Alan John Dix

S3143S 31d03d (NV SHILNDINO

Formal Methods
for
Interactive Systems

ALAN JOHN DIX

Department of Computer Science
University of York

ACADEMIC PRESS
Harcourt Brace Jovanovich, Publishers

London San Diego New York
Boston Sydney Tokyo Toronto

ACADEMIC PRESS LTD
24/28 Oval Road,
London NW1 7DX

United States Edition published by

ACADEMIC PRESS INC.
San Diego, California 92101-4311

Copyright © 1991 by
ACADEMIC PRESS LTD.
This book is printed on acid-free paper
All Rights Reserved.
No part of this book may be reproduced in any form by photostat, microfilm, or any other
means without written permission from the publishers
A catalogue record for this book is available from the British Library

ISBN 0-12-218315-0

Printed and bound in Great Britain by the
University Press, Cambridge

Formal Methods for Interactive Systems

Preface

This book is the product of over six years of research in the Human—Computer
Interaction Group at the University of York. This group includes members of the
Computer Science and Psychology Departments and it has been a privilege to
work in such a stimulating environment.

HCI is itself a cross-disciplinary field and this book brings together aspects of
HCI with the sort of formal methods found in software engineering — at first
sight, an unlikely marriage. Computers, in general, and formal methods, in
particular, define strict laws of operation, yet people cannot usually be fitted into
such straight-jackets. On the other hand, so many systems I have seen and used,
in banks, shops, and including all that I have used to produce this book, have
user-interface faults that could have been prevented by relatively simple formal
analyses. So, aware of both these facts, this book contains both eulogies of the
usefulness of formal techniques and wamings of their misuse.

The recurrent theme of the book is to take a class of interactive systems and to
define a formal model which captures critical aspects of them. These models are
then used to frame formal statements of properties relating to the systems’
usability. The emphasis is on describing the systems and defining the properties.
The intention is not to produce a formal notation or architecture for constructing
interactive systems, but rather to develop frameworks which, among other things,
guide the use of existing notations and architectures. The formal models can be
used in a strictly rigorous way, as part of a formal design process, however, they
also, and more importantly, act as conceptual tools to aid our understanding of
the systems.

There will be few readers in this strange border country between HCI and
formal methods, so I assume that most will be in one camp or the other. I hope
that it will prove useful to both camps: to those working in HCI who feel the
need for a more rigorous framework for aspects of their work; and also to those
software engineers working within increasingly formal methodologies who
recognise a need to address the people who use their systems. There may be a
temptation for the latter to notice only the eulogies and the former the warnings,
however, I hope that you will heed both.

Those who work in HCI, whether drawn from psychology, sociology or
computing tend to share an interest in people. Is this because they are self-
selecting, or because their jobs emphasise an empathy with their users? I’m not
sure, but it places them in a position of responsibility within their workplace and

within the information technology community, to reflect humanity amid
mechanism. Their job actually asks them to balance the law of the machine with
love, mercy and care for its users.

The balance between law and mercy is never easy, and naturally involves a
whole wealth of ethical, philosophical and religious issues. In the work
described here, there is a clear stance, which I never deliberately took, but
gradually noticed in my work. I have a disinclination to build models of the user
and distrust of excessively task-oriented analyses. Instead, the models are formal
models of the system from the user’s viewpoint. The principles primarily
address issues of observability and control. That is, they emphasise the user as
being in charge of the interaction, and don’t presume to determine precisely what
the user will do.

Several parts of this book have appeared in modified form in previous
published papers. I would like to thank the following for permission to reuse
material: Cambridge University Press for "The myth of the infinitely fast
machine” which appeared in People and Computers III (1987), "Abstract,
generic models of interactive systems" in People and Computers IV (1988) and
"Nondeterminism as a paradigm for understanding problems in the user
interface” in Formal Methods in Human-Computer Interaction (1989); and
Butterworths for "Interactive systems design and formal refinement are
incompatible?" which appeared in The Theory and Practice of Refinement.

Finally I would like to thank my family, Fiona, Esther and Ruth, for their love
which counterbalanced the law of the ever present PC (even on holiday!); and to
thank God, our Father, who brought us to York and has sustained us since, and in
whom law and love meet in costly but complete harmony.

CONTENTS

Preface

1 Introduction

1.1 Formal methods and interactive Systemsccceuun. 1
1.2 AbstractmodelS . .scsenssvssensnnsses savess s o 7
1.3 FOrMaltieS s.ccnsnsscseuscssn saoseessssnnessesns 11
14 EditOrS G sscscssiosnacs snpsapsansssssasisss susees 14
1.5 Atasteof abstractmodellingt 15
1.6 AboutthiSbook ::vssesssssscnmasncsssnessssanssss 19
2 PIEs - the simplest black-box model
2] INHOduction socssmscmsvmnnsmssssane baessesseesses 23
2.2 Informal ideasbehind PIEscccicueennn. 23
2.3 PIEs—formal definitionccciturnnnn. 26
24 SomeexampleSOfPIES . .ccvceccsncesonsnnsssancnss 30
2.5 Predictability and monotone closure00 35
2.6 Observabilityand user strategyoveeeueunennn. 37
2.7 Reachabilify' . :cosessasnenssnasosn i nseeEs #8ssEn o as 41
28 UNAOINGEITOIS cvecn sowsnmosussen sasvers nassss sus 42
2.9 Exceptionsand 1anguagecccccsenececsasesesas 48
2.10 RelationsbetweenPIESciiiinrnnnnnn. 52
211 PIES~iSCUSSION < somonms snomsss anssan ssssesssss 63
3 Red-PIEs —result and display
30 JHHOAUCHON s uwwe oo ses e me s s s e o8 e.ss s s ws 085606 s o8 es 65
32 Thered-PIEmModel ..sucswesnssssvssupssnsnsssssas 67
3.3 Observability and predictability 72
34 Globalityandlocalitycuoieeenmnnnneeennnnnn 79

3.5 Limitations of the PIE and red-PIE models

4 Sharing and interference in window managers

4.1 Introductiont e e 85
42 Windowed SyStemst ittt e e et 86
4.3 Sharing, informal conceptsttt 90
4.4 Modelling windowed systemsciirinaaann.. 92
4.5 Definitionsof sharing 96
4.6 Using dependency informationcccuuun... 101
47 Detectionofsharing, 104
4.8 Dynamiccommandsuiitenunnencnnnnnnn 107
49 DiSCUSSION & i it ittt ittt et et e 108
5 The myth of the infinitely fast machine
5.1 Introductionttt e e e 109
5.2 Compromises and problems in existing systems 110
53 MOGEIBNE civnaseiimadnde madiddm nod e moeesss e 112
54 Dealing withdisplaylag00t ienunnn. 115
5.5 What would such systems look like? 118
5.6 System requirementS eieiiein e e 120
5.7 Conclusions —adesignapproach 122
6 Non-determinism as a paradigm for understanding the user interface
6.1 INrOduction. . usses sasssm snerass susaen s HasEEE &8ss 125
6.2 Unifying formal models using non-determinism 126
6.3 Non-deterministic computer systems?c.00.0... 133
6.4 Sources of non-determinism, 135
6.5 Dealing with non-determinism 139
6.6 Deliberate non-determinismc.ciutnennenannn 144
6.7 DISCHSBION 5w 0 s o110 o S80E 5051 00 5 o080 980 13 1609088 0% 4605080 31 148
7 Opening up the box
7.1 Introductionttt e e 151
7.2 Modelling editorsusingPIEscouuuun.n. 153
7.3 Separating the display componentc.c0uuunnn. 161
7.4 Display-mediated interaction, 166
TS5 Oracles ..ottt i e et et 167
7.6 Going furtherttt ittt 171

8 Dynamic pointers: an abstraction for indicative manipulation

8.1 IntroducCtionttt et i e e 173
8.2 Pointer spaces and projectionsiiieiaeaaa.nn 178
8.3 BlockOperationsc..ceiiinrenranneneanaann. 187
8.4 Further properties of pointer Spacesceeeeeeunen. 192
8.5 Applications of dynamic pointers 0., 199
8.6 DiSCUSSION . it v it ie et ieee e it e 207

9 Complementary functions and complementary views

9.1 Introduction ittt ittt et ettt 209
9.2 Algebraof ViewWSt e et 215
9.3 Translation techniques — complementary views 219
9.4 User interface properties and complementary views 228
9.5 Dynamic views and structural change 233
9.6 Conclusions csissssssnvsssssvasmnesssmessssssess 237
10 Events and status — mice and multiple users
10.1 Introduetion, ::ssswessamass ansisnss nveasos snasnsssn 239
10.2 Events and status — informal analysis 240
10.3 Examining existingmodels, 242
104 Othermodels ::.csnsovsnsessanmnsosmmassssnssss 245
10.5 SEAMSINPULS! < susivscssmssnssananms ssasas s snssiss 248
10.6 Communication and MESSAZES .« . e v v v vt v v e e i e cenanennn 262
10:7 DISCUSSION: o sonsss sasaes saasasme iaedss s sases 3 270
11 Applying formal models
110 INPOAUCHON. w5 o mimmim v 5o s 65 5 & 5 Em 0 8 8 & S5 & 5o e e & 275
11.2 Analysisof aliftsystem 276
11.3 Semiformal notations — action—effectrules 280
11.4 Specifying an editor using dynamic pointers 285
11.5 Interactive systems design and formal development are incompatible? 292
11.6 Summaryttt i et e e 302
12 Conclusions — mathematics and the art of abstraction
12.1 Introductionttt et 305
12.2 Abstractions wehaveused 306
12.3 Aboutabstractionttt 320
124 Otherthemesiiiiitinenenennnnnnnnn 334

Appendix I Notation

TSl ISCIR 55T o BlalBuns] 5 15 Fecis s me sm: cmscmmmicn s 30 smcmsaoanis 58 35 a5 3 90 o & 339
I2 Sequencesuiiiiiiitiitiitaii i 339
I3 TUDIES: cim o omarie s & 5 o R G055 coinds mion 58 8 T 5,0 5455 160 s 1§ 1 A0 340
I4 Functions . c:ccbscsscosessnesoss s snbmedessss 341
L5 Structures —functors ittt 341
1.6 Reading functiondiagrams, 342
Appendix IT A specification of a simple editor using dynamic pointers
II.1 The pointer spaces and projectionsc.coveeunn.. 345
II.2 Constructionasstatemodel0.... 349
I3 Addingfeaturesccciiiiiiinnnnnennnans 352
II4 DisCuSSiON i tiiiiie it eeeeeeeeennaeenennnnnn 353
Referencesiuiiiiminenennnnennnnannnnan 355

CHAPTER 1

Introduction

1.1 Formal methods and interactive systems

This books looks at issues in the interplay between two growth areas of
computing research: formal methods and human-computer interaction. The
practitioners and styles of the two camps are very different and it can be an
uneasy path to tread.

1.1.1 Formal methods

As the memory of computers has increased, so also has the size and
complexity of the software designed for them. Maintaining and understanding
these systems has become a major task. Further, the range of tasks under direct
control of computers has increased and the effects of failure, in say a space
station or a nuclear power plant, have likewise increased. There may be little or
no opportunity for direct control if the software malfunctions, for instance, in a
fly-by-wire aircraft. Further, the costs of producing software have increased
dramatically, and the possibility of maintaining code has diminished. This
cumulation of factors has been termed the software crisis (Pressman 1982) and
has led to a call for software design to become more of an engineering discipline.
In particular, there is the desire for a more rigorous approach to software design,
possibly including elements of mathematical formalism and having the
possibility of being proved or at least partially checked.

Several varieties of formal methods have been developed for different
purposes:

° Graphical methods - Such methods include Jackson Structured
Programming (JSP) (Jackson 1983) for the design of data processing (DP)
systems and various dataflow methods (Yourdon and Constantine 1978).
Typically, only a portion of the required information is held in the graphs.

2 Formal Methods for Interactive Systems

The rest may be informally annotated or there may be additional non-
graphical notations, as is the case with JSP. Again the notation may be self
standing, or be part of a larger methodology.

° Program proof rules and semantics — Another strand of formality concen-
trates on proving properties of programs or program fragments (Hoare
1969, Dijkstra 1976), implicitly defining a meaning for the language. Oth-
ers search for more explicit expression of program language semantics
(Stoy 1977).

° Specification notations — These are languages and notations specifically
designed for the formal specification of software. Examples include
Vienna Definition Method (VDM) (Jones 1980), Clear (Burstall and
Goguen 1980) and Oxford’s Z notation (Sufrin et al. 1985, Morgan 1985).
Often these notations have explicit rules for the correct transformation of a
specification towards an implementable form (Jones 1980).

° Methodologies — Instead, or as well as defining precisely how a design is
to be specified or proved, there are many methodologies aimed at defining
what should happen in the design process. For example, JSP, mentioned
above, is part of a complete design process. These formal methodologies
may incorporate parts of the design process that are beyond what could be
expected of an entirely rigorous approach. These approaches may involve
graphical and textual notations and may be amenable to computer
verification of consistency (Stephens and Whitehead 1986).

There is an underlying assumption to much of this book that software is being
developed using some formal notation of the third category. Various sections of
the book propose parts of a semi-formal design methodology.

1.1.2 Interactive systems

In the early days of computing the modes of interaction with the user were
severely limited by the hardware available: initially cards and switches, later
teletypes. The more limited the capabilities the greater the need for effective
interface design, but early users were usually experts and there was little spare
processing power for frills. Even as processing power increased and the interface
hardware improved there was still a strong pull from the experts, who were the
major users, for power and complexity. Two major influences have pushed the
computer industry towards improved user interface design:

® Technology push — The realisation that there was the possibility of a
computer society prompted research using state-of-the-art technology into
futuristic scenarios. The Xerox work on Smalltalk (Goldberg 1984) and
the Star interface (Smith et al. 1983) are examples of this.

Introduction 3

® Large user base — The plummetting cost of hardware has led to a huge
growth in computers in the hands of non-computer-professionals. The
personal computer boom has taken the computer out of the hands of the DP
department, and the new users are not prepared for inconsistent and
obscure software.

The two strands are not independent. The Xerox Star has led to the very
popular Macintosh, and the WIMP (windows, mice and pop-up menus) interface
has become standard in the market-place. If one were to balance the two, it is
perhaps the latter strand which is really of most significance in the current high
prominence of issues of human—computer interaction (HCI).

The perceived importance of HCI is evidenced by the large number of
conferences dedicated to it: the CHI conferences in USA, HCI in Britain,
INTERACT in Europe, and HCI International. The "man-machine" interface
was also a major strand of the Alvey initiative (Alvey 1984) and (under a
different name) of its successor, the IED program. HCI also has a prominent role
in the European Community’s Esprit program.

1.1.3 The meeting

There is a certain amount of culture shock when first bringing together the
concepts of formal methods and interactive systems design. The former are
largely perceived as dry and uninspiring, in line with the popular image of
mathematics. Interface design is, on the other hand, a more colourful and
exciting affair. Smalltalk, for instance, is not so much a programming
environment as a popular culture. Also it is hard to reconcile the multi-
facetedness of the user with the rigours of formal notations. Some of these
problems may be to do with misunderstandings about the nature of formalism
(although even I, a mathematician, find a lot of computer science formalism very
dry). However, this is not a problem just between formalisms and users:
mathematical and formal reasoning typically is performed by people and does
therefore have a more human side. The shock really occurred when living users
met dry unemotional computers and must therefore be dealt with in any branch of
HCI. However, the gut reaction still exists and is a reminder of the delicate
balance between the two.

No matter how strong the reaction against it, there is clearly a necessity for a
blending of formal specification and human factors of interactive systems. If
systems are increasingly designed using formal methods, this will inevitably
affect the human interface, and if the issue isn’t addressed explicitly the methods
used will not be to the advantage of the interface designer. If we look again at
some of the reasons for needing formal methods, large critical systems where the
crisis is most in evidence clearly need an effective interface to their complexity.
The penalty for not including this interface in the formal standards will be more

4

Formal Methods for Interactive Systems

accidents due to human error such as at Chernobyl and Three Mile Island, and
the more powerful the magnifying effect of the control system the more
damaging the possible effects.

The need for more formal design is seen also in more mundane software.

Many of the problems in interactive systems are with awkward boundary cases
and inconsistent behaviour. These are obvious targets for a formal approach.

1.1.4 Formal approaches in HCI

There are several approaches taken to the formal development of interactive

systems:

Psychological and soft computer science notations — These include the
layered approach of Foley and van Dam (1982), or the more cognitive and
goal-oriented methods such as TAGPayne 1984. The uses of these vary,
for instance improving design, predicting user response times and
predicting user errors. They are not intended for combination with the
formal notations of software engineering.

Specifying interactive systems in existing notations — Several authors use
notations intended for general software design to specify interactive
systems. Examples of this include Sufrin’s elegant specification of a text
editor using Z (Sufrin 1982), a similar one by Ehrig and Mahr (1985) in
the ACT ONE language, and no less than four specifications in a paper by
Chi (1985) in which he compares different formal notations for interface
specification. Sometimes it is some component of the interface that is
specified rather than an entire interactive system, as is the case with the
Presenter, an autonomous display manager described by Took (1986a,
1986b, 1990). Pure functional languages have also been used to specify
(and implement) interactive systems. Cook (1986) describes how generic
interface components can be specified by using a pure functional language
and Runciman (1989) has developed the PIE model, described later in this
book, in a functional framework.

Notations for specification — A general-purpose notation is not necessarily
best suited to specifying the user interface, and various special purpose
notations have been developed for interface, and especially dialogue,
design. Hekmatpour and Ince, for instance, have a separate user interface
design component in their specification language EPROL (Hekmatpour
and Ince 1987). Marshall (1986) has merged a graphical interface
specification technique with VDM in order to obtain the best of both
worlds. Alexander (1987a, 1987b) has designed an executable
specification/prototyping language around CSP and functional
programming.

Introduction 5

Modelling of users — Another strand of work concerns the formalisation
of the user. This may take the form of complex cognitive models using
techniques of artificial intelligence, such as the expert system for interface
design described by Wilson et al. (1986). Another proposal is
programmable user models, an architecture for which programs can be
writen that simulate the use of an interface. The approach is advocated by
Young et al. (1989) with the intention of studying user cognitive
processes. It has also been advocated by Runciman and Hammond (1986)
and Kiss and Pinder (1986) with the aim of using the complexity of the
user programs to assess the complexity of the interface.

Architectural models — Any specification or piece of software has some
architectural design, and specific user interface architectures have been
designed with the aim of rationalising the construction of interactive
systems and improving component reuse. These may be structuring
techniques for existing languages such as PAC (Coutaz 1987)
(Presentation—Abstraction—Control) an hierarchical agent-oriented
description technique, or the MVC (Model-View—Control) paradigm used
in many Smalltalk interfaces; or may be part of an overall system as is the
case with UIMS (Pfaff 1985) (User Interface Management Systems).
Architectural techniques are often combined with notations for dialogue
design and (more rarely) interface semantics. Production rules, for
example, are frequently used as the dialogue formalism in UIMS. On the
other hand, interface design notations may implicitly or explicitly
encourage particular architectural styles.

More extensive reviews of these different areas can be found in Alexander’s

thesis (Alexander 1987c) and in a report on formal interface notations and
methods produced collaboratively between York and PRG Oxford. (Abowd et
al. 1989) A recent collection of essays on the subject of formal methods in HCI
edited by Harrison and Thimbleby (1989) contains papers in most of the above
categories.

An additional category has become characteristic of the "York approach” to

HCI, which is the main subject of this book:

Formal, abstract models of interaction — These are formal descriptions of
the external behaviour of systems. They are not models of specific
systems, but each covers a class of interactive systems, enabling us to
reason about and discuss interactive systems in the abstract. As well as a
large body of work originating in York, the approach has been taken up by
Anderson (1985, 1986), who uses a blend of formal language and
denotational semantics to describe interactive systems, and by Sufrin and
He (1989), who cast in Z, a model similar to the PIE model presented in
Chapter 2.

6 Formal Methods for Interactive Systems

We can lay out the formal approaches to interactive systems design in a
matrix classified by concreteness and by generality (fig. 1.1). The concreteness
axis distinguishes between the internal workings of the systems and the
specification of their external behaviour. The former are more useful for
producing systems, the latter for reasoning about them. The generality of a
method may lie between those which can be realised only in the context of a
specific system and those that have some existence over a class. Laid out like
this, it is obvious that abstract models fill a crucial gap.

generality

concreteness specific generic

notations for abstract models

specification specification

task and goal descrip-

tions

prototypes of the actu- architectural models
implementation || 3] system cognitive architec-

programmable user tures

models

figure 1.1 formal methods matrix

In drawing up the matrix (and making my point!) I have rather overplayed the
gap filled by abstract models. Specifications of particular systems may be
deliberately vague in places, and thus begin to encroach on the generality barrier.
Similarly, architectural models, although aimed at implementation, may be given
a suitable form for us to use for specification and reasoning, and hence begin to
move up towards the domain of formal models. Cockton’s work (Cockton 1986)
is a good example of this. He uses a description technique drawing on an
analysis of UIMS. The notation is used to express properties of interface
separability and comes close in spirit to the idea of an abstract interface model.

From the other side, the abstract models in this book are supplemented by
examples of specifications of parts of actual systems, hence bridging the
generality barrier from their side. Also, especially in Chapters 8 and 9, there is a
movement towards more architectural descriptions, that is, a movement towards
concreteness. Abowd (Abowd 1990) has produced a notation which attempts to
sit in this middle ground between the formal models of this book and
architectural models. It is, of course, no good describing useful properties of
systems in a highly abstract manner, if these cannot be related to more concrete
and specific situations, and thus these areas where the various techniques overlap
are most important.

Introduction 7

The more psychologically based formalisms sit rather uneasily in the matrix,
but I have included them as, to the extent that they do fit the classifications, a
similar gap is seen on their side. Now the abstract models we will deal with are
primarily descriptions of the system from the user’s point of view. (But
definitely not in the language a typical user would use!) They do have then an
implicit abstract, generic model of the user, purely because of the perspective
from which they are drawn. It is though a rather simple model, and a more
explicit model might be useful. On the other hand, I find myself feeling rather
uneasy about the idea of producing generic models of users: individuality is far
too precious.

1.2 Abstract models

We have seen that abstract models fill a niche in the range of available HCI
formalisms, but we also need to be sure that it is a gap worth filling. We shall
take a quick look at why we need abstract models, and at the philosophy behind
them.

1.2.1 Principled design

There are many principles for the design of interactive systems. Some are very
specific (e.g. "error messages should be in red") and others cover more general
properties (e.g. "what you see is what you get"). Hansen (1984) talks about using
user engineering principles in the design of a syntax-directed editor Emily.
Bornat and Thimbleby (1986) describe the use of principles in the design of the
display editor ded.

Thimbleby (1984) introduced the concept of generative user engineering
principles (GUEPS). These are principles having several properties:

e They apply to a large class of different systems: that is, they are generic.

° They can be given both an informal colloquial statement and also a formal
statement.

® They can be used to constrain the design of a given system: that is, they
generate the design.

The last requirement can be met at an informal level using the colloquial
statement — as was the case with the development of ded. While not superceding
this, it seems that at least some of the generative effect should be obtained using
the formal statements. The authors cited above who have specified particular
interactive systems have proved certain properties of their systems, by stating the
properties they require in terms of the particular specification and then proving

