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Mathematical Models for
Handling Partial Knowledge
in Artificial Intelligence



PREFACE

Knowledge acquisition is one of the most important aspects influencing
the quality of methods used in artificial intelligence and the reliability
of expert systems. The various issues dealt with in this volume concern
many different approaches to the handling of partial knowledge and to the
ensuing methods for reasoning and decision making under uncertainty, as
applied to problems in artificial intelligence.

The volume is composed of the invited and contributed papers presented
at the Workshop on Mathematical Models for Handling Partial Knowledge in
Artificial Intelligence, held at the Ettore Majorana Center for Scientific
Culture of Erice (Sicily, Italy) on June 19-25, 1994, in the framework of
the International School of Mathematics "G.Stampacchia”. It includes also
a transcription of the roundtable held during the workshop to promote
discussions on fundamental issues, since in the choice of invited speakers
we have tried to maintain a balance between the various schools of knowl-
edge and uncertainty modeling.

Choquet expected utility models are discussed in the paper by Alain
Chateauneuf: they allow the separation of perception of uncertainty or
risk from the valuation of outcomes, and can be of help in decision mak-
ing.

Petr Hajek shows that reasoning in fuzzy logic may be put on a strict
logical (formal) basis, so contributing to our understanding of what fuzzy
logic is and what one is doing when applying fuzzy reasoning.

The mathematical foundations of evidence theory are expounded by Jirg
Kohlas, leading to belief and plausibility functions of the kind intro-
duced and studied by G.Shafer: however it is not confined to finite frames
but is entirely general.

Those uncertain inferences based on statistical knowledge, that are



valid if their conclusions are true in a large proportion of the models in
which the relevant premises are true, are dealt with by Henry Kyburg.

Frank Lad, in his first paper (co-authored with Tan Coope), goes
through prospects and problems in applying the fundamental theorem of pre-
vision as an expert system, by means of a detailed discussion of an exam-
ple of learning about parole decisions. His second paper presents coherent
prevision as a linear functional without an underlying measure space,
based on the purely arithmetic structure of logical relations among condi-
tional quantities.

Revision rules for convex sets of probabilities are discussed in the
paper by Serafin Moral (co-authored with Nic Wilson), emphasizing the dif-
ferences between revision and focusing. These two procedures are eXpress-
ed by using the logical language of gambles.

The appropriate mathematical tools for decision making (including sub-
jective probability, lower probabilities, the Choquet integral, random
sets, measure-free representation of conditionals, rule-based procedures)
are considered in the paper by Hung Nguyen, depending upon the form of the
available knowledge (data).

Judea Pearl demonstrates in his paper the use of graphs as a mathemati-
cal tool for expressing independencies, and as a formal language for com-
municating and processing causal information for decision analysis and for
organizing claims about external interventions and their interactions.

The ten contributed papers deal with the generalized concept of atoms
for conditional events (A.Capotorti), the checking of coherence of condi-
tional probabilities in expert systems (G.Di Biase and A.Maturo), the stu-
dy of an hyperstructure of conditional events for artificial intelligence
(S.Doria and A.Maturo), an overview on the application of possibility the-
ory to automated reasoning (D.Dubois and H.Prade), a formulation of proba-
bility logic as fuzzy logic (G.Gerla, abstract), algorithms for precise
and imprecise conditional probability assessments (A.Gilio), a valuation-
based architecture for assumption-based reasoning (R.Haenni, abstract),
the computation of symbolic support functions by classical theorem-proving
techniques (U.Hanni, abstract), inconsistent knowledge integration in a
probabilistic model (R.Jirousek and J.Vomlel), and the use of conditional

and comparative probabilities in artificial intelligence (P.Vicig) .

Giulianella Coletti, Didier Dubois, Romano Scozzafava
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ELLSBERG PARADOX INTUITION
AND CHOQUET EXPECTED UTILITY

Alain Chateauneuf

Cermsem
Université Paris I
75634 Paris Cedex 13

France

INTRODUCTION

The aim of this paper is to introduce through two interpretations of
Ellsberg paradox, Choquet expected utility (C.E.U.) models, a popular
class of models introduced separately by Quiggin (1982), Yaari (1987) and
Schmeidler (1982, 1989). Such models based on Choquet integral (Choquet
(1954)) offer flexible but simple formulas, explain paradoxes of Allais
(1953) under risk and of Ellsberg (1961) under uncertainty ; moreover they
allow to separate perception of uncertainty or risk from the valuation of
outcomes. Here we emphasize the intuitive and appealing meaning of
"comonotonicity", and show the ability of C.E.U. models in modeling
attitudes towards uncertainty and risk. A simple characterization of
C.E.U. model, as in Chateauneuf (1994 a), 1is proposed, under the
restrictive assumption of constant marginal wutility for wealth. The
general model, removing this restriction, is evocated in conclusion. Some
economic applications are also quoted.

In section 1 (Ellsberg paradox intuition and comonotonicity) we
analyze Ellsberg paradox through the concept of comonotonicity, and show

that typical preferences in Ellsberg’s experiment, can be explained by

Mathematical Models for Handling Partial Knowledge in Artificial Intelligence
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hedging effects i.e. "violation of comonotonicity". Interpreting Ellsberg
paradox in Auscombe-Aumann (1963) framework (section 1.1.2.), as initiated
by Schmeidler (1982, 1989), leads to the fundamental Choquet expected
utility model under uncertainty introduced by Schmeidler (1982, 1989).
Interpreting Ellsberg paradox in the simpler framework of choices between
acts X which are real-valued functions defined on a set S of states of
nature (section 1.1.1.), leads to a simplified version of Schmeidler’s
model as exposed in Chateauneuf (1994 a). These two interpretations are
related in section 1.2. to behaviors modelizable through axioms of
uncertainty aversion (Schmeidler (1989), Chateauneuf (1994 a)) or
pessimism (Wakker (1990 a)).

In section 2 (Choquet expected utility and comonotonicity) as in
Chateauneuf (1994 a) we present in a unified framework the Choquet
expected utility model under uncertainty of Schmeidler (1982, 1989) and
under risk of Yaari (1987). This will be done by assuming as Yaari that
our decision maker displays a constant marginal utility of wealth. Using
stimulating results of Landsberger and Meilijson (1993), a recent
interpretation of the central comonotonic independence axiom as in
Chateauneuf, Kast and Lapied (1994) is proposed, based on the intimate
connection between comonotonicity and the Bickel-Lehmann (1979) dispersion
order. As for economic applications, under uncertainty we focus on the
ability of Schmeidler’s model to explain the gap between selling and
buying prices of financial assets (Dow and werlang (1992), Epstein and
Wang (1994), Chateauneuf, Kast and Lapied (1994)) ; under risk a direct
application of Yaari’s model to insurance is examined : Denneberg (1990),
who proposes a convincing premium principle.

In concluding remarks, in the particular case of monetary payments
-i.e. of a consequence set € = R-, we quote some results concerning the
general C.E.U. model, when the constant marginal utility assumption is

removed.

1. ELLSBERG PARADOX INTUITION AND COMONOTONICITY

1.1. Ellsberg Paradox Intuition

Let us consider the following version of Ellsberg paradox (Ellsberg
(1961)).

Subjects are informed that a ball will be drawn at random from an
urn that contains 90 balls : 30 are red (R), and each other ball is either

black (B) or yellow (Y). Subjects are requested to express their




preferences between betting on R (act fl) or betting on B (act fz) and
also between betting on R v Y (act fa) or betting on B u Y (act f4). Table

1 below summarizes corresponding outcomes

30 60
Red Black Yellow
f1 $100 $0 $0
5 $0 $100 $0
Table 1
5 $100 $0 $100
f4 $0 $100 $100

Typical preferences are f1 > f2 and f4 > f31 ,hence the Sure-Thing
Principle is violated, since f3 (respectively f4) is obtained from f1
(respectively fz) by merely changing the common outcome $0 under Y into a
common outcome $100 under Y. Therefore many subjects behave in a
"paradoxical" way, in the sense that they are not subjective expected
utility maximizers.

As noticed by Machina and Schmeidler (1992) nor such subjects are
probabilistically sophisticated : this means that they do not ascribe
subjective probabilities Pp> Ppo P, to states of nature (i.e. elementary
events R, B, Y) and then use first order stochastic dominanoe2 - a widely
accepted rule for partially ordering random variables-. Otherwise f1>-f2
would entail Pp > Py and f4 > f3 would entail Py * P, > Pp * By
contradiction.

Let us interpret now the Ellsberg paradox :

1.1.1. Interpretation 1. Let us interpret bets as acts (i.e.
mappings) £ : S = {R,B,Y} —— R, and let g be the act defined by g(R) =
g(B) = 0, g(Y) = 100. Clearly f3 = fl + g and f4 = f2 + g. That f1 >-f2
may be interpreted by the fact that there is no uncertainty for f1 in the

sense that Pr {winning $100 through fl} is known to be %, whereas on the

1
f f means f is strictl referred to f the same applies to f > f
1> 1 ¥ P 2’ PP 4 3

2Ret:all that if (S, @, P) is a probabilized space, and if X and Y are a
measurable real-valued functions on S -i.e. real random variables for
short-then the first order stochastic dominance rule stipulates that if vt
e R, P(X =z t) = P(Y =z t) then X should be weakly prefered to Y, the

preference becoming strict if P(X = to) > P(Y = tO) for some tO € R.



contrary there is some uncertainty for f2 since Pr{f2 = 100} belongs to
[0,% ; hence aversion to uncertainty may explain f1>.f2.

Adding g to f1 entails some increase of uncertainty since now Pr {f3
= 100} € [%,1 , on the contrary there is some reduction of uncertainty
when adding g to f2 since Pr {f4 = 100} is precisely known equal to %;
therefore aversion to uncertainty may explain that now f4 >-f3. This can
explain the preference reversal.

We come now to the notion of comonotonicity.

Definition 1. Let S be a set of states of nature, and f, g be two acts
i.e. two elements of V = Rs, f and g will be said comonotonic if Vs,t €
S: (f£(s) - £(t))(gls) - g(t)) =0, i.e. if "f and g have the same sense
of variation."

It is easy to understand that if f1 and g were comonotonic, and if
f2 and g were comonotonic too, then g would be neither a hedge against f1
nor against fz’ hence it would be natural to require (or to observe) that
direction of preferences be retained after adding g both to f1 and to f2
-no asymmetric reduction of uncertainty would result-. In the previous
example g is neither comonotonic with f1 nor with f2, this can explain
asymmetric reduction of uncertainty will result by adding g to f1 and to
f2, hence the observed preference reversal.

We will come again to this way of interpretation in the sequel. This
first interpretation is 1in the spirit of the simplified version of

Schmeidler’s model, which will be examined in section 2. We now come to

interpretation 2, in the spirit of Schmeidler’s model (1982, 1989).

1.1.2. Interpretation 2. Here Ellsberg paradox 1is interpreted in
Anscombe and Aumann’s framework (1963). Now uncertainty concerns the
composition of the urn. The set S of states of nature is now composed of
sixty one possible states of nature S = {O,l,...,k,...,60) where k stands
for the elementary event : "the number of black balls is k".

Bets (i.e. proposals) f are now considered as horse lotteries Xf
S —> Y i.e. mappings from S to Y where Y js the set of -roulette-
lotteries on € = {0,100}.
Thus X_(k) = 2—8 8.y * ‘;—0 5. o* %‘5 5., 1S the lottery faced by the
D.M. (i.e. Decision maker) if his bet is f and if the number of black

balls is k, namely in such a case with probability g% he will earn $f(R),

with probability gﬁ $f(B), and with probability §865 $f(Y).
Suppose as implicitely assumed by Schmeidler as by Anscombe and Aumann,
that our D.M. is an expected utility maximizer with Von Neumann

Morgenstern’s utility function (1947) u (assumed without Iloss of




generality to satisfy u(0) = 0, u(100) = 1). Denoting by Xi(k) i=1,2,3,4

the value u(Xf (k)) of the resulting lottery if the true state of nature
i

is k, leads Vk € S to : X (k) = 299 x () = 190K ¢ (1) = x (k) + X(K),
1 3 2 90 3 1
100

X4(k) = Xz(k) + X(k) where X(k) = 50 (60-k)

It is immediate that X is comonotonic with Xl, but not with Xz' More
precisely Vk,f € S one gets (Xz(k) - Xz(e))(X(k) - X(£) = 0, with strict
inequality if k # £ ; hence X is a hedge against X2 but not against Xf

Adding X to X2 smoothes values (i.e. reduces uncertainty) thus here X4(k)

= constant = 19953—99 Vk while Xz(k) - Xz(l) = %%9 (k-£). On the contrary
adding X to X does not smooth values : initially Xl(k) = constant = 1%9,
100

but X3(k) - X3(£) = 50 (2-k).

This can explain, since usually decision makers are uncertainty averse,
the observation of typical preferences f1 >.f2 and f4 > f3 in Ellsberg’s
experiment.

To end this paragraph notice that of course in Anscombe-Aumann framework,
the expected utility model under uncertainty cannot explain previous
preferences. Actually suppose the D.M. assigns probabilities P, to events
k, and acts according to the expected utility model of Anscombe-Aumann,
i.e. weakly prefers f to g if and only if ¥ p u(Xf(k)) = Zp, u(Xg(k))

where u(100) = 100 and u(0) = 0.
100 100

. 100 _ 100 : N
Hence f} >-fé would give 3 > 30 (= pk.k) i.e. 30 > Z pk.k

s 100 100 <
and f; > fs would give 30 X 60 > 30 (90 z pk.k) i.e. 30 < X pk.k, a

contradiction.

1.2. Relaxing independence conditions into comonotonic independence

conditions.

1.2.1. Schmeidler’s model and Choquet expected wutility for
uncertainty. Let S be a finite set of states of nature, and let a = ZS be
the events. Define the acts as the set V of horse lotteries i.e. of
mappings from S to Y where ¥ is the set of roulette lotteries on a
consequence set 6, say € = R, i.e. Y is the set of probability
distributions over & with finite support.
> will be the preference relation of a D.M. over the acts V where as
usually X > Y means X is -weakly- preferred to Y, X > Y means X is
strictly preferred to Y and X ~ Y means the D.M. is indifferent between X
and Y.

Definition 2. Acts X and Y are said to be comonotonic if for no s and t

in S, X(s)» X(t) and Y(t) > Y(s).



Independence condition (Anscombe and Aumann). For all X,Y and Z in V and

for all « in (0,1) : X > Y implies aX + (1-a)Z » oY + (1-a)Z.

Comonotonic independence (Schmeidler). For all pairwise3 comonotonic acts

X,Y and Z in V and for all « in (0,1) : X > Y implies aX + (1-a)Z > aY +
(1-a)Z.

Considerations of section 1.1.2. explain why by relaxing the independence
condition into comonotonic independence, Schmeilder has obtained a model
in which the special preferences of the above example become admissible.

Let us precise that with the help of comonotonic independence and a few
usual simple axioms, Schmeidler proved that the preference relation > on v
is represented through a Choquet integral with respect to a unique
capacity v (instead of a unique probability P), that is for all X and Y in
V: X>»Y iff J u(X(.))dv = I u(Y(.))dv, where u is a VNM -Von Neumann

S S

Morgenstern- utility function on the set Y of roulette lotteries.
More precisely
Definition 3. A (normalized) capacity v on (S,a=ZS) is a monotone set
function (A,B € a, A € B » v(A) = v(B)) such that v(e) = 0, v(S) = 1.
Definition 4.Choquet integral J u(X)dv is defined by :

S

(0] +00
f u(X)dv = J (vu(X) = t) -1)dt + J v(u(x)
S -00 0

where v(u(X) = t) stands for v(s € S, u(X(s) = t).

v

t)dt

n *
For X = Y} ¥ Ai AR Y, Y, & VS S Ai € a, (Ai) partition of S,

i n
* =1 *
A1 characteristic function of Ai i.e. A (s) =1 if s € Ai, 0 otherwise,
1
. *
= i = <...=a = <...sa =
one gets u(X) .Z a, Ai with a, u(y1)< a, u(yi)< a ui(yn),

i=1
and Choquet integral writes :

J ulX)dv = a + (a_-a )v(u(X) = a)+...+(a -a )v(u(X) = a_ )+...+
S 1 2 1 2 i+1 i i+l
(a -a ) v(u(X) = a).
n n-1 n
Notice thatf u(X)dv is nothing else that EP(u(X)) = the mathematical
S

expectation of u(X) with respect to probability P if v proves to be equal
to a probability measure P.

I u(X)dv can be interpreted as : the D.M. calculates "the value of X" by
S

taking for sure the minimum expected payoff al, and adds to this payoff

the successive possible additional payoffs a, " a, 1 = i = n-1,

Actually it has been proved by several authors that the assumption "pairs

X,Z and Y,Z are comonotonic" is enough to get Schmeidler’s model.



weighted by his personal estimation v(u(X) = a“4) of their occurence.

Whith the additional assumption that the D.M. is uncertainty averse that
is X > Y 3 oX +(1-a)Y > Y (convexity of preferences interpreted as
"smoothing potential outcomes makes the D.M. better off") Schmeidler
proved that this entails v convex i.e. : V(AUB) + v(AnB) = v(A) + v(B)
VYA,B € a, and the resulting utility functional (Choquet integral) on (V, )

allows to explain the typical preferences of D.M. faced to Ellsberg’s urn.

1.2.2. Some other axioms related to comonotonicity. In the framework
of Schmeidler, developments in section 1.1.2. also explain the following
axiom of Wakker (1990).

Pessimism independence

> satisfies pessimism independence if X,Y,Z € V, Y and Z comonotonic

X > Y implies oX + (1-a)Z > oY + (1-a)Z.
The intuitive idea in the words of P.P. Wakker is that "a pessimist
dislikes uncertainty, hence the reduction of wuncertainty through
(eventual) hedging will lead to additional appreciation. An optimist, who
expects uncertainty to turn out favorable, will not appreciate the
reduction of uncertainty through hedging".

If as in section 1.1.1. acts are mappings from a set S of states of nature
(here assumed to finite) to R, the following uncertainty aversion axiom of
Chateauneuf (1994 a) is related to interpretation 1.

Uncertainty aversion

Let X,Y,Z be acts from (S,a=2s) to R, then the preference relation
satisfies uncertainty aversion if [Y and Z comonotonic and X ~ Y] entails
X+Z = Y+Z.
Example 1 illustrates that this axiom might reasonably be fulfilled by

D.M. satisfying typical preferences of Ellsberg’s experiment.

I ki e
Y

Assume X ~

\ \
A $15000 A $30000

Example 1

that is the DM is indiferent between receiving $25000 if event A occurs
and $15000 if A does not occur or receiving $12000 if A occurs and $30000

if A does not occur.

/

Let 2 . 2 is comonotonic with Y but not with X.
K\ $25000

$15000



Z is a hedge against X but not against Y hence an uncertainty averse D.M.

might exhibit after addition of Z the strict preference :

T e
X+Z > Y+2

x $40000 A $55000

2. CHOQUET EXPECTED UTILITY AND COMONOTONICITY

Here we intend to present in a unified framework (as in Chateauneuf
(1994 a)) the model under uncertainty of Schmeidler (1982,1989) and under
risk of Yaari (1987). We must emphasize that this will be done by
assuming, as Yaari, the restrictive assumption that our D.M. displays a

constant marginal utility of wealth.
2.1 Decision under uncertainty

We consider a decision maker faced with choices among acts X, the
set V of such acts consisting of all bounded real-valued a-measurable
functions on S (S is a set of states of nature, a a oc.algebra of events
i.e. of subsets of S). A natural way to interpret an act X is to view it
as a financial asset i.e. a promise of payoffs : the D.M. will receive or
pay -depending of the sign of X(s)- an amount of money X(s) if state s
occurs.

The D.M. is supposed to face uncertainty, this means that objective
probabilistic information concerning the occurence of events 1is not

necessarily avalaible to him.

2.1.1. Schmeidler’s model with linear utility for wealth. Let *> be
the preference relation on V of the agent. First we state three axioms
which are usual and natural requirements, whatever the attitude towards
uncertainty may be.

A.1. > is a non-trivial weak order (i.e. > is a binary relation on V,
transitive, complete (hence reflexive) and non-trivial i.e. there
exist X,Y € V such that X > Y).

A.2. Continuity with respect to monotone uniform convergence :

(A.2.1.) [X ,X,YeV, X >Y, X "Xl sX>Y
n n n

(A.2.2.) [X,X,YeV, X Y, X ® Xl 3X<€Y
n n n u



