the

Vi MEET Vot Vo
\ J[fi}(J<L<n
fi W

Definition 1 (adjoint). Let two categories C and D, two functors F:C — D and
G:D — C be given.

A triple (F, G, @) is an adjunction if ¢ is a natural isomorphism from D(—,G—)
to C(F—,—).
We denote ¢’s a, b-th component C(a, Gb) — D(Fa,b) by ¢,. We drop subscripts
if they are clear from the context.

To express that the triple (F, G, ¢) is an adjunction, we use the following dia-
gram:

a 2 GF(a) F(a)
N ch,,,bm J%.b(f)
f GO b
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In the above figure, 1, = gp’l(idp(a)). We denote morphisms that are defined by
using ¢ by means of naturally defined morphisms.

3 First-Order Diagrams and Data Constructors

Definition 2. A (first-order) diagram D is a triple (Sp,Tp, Ap) such that!:

1. Sp is the set of sorts.

2. Tp is the set of operators. Every operator f € Tp is associated with a unique
arity ny, a natural number, and a finite sequence Ly = (s(f], ey s,flfgl , s,flf) of
sort of length ny+ 1. The sort of f denotes this sequence. f: L indicates that
the sequence L is the sort of f. We say that the domain of f is (sg, ey sflffl)

and that its codomain is sflf

3. Ap is the set of axioms. Axioms are written in equalities of terms. Terms are
constructed by operators in Tp and projections together with compositions.

Notation 4. We write s € L to denote that the sequence L contains s as a compo-
nent.

Definition 3. Let C be a category with finite products, and D = (Sp,Tp,Ap) a
diagram. The category CP is defined as follows:

1. o(CP) is the whole class of translations F that send a sort s € Sp to an object

F(s) of C and an operator f: (s{;. .. ..sijfl.s,{j) € Tp to a morphism F(f)
with domain F(s(};) X e X F(sﬁf) and codomain F(s,f;f).
f
Sooeeisty) Lo o,
F(f)
F(s}) - x F(sh, ) == F(s} )
j'a_fx--‘xav] a r
S0 ‘Snf_] "’n/
. G(f)
G(sh) x -+ x G(sh, ) == G(sf))

This translation F' is naturally extended to the translation F on terms. F
translates the composition and projection to the composition and projection
in the category C.

2. For F,G € o(CP). a morphism a € CP(F,G) is a family {a,: F(s) — G(s)|s €
S} of morphisms of C such that (ls'flf o F(f) =G(f)o (as£ X oo xXay ).

nf—l
The composition b o a of two morphisms a = {as: F(s) — G(s)|s € S} and

b= {bs:G(s) — H(s)|s € S} is defined as {bs 0 as: F(s) — H(s)|s € S}.
3. Lettg=1t, € Ap. F € ()(CD) must satisfy F'(tp) = F(¢1) in C.

! In fact, D can be regarded as a category with generators Sp, Tp, and axioms Ap. C” is then
a category of product-preserving functors from D to C. However, we prefer the notation of this
definition because the important point is that D is a collection of generators, not that it can be
regarded as a category.
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Definition 4. First-order objects for a diagram D in a category C are defined as
objects of CP.

Notation 5. We write {(F(s)), (F(f))}sGSD,fETD instead of F € oCP. If the set of
operators is empty, we simply write {(F(s))},cg, -

Definition 5. For a diagram D = (Sp,Tp, Ap), its underlying diagram is defined
by D = (Sp, 0, 0),

Definition 6. Given a diagram D, the underlying functor Up: cP — P is defined
in the usual way: let F € o(CP). Up(F) is the translation that sends s € Sp to
F(s).

We come to the definition of a data constructor:
Definition 7. A first-order data constructor of a diagram D is a pair (Fp,recp)
such that the triple (Fp,Up,recp) is an adjunction.
4 Examples

This section gives some examples and shows that the definitions in the last section
are reasonable. In the rest of this section, we fix an arbitrary category C closed
under finite products.

4.1 Lists
Let the diagram Dy be (Sp,Tr,0) with S;, = {so,s1} and Tp, = {¢t: (s0, 51,51)}

Notation 6. We write ag x aj—a; to denote {(ag,a1), ()} € o(CP~). Let a be a
morphism of CPL. Tt is also denoted by (as,, as, ).

Let the first order data contructor (Fp, ,recp, ) exist.
Notation 7. We denote Up, Fp, ({(a,1)}) by (d/, list(a)).
Lemma 1. ¢’ & a

Proof. Consider the following adjoint diagram:

((M(a,1))s0(M(a,1))s1) = — —
(a,1) o e (a’,list(a)) a x list(a) — list(a)
Ny recp, ((fn))
(fvn) (bvl) bxl —— l
I
Up, (b x 1 1)

We construct another left adjoint FbL by using, instead of 7(4,1) and recp, , (ida,

(n(a.l))sl) and TechL = ((TECDL )so © (n(a,l))so’ (TeCDL )s;) Tespectively. By easy
calc1ilvati0n, <FIDL£DL’TSCIDL> can be proved to be an adjunction. Therefore,
(a’,list(a)) = (a,list(a)). This means that o’ = a. ]

From the previous lemma, we can choose the datatype constructor (Fp, ,recp, )
such that Up, Fp, (a,1) = (a, X) for some X € oC. We write list(a) for this X.
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Notation 8. We denote Fp, ({(a,1)}) by a x list(a )X list(a). We write nil, for
(n(a,l))sl .

A simple calculation gives the following proposition:
Proposition 1. Given b x [-2=1, fia — b and n:1 — [:

1. recp, (f,n)s, = f.

2. recp, (f,n)s, onily = n.

3. T€Cpy (a,1),{(bl),(9)} (f n)s; ©consg = go(f % T€CD (a,1),{(bJ), (g)}(f n)s, )-
Example 1. Let us follow the previous construction for C = Set. An object
{(S0,51),(T)} of Set” consists of two sets, Sy and S, and a function T': Sy x S —
S1. This corresponds to the translation that sends sy to Sp, s1 to Sy, and t to 7.

In Set, we have a left adjoint Fp, (see the next section). list(Sp) is the set

of finite lists composed of elements of Sy, that is, {(ag,..., an—1)|n > 0,a; €
So(0 < i@ < n)}. consg,: Sy x list(Sy) — list(Sp) is the usual cons that sends
ag € So,{ai,...,an—1) € list(Sy) to (ap,ai,..., an—1). The morphism nil:1 —

list(Sp) corresponds to the empty list () € list(Sp). The previous proposition
shows that recp, in Set is the usual list induction schema.

An advantage of this method is that we can construct data structures similar
to list types in the same way.

Let us follow the Set example again. When Fp, is applied to {Sp, I}, where
I is an arbitrary set, we have a structure that closely resembless list in the above
example. Fp, ({(So,I)})s, is isomorphic to I xlist(Sy) = { (4, (ag,-..,an-1))|i € I}.
There are as many nils as I, that is, {(¢,())|¢ € I}. This datatype represents an
I-indexed list of the set Sy. We can use the same induction step for list(Sp).
When I = 1, we have only one nil, which we have already investigated. The only
difference is that as the induction basis, we consider every case for every nil.

A typical example of an I-indexed list is the recursion on dotted-cons (ag a; ...
an-1-a,) in Lisp. It has the same recursion schema as list though a, need not be
nil. This difference lies only in whether I = 1 in our approach. We have the same
induction schema, recp, , though the induction basis is different from that of list.

We have this advantage because our diagram is an abstraction of induction
steps only. This makes our construction simple and flexible. A comparison with
CPL is studied in later sections.

4.2 Tree
Let D7 be (S7,Tr, ), where St = {so} and Tr = {t: (so0, s0, s0) }
N%t;t)tlon 9. We denote Fp, ((a)) by {(tree(a)), (maketreey)} or by tree(a)xtree(a)
M tree(a). We denote 14: (a) — (tree(a)) by makenode,.
Proposition 2 (tree induction). For f:b x b — b and g:a — b, we have the fol-
lowing tree induction schema:

L. recpp((a)). (), ()} (9)se © makenode, = g.

2. recpp((a)(b).(f)}(9)so © maketree, =

fo (r?f‘m((u 1A} so X T€CDL((a)).{(B).(£)} (9)s0)-

Example 2. When C is Set , tree(a) represents the set of binary trees whose nodes
are elements of a. As in the case of list, recp, represents the tree induction schema.
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4.3 Natural Number
Let Dy = (Sn,Tn,0) be a diagram where Sy = {so} and Ty = {t: (s, s0)}. It is

easily proved that N 25N = {(N), (suc)} = Fp, (1) is the natural number object.
The same discussion appears in Goldblatt [3]. As expected,we denote n;:1 — N
by 0. We have the following induction schema as expected.

Proposition 3 (Induction on Natural Number). For z:1 — a and y:a — a,

1. T('CDN(I).{(a).(y)} ol =uwx.

2. TeCDN(1){(a)(y)} © SUC =Y O TECDy (1),{(a),(v)}-

The above three examples use diagrams whose axiom set is empty. A well-
known example that has a non-empty axiom set is stack.

4.4 Stack

Let Dg be (Sg,Ts, Ag), where Ts = {to: (s0, 51, 81), t1: (51, 80), t2: (s1,81)}, Ss =
{s0,s1}, and Ag = {t; otg = m1,t2 0 tg = mo}. Here, m; means the projection map
to the i-th component.

This diagram defines a stack. We denote Fpg(a) by {(stack(a)), (pusha, popa,
topa)}-

5 Set”

The last section showed that several useful datatypes can be defined by using
diagrams. The next problem is to determine how first-order datatypes can be
defined.

Theorem 1. Every diagram has a corresponding data constructor in Set.

Proof. We use the following proposition [6].

Proposition 4. Let A be finitary algebraic. Then, the forgetful functor U: A —
Set is monadic.

Finitary algebraic categories, which have their forgetful functor to Set, have
been intensively studied, e.g., [8]. In computer science, a finitary algebraic theory
on Set is called a 3-algebra [2]. In Set, the situation is rather trivial. We can
utilize the theory of universal algebra. -

In Set the category of first-order objects for a diagram is finitary algebraic.
Therefore, by the above proposition, its forgetful functor is monadic. In particular,
it has the left adjoint, that is, a first-order data constructor. 1

The above theorem means that the theory of first order data constructors has
a Set-model. This makes the following definition significant.

Definition 8. Let D = {D;},.; be a set of diagrams D;(i € I). Consider a ccc-
based system that adds first-order data constructors for each D; as constructors of
objects and morphisms. We denote it by ccc + D.

A category ccc + D corresponds to, in a type theory, typed A-calculus over some
abstract datatype theory.

The following results immediately from the definition.

Corollary 1. For an arbitrary set D of first-order data constructors, Set is a model
of cce + D.



