ADVANCES
IN

SOFTWARE .

SCIENCE
AND |

TECHNOLOGY

JAPAN

SOCIETY
FOR

SOFTWARE
SCIENCE

AND
TECHNOLOGY

ADVANCES IN SOFTWARE SCIENCE AND
TECHNOLOGY
VOLUME 2

)24

JAPAN SOCIETY FOR SOFTWARE SCIENCE AND
TECHNOLOGY

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers

Boston San Diego New York
London Sydney Tokyo Toronto

Co-published for
Japan Society for Software Science and Technology
by Academic Press, Inc.
and
Iwanami Shoten, Publishers

This book is printed on acid-free paper. @
Copyright (© 1991 by Academic Press, Inc. and Iwanami Shoten, Publishers

All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or

any information storage and retrieval system, without
permission in writing from the publisher.

ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, CA 92101

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24 28 Oval Road, London NW1 7DX

Library of Congress Catalog Card Number: 90-660056

ISBN 012 0371022
ISSN 1044 7997

AP Exclusive Sales Territory: United States, its territories and
dependencies, Canada, and Europe.

Iwanami Shoten Exclusive Sales Territory: Japan.
Nonexclusive sales rights throughout the rest of the world.

Printed in the United States of America

91 92 93 987654321

ADVANCES IN SOFTWARE SCIENCE AND
TECHNOLOGY

VOLUME 2

JAPAN SOCIETY FOR SOFTWARE SCIENCE AND TECHNOLOGY
World Trade Center Building 7F, 2-4-1 Hamamatsu-cho
Minato-ku, Tokyo, 105 Japan

Executive Editors for This Volume

Yoshio Ohno, Keio University, Chief Executive Editor

Hiroyasu Kakuda. University of Electro-Communications
Tsutomu Kamimura, IBM Research, Tokyo Research Laboratory
Tetsuo Tamai, University of Tsukuba

Jiro Tanaka, Fujitsu Ltd.

Yoshikazu Yamamoto, Keio University

Editorial Board

Ikuo Nakata, University of Tsukuba, Editor-in-Chief
Hitoshi Aida, The University of Tokyo

Tsuneo Ajisaka, Kyoto University

Takeshi Chusho, Hitachi Ltd.

Norihisa Doi, Keio University

Ken-ichi Hagihara, Osaka University

Masami Hagiya, Kyoto University

Koiti Hasida, ICOT

Teruo Hikita, Meiji University

Yasuyoshi Inagaki, Nagoya University

Hiroyasu Kakuda, University of Electro-Communications
Yahiko Kambayashi, Kyoto University

Tsutomu Kamimura, IBM Research, Tokyo Research Laboratory
Hiroshi Kimijima, Fujitsu Ltd.

Toshio Miyachi, NEC Corporation

Fumio Mizoguchi, Science University of Tokyo
Yoichi Muraoka, Waseda University

Yoshio Ohno, Keio University

Yasuki Saito, NTT

Masataka Sassa, University of Tsukuba

Masahiko Sato, Tohoku University

Masaaki Shimasaki, Kyushu University

Akihiko Takano, Hitachi Ltd.

Akikazu Takeuchi, Mitsubishi Electric Corporation
Hidehiko Tanaka, The University of Tokyo

Jiro Tanaka, Fujitsu Ltd.

Hiroyuki Tarumi, NEC Corporation

Satoru Tomura, Electrotechnical Laboratory
Kazunori Ueda, ICOT

Yoshikazu Yamamoto, Keio University

Michiaki Yasumura, Keio University

Hiroto Yasuura, Kyoto University

Yasuhiko Yokote, Sony Computer Science Laboratory Inc.
Naoki Yonezaki, Tokyo Institute of Technology
Taiichi Yuasa, Toyohashi University of Technology

Contributors

Numbers in parentheses refer to the pages on which the authors’ contributions
begin.

Tsuneo Ajisaka (103), Department of Information Science, Kyoto University,
Yoshida, Hon-machi, Sakyo, Kyoto, 606 Japan
Kunikazu Fujii (45), IBM Research, Tokyo Research Laboratory, IBM Japan,

=

5-11 Sambancho, Chiyoda-ku, Tokyo, 102 Japan

Yasunori Harada (153), Division of Information Engineering, Faculty of
Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060 Japan

Tsunetoshi Hayashi (197), Department of Computer Science and Systems
Engineering, Faculty of Science and Engineering, Ritsumeikan University, 56 1
Tojiin-kitamachi, Kita-ku, Kyoto, 603 Japan

Ken Hirose (177), Department of Mathematics, Waseda University, 3-4 1
Ohkubo, Shinjuku-ku, Tokyo, 160 Japan

Hiroshi Horiguchi (123), Department of Mathematics, Tokyo Denki University,
22 Nishiki-cho Kanda, Chiyoda-ku, Tokyo, 101 Japan

Kazuaki Kajitori (123), Department of Mathematics, Tokyo Denki University, 2-2
Nishiki-cho Kanda, Chiyoda-ku, Tokyo, 101 Japan

Satoshi Kinoshita (61), Toshiba Corporation Research and Development Center,
1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki-shi, 210 Japan

Yoshihiro Matsumoto (103), Department of Information Science, Kyoto
University, Yoshida, Hon-machi, Sakyo, Kyoto, 606 Japan

Kazufumi Mitani (153), Division of Information Engineering, Faculty of
Engineering, Hokkaido University, N13- W8, Kita-ku, Sapporo, 060 Japan

Eiichi Miyamoto (153), Division of Information Engineering, Faculty of
Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060 Japan
Yoshio Ohno (13), Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama, 223 Japan

Yasubumi Sakakibara (79), International Institute for Advanced Study of Social
Information Science (ITAS-SIS), Fujitsu Limited, 140 Miyamoto, Numazu,
Shizuoka, 41003 Japan

Hiroyuki Sato (1), Department of Information Science, Faculty of Science, The
University of Tokyo, 7 3 1 Hongo, Bunkyo-ku, Tokyo, 113 Japan

vi Advances in Software Science and Technology 2, 1990
Masayuki Takeda (131), Department of Electrical Engineering, Kyushu University
36, Fukuoka, 812 Japan

Hozumi Tanaka (61), Department of Computer Science, Tokyo Institute of
Technology, Ookayama 2-12-1, Meguro-ku, Tokyo, 152 Japan

Tsutomu Tayama (123), Department of Mathematics, Tokyo Denki University,
22 Nishiki-cho Kanda, Chiyoda-ku, Tokyo, 101 Japan

Jun’ichi Toyoda (45), The Institute of Scientific and Industrial Research, Osaka
University, 8-1 Mihogaoka, Ibaragi-shi, Osaka, 567 Japan

Kuniaki Uehara (45), Department of Systems Engineering, Faculty of
Engineering, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657 Japan

Shin-ya Watanabe (153), Division of Information Engineering, Faculty of
Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060 Japan

Editor’s Message

Tkuo Nakata
Editor-in-Chief

This is the second issue of Advances in Software Science and Technology, an
annual journal published by the Japan Society for Software Science and Technology
(JSSST). The Society was founded in 1983 as a professional society dedicated to
the advancement of the science and technology of computer software.

Unparalleled progress in hardware technology has been a driving force in mod-
ern computer technology. It has dramatically improved the performance and reli-
ability, increased the level of complexity and sophistication, and created numerous
new applications for computer systems. Progress in software technology, on the
other hand, has been much more conservative. By and large, the volume and the
quality of current software production depend on the skills and dedicated crafts-
manship of programmers. With ever-increasing demand for software production,
our ability to build and use computer systems is now limited mainly by our ability
to produce software.

Advancing software technology requires active research efforts toward scientific
understanding of software systems, organized efforts to improve the current practice
of software production, and drastic improvement of software education and training
programs. The JSSST was founded to provide leadership, to promote and exchange
ideas and experience, and to develop and organize concerted efforts in this direction.

The society has published a domestic bimonthly journal, Computer Software,
since 1984. This contains original technical contributions that are refereed by the
normal scientific review process. In addition, it contains survey papers, tutorials,
conference reports, and miscellaneous articles. The journal covers a broad range of
computer software. Topics featured in recent issues include algorithms, theory of
programs, programming languages and methodology, operating systems, computer
architecture, software engineering, artificial intelligence, and natural language pro-
cessing.

Advances in Software Science and Technology is the second journal published by
the JSSST. It is an annual publication with the same scope as Computer Software,
and is intended to give international exposure to the activities of JSSST and to
promote exchange of ideas and information among professionals and the public
world-wide. Each issue of the journal contains original technical contributions as
well as contributions that have appeared in previous issues of Computer Software
in Japanese. The JSSST forms a special editorial committee for each issue of this
journal; members of the committee for the second issue are listed in the front page
together with those of Computer Software.

Like the previous issue of the journal, this issue describes a variety of activities,
primarily in Japan. Software problems. however, are something we must all face

ix

X Advances in Software Science and Technology 2, 1990

today; and international collaboration and exchange are absolutely necessary. We
very much look forward to publishing contributions from a wide variety of authors
in future issues.

Contents

Editor’s Message
Ikuo Nakata

Research Contributions

Attachment of a First-Order Data Constructor and Its Application
Hiroyuki Sato 1

A Smoothing Algorithm of Polygonal Curves and Polyhedral Surfaces
Yoshio ORNO 13

A Technique for Prolog Program Synthesis from Natural Language
Specification
Kunikazu Fujii, Kuniaki Uehara and Jun’ichi Toyoda 45

Processing Left Extraposition in a Bottom-Up Parsing System
Satoshi Kinoshita and Hozumi Tanakaiiuuiiiiano... 61

On Learning Smullyan’s Elementary Formal Systems: Towards an Efficient
Learning Method for Context-Sensitive Languages
Yasubumi Sakakibara 79

A Data Model in the Software Project Database KyotoDB
Yoshihiro Matsumoto and Tsuneo Ajisakao ... 103

Hamada Floating-Point Numbers and Real Numbers
Hiroshi Horiguchi, Tsutomu Tayama and Kazuaki Kajitori 123

An Efficient Multiple String Replacing Algorithm Using Patterns
with Pictures
Masayukl Takedat 131

Kamui88: A Parallel Computation Model with Fields and Events

Shin-ya Watanabe, Yasunori Harada, Kazufumi Mitani
and Eiichi Miyamoto 153

vii

viii Advances in Software Science and Technology 2, 1990
Tutorial

Formation and Development of the Concept of Algorithm
K HITOSE o mens o o mine o v s et 538 5 665 608 56 @ 655 50 35 608§ 605 B i 98 R A M E G M uF a3 M4

Software Critique

WEB System and Its Processor
Tsunetoshi Hayashi e

Society News

Rules for Submission of English Papers and English Paper
Style Guidelinescouuniniiiiiimiiiiii it iiiiaaiie i

Author’s Guide ...

Japan Society for Software Science and Technology
Membership Application Form

Attachment of a First-Order Data Constructor
and Its Application

Hiroyuki Sato

Summary. Today, categorical frameworks are widely used to repre-
sent datatypes in computer science. In order to provide simple and
uniform representation, this article introduces a first-order data con-
structor. A first-order datatype is constructed as the left adjoint to
the corresponding diagram. In Set, the framework implements the ab-
stract datatype theory. In our approach, induction steps on an abstract
datatype are separated from the induction basis. This provides a sim-
pler representation of parameterized types than the universal algebra
approach. Moreover, a first-order datatype is proved to be the initial
solution of a certain domain equation. Using these constructions, we
also apply conditional expressions to first-order datatypes.

1 Introduction

Today, categorical frameworks are widely used to represent datatypes in computer
science. One standard framework is the cartesian closed category (ccc), which is
exactly the typed A-calculus [7]. Because of its simple machinery, ccc serves as
the engine of a number of computation systems [1, 5]. It is, however, too weak to
express some important concepts in computer science such as subtypes and abstract
datatypes.

To increase its expressive power, we have taken various approaches. One is
to add ad hoc objects, morphisms, and axioms. Another is to add systematically
constructors of morphisms and objects such as equalizers and adjoints. The former
corresponds, in A-calculus, to é-rules. This approach allows arbitrary discussion,
but it destroys much of the effect of introducing the framework of category theory.

Systematic construction of objects and morphisms allows the simple and uni-
form extension of ccc, because we can still work in the framework of category
theory. The expressive power of ccc-engines such as CAM [1] can systematically be
strengthened along these lines. CPL [4] is a typical example. It uses the theory of
(co-)algebras and provides a general framework. It defines objects and morphisms
by using initiality or finality in a specially-structured category.

This article presents yet another categorical framework. First-order diagrams
are defined and free constructions are discussed. Our approach is compatible with
ccc-engines such as CAM. Our concern lies mainly in the categorical definition
of datatypes, while CAM utilizes ccc as a reduction engine, not as a datatype
definition scheme.

Copyright (©) 1991 by Academic Press, Inc. and

1 Iwanami Shoten, Publishers.
All rights of reproduction in any form reserved.

ISBN 012 0371022

2 Advances in Software Science and Technology 2, 1990

From this viewpoint, our approach resembles CPL. CPL gives a general frame-
work for a datatype definition scheme that is closely connected with the way of
computation. As regards its relation to computation, our approach is to first
present a domain equation for a given diagram. By using this equation, we can
define conditional expressions on the constructed type. In CPL, conditional ex-
pressions are defined on sum types. With our method, they can also be applied to
abstract types. With this simple machinery, we obtain equally strong expressive
power.

Another advantage of our approach is that we separate the induction steps from
the induction basis. In the theory of universal algebra, the two are not treated
separately. Our diagram exactly represents the induction step for the constructed
type. This separation is suited, for example, to the definition of parameterized
types.

In Section 3, first-order diagrams are defined. Datatype constructors are defined
by means of first-order diagrams, and some examples are given in Section 4. The
relation to existing theory is discussed in Section 5. Section 6 defines a domain
equation for a datatype constructor. Section 7 compares our construction with
CPL and interprets conditional expressions as an application of our construction.

2 Preliminaries

This section gives definitions and notations used in subsequent sections. Details
are available elsewhere [9, 3].

Notation 1. Given a category C, oC denotes its class of objects. The class of
morphisms from object a to b is denoted by C(a,b).

Notation 2. To denote that f € C(a,b), we sometimes write dom(f) = a and
codom(f) =b.

Notation 3. Given fo: Vo — W, -+, fr_1: V1 — W, we denote by [f;]
naturally defined morphism to W from [[y<;<,, Vi-

0<i<n the

Vi MEET Vot Vo
\ J[fi}(J<L<n
fi W

Definition 1 (adjoint). Let two categories C and D, two functors F:C — D and
G:D — C be given.

A triple (F, G, @) is an adjunction if ¢ is a natural isomorphism from D(—,G—)
to C(F—,—).
We denote ¢’s a, b-th component C(a, Gb) — D(Fa,b) by ¢,. We drop subscripts
if they are clear from the context.

To express that the triple (F, G, ¢) is an adjunction, we use the following dia-
gram:

a 2 GF(a) F(a)
N ch,,,bm J%.b(f)
f GO b

Attachment of a First-Order Data Constructor 3

In the above figure, 1, = gp’l(idp(a)). We denote morphisms that are defined by
using ¢ by means of naturally defined morphisms.

3 First-Order Diagrams and Data Constructors

Definition 2. A (first-order) diagram D is a triple (Sp,Tp, Ap) such that!:

1. Sp is the set of sorts.

2. Tp is the set of operators. Every operator f € Tp is associated with a unique
arity ny, a natural number, and a finite sequence Ly = (s(f], ey s,flfgl , s,flf) of
sort of length ny+ 1. The sort of f denotes this sequence. f: L indicates that
the sequence L is the sort of f. We say that the domain of f is (sg, ey sflffl)

and that its codomain is sflf

3. Ap is the set of axioms. Axioms are written in equalities of terms. Terms are
constructed by operators in Tp and projections together with compositions.

Notation 4. We write s € L to denote that the sequence L contains s as a compo-
nent.

Definition 3. Let C be a category with finite products, and D = (Sp,Tp,Ap) a
diagram. The category CP is defined as follows:

1. o(CP) is the whole class of translations F that send a sort s € Sp to an object

F(s) of C and an operator f: (s{;.sijfl.s,{j) € Tp to a morphism F(f)
with domain F(s(};) X e X F(sﬁf) and codomain F(s,f;f).
f
Sooeeisty) Lo o,
F(f)
F(s}) - x F(sh,) == F(s})
j'a_fx--‘xav] a r
S0 ‘Snf_] "’n/
. G(f)
G(sh) x -+ x G(sh,) == G(sf))

This translation F' is naturally extended to the translation F on terms. F
translates the composition and projection to the composition and projection
in the category C.

2. For F,G € o(CP). a morphism a € CP(F,G) is a family {a,: F(s) — G(s)|s €
S} of morphisms of C such that (ls'flf o F(f) =G(f)o (as£ X oo xXay).

nf—l
The composition b o a of two morphisms a = {as: F(s) — G(s)|s € S} and

b= {bs:G(s) — H(s)|s € S} is defined as {bs 0 as: F(s) — H(s)|s € S}.
3. Lettg=1t, € Ap. F € ()(CD) must satisfy F'(tp) = F(¢1) in C.

! In fact, D can be regarded as a category with generators Sp, Tp, and axioms Ap. C” is then
a category of product-preserving functors from D to C. However, we prefer the notation of this
definition because the important point is that D is a collection of generators, not that it can be
regarded as a category.

4 Advances in Software Science and Technology 2, 1990
Definition 4. First-order objects for a diagram D in a category C are defined as
objects of CP.

Notation 5. We write {(F(s)), (F(f))}sGSD,fETD instead of F € oCP. If the set of
operators is empty, we simply write {(F(s))},cg, -

Definition 5. For a diagram D = (Sp,Tp, Ap), its underlying diagram is defined
by D = (Sp, 0, 0),

Definition 6. Given a diagram D, the underlying functor Up: cP — P is defined
in the usual way: let F € o(CP). Up(F) is the translation that sends s € Sp to
F(s).

We come to the definition of a data constructor:
Definition 7. A first-order data constructor of a diagram D is a pair (Fp,recp)
such that the triple (Fp,Up,recp) is an adjunction.
4 Examples

This section gives some examples and shows that the definitions in the last section
are reasonable. In the rest of this section, we fix an arbitrary category C closed
under finite products.

4.1 Lists
Let the diagram Dy be (Sp,Tr,0) with S;, = {so,s1} and Tp, = {¢t: (s0, 51,51)}

Notation 6. We write ag x aj—a; to denote {(ag,a1), ()} € o(CP~). Let a be a
morphism of CPL. Tt is also denoted by (as,, as,).

Let the first order data contructor (Fp, ,recp,) exist.
Notation 7. We denote Up, Fp, ({(a,1)}) by (d/, list(a)).
Lemma 1. ¢’ & a

Proof. Consider the following adjoint diagram:

((M(a,1))s0(M(a,1))s1) = — —
(a,1) o e (a’,list(a)) a x list(a) — list(a)
Ny recp, ((fn))
(fvn) (bvl) bxl —— l
I
Up, (b x 1 1)

We construct another left adjoint FbL by using, instead of 7(4,1) and recp, , (ida,

(n(a.l))sl) and TechL = ((TECDL)so © (n(a,l))so’ (TeCDL)s;) Tespectively. By easy
calc1ilvati0n, <FIDL£DL’TSCIDL> can be proved to be an adjunction. Therefore,
(a’,list(a)) = (a,list(a)). This means that o’ = a.]

From the previous lemma, we can choose the datatype constructor (Fp, ,recp,)
such that Up, Fp, (a,1) = (a, X) for some X € oC. We write list(a) for this X.

Attachment of a First-Order Data Constructor 5

Notation 8. We denote Fp, ({(a,1)}) by a x list(a)X list(a). We write nil, for
(n(a,l))sl .

A simple calculation gives the following proposition:
Proposition 1. Given b x [-2=1, fia — b and n:1 — [:

1. recp, (f,n)s, = f.

2. recp, (f,n)s, onily = n.

3. T€Cpy (a,1),{(bl),(9)} (f n)s; ©consg = go(f % T€CD (a,1),{(bJ), (g)}(f n)s,)-
Example 1. Let us follow the previous construction for C = Set. An object
{(S0,51),(T)} of Set” consists of two sets, Sy and S, and a function T': Sy x S —
S1. This corresponds to the translation that sends sy to Sp, s1 to Sy, and t to 7.

In Set, we have a left adjoint Fp, (see the next section). list(Sp) is the set

of finite lists composed of elements of Sy, that is, {(ag,..., an—1)|n > 0,a; €
So(0 < i@ < n)}. consg,: Sy x list(Sy) — list(Sp) is the usual cons that sends
ag € So,{ai,...,an—1) € list(Sy) to (ap,ai,..., an—1). The morphism nil:1 —

list(Sp) corresponds to the empty list () € list(Sp). The previous proposition
shows that recp, in Set is the usual list induction schema.

An advantage of this method is that we can construct data structures similar
to list types in the same way.

Let us follow the Set example again. When Fp, is applied to {Sp, I}, where
I is an arbitrary set, we have a structure that closely resembless list in the above
example. Fp, ({(So,I)})s, is isomorphic to I xlist(Sy) = { (4, (ag,-..,an-1))|i € I}.
There are as many nils as I, that is, {(¢,())|¢ € I}. This datatype represents an
I-indexed list of the set Sy. We can use the same induction step for list(Sp).
When I = 1, we have only one nil, which we have already investigated. The only
difference is that as the induction basis, we consider every case for every nil.

A typical example of an I-indexed list is the recursion on dotted-cons (ag a; ...
an-1-a,) in Lisp. It has the same recursion schema as list though a, need not be
nil. This difference lies only in whether I = 1 in our approach. We have the same
induction schema, recp, , though the induction basis is different from that of list.

We have this advantage because our diagram is an abstraction of induction
steps only. This makes our construction simple and flexible. A comparison with
CPL is studied in later sections.

4.2 Tree
Let D7 be (S7,Tr,), where St = {so} and Tr = {t: (so0, s0, s0) }
N%t;t)tlon 9. We denote Fp, ((a)) by {(tree(a)), (maketreey)} or by tree(a)xtree(a)
M tree(a). We denote 14: (a) — (tree(a)) by makenode,.
Proposition 2 (tree induction). For f:b x b — b and g:a — b, we have the fol-
lowing tree induction schema:

L. recpp((a)). (), ()} (9)se © makenode, = g.

2. recpp((a)(b).(f)}(9)so © maketree, =

fo (r?f‘m((u 1A} so X T€CDL((a)).{(B).(£)} (9)s0)-

Example 2. When C is Set , tree(a) represents the set of binary trees whose nodes
are elements of a. As in the case of list, recp, represents the tree induction schema.

6 Advances in Software Science and Technology 2, 1990

4.3 Natural Number
Let Dy = (Sn,Tn,0) be a diagram where Sy = {so} and Ty = {t: (s, s0)}. It is

easily proved that N 25N = {(N), (suc)} = Fp, (1) is the natural number object.
The same discussion appears in Goldblatt [3]. As expected,we denote n;:1 — N
by 0. We have the following induction schema as expected.

Proposition 3 (Induction on Natural Number). For z:1 — a and y:a — a,

1. T('CDN(I).{(a).(y)} ol =uwx.

2. TeCDN(1){(a)(y)} © SUC =Y O TECDy (1),{(a),(v)}-

The above three examples use diagrams whose axiom set is empty. A well-
known example that has a non-empty axiom set is stack.

4.4 Stack

Let Dg be (Sg,Ts, Ag), where Ts = {to: (s0, 51, 81), t1: (51, 80), t2: (s1,81)}, Ss =
{s0,s1}, and Ag = {t; otg = m1,t2 0 tg = mo}. Here, m; means the projection map
to the i-th component.

This diagram defines a stack. We denote Fpg(a) by {(stack(a)), (pusha, popa,
topa)}-

5 Set”

The last section showed that several useful datatypes can be defined by using
diagrams. The next problem is to determine how first-order datatypes can be
defined.

Theorem 1. Every diagram has a corresponding data constructor in Set.

Proof. We use the following proposition [6].

Proposition 4. Let A be finitary algebraic. Then, the forgetful functor U: A —
Set is monadic.

Finitary algebraic categories, which have their forgetful functor to Set, have
been intensively studied, e.g., [8]. In computer science, a finitary algebraic theory
on Set is called a 3-algebra [2]. In Set, the situation is rather trivial. We can
utilize the theory of universal algebra. -

In Set the category of first-order objects for a diagram is finitary algebraic.
Therefore, by the above proposition, its forgetful functor is monadic. In particular,
it has the left adjoint, that is, a first-order data constructor. 1

The above theorem means that the theory of first order data constructors has
a Set-model. This makes the following definition significant.

Definition 8. Let D = {D;},.; be a set of diagrams D;(i € I). Consider a ccc-
based system that adds first-order data constructors for each D; as constructors of
objects and morphisms. We denote it by ccc + D.

A category ccc + D corresponds to, in a type theory, typed A-calculus over some
abstract datatype theory.

The following results immediately from the definition.

Corollary 1. For an arbitrary set D of first-order data constructors, Set is a model
of cce + D.

