CASE:
Computer-Aided
Software Engmeermg

CASE: |
Computer-Aided
Software Engineering

T. G. Lewis

Oregon State University

ﬁ VAN NOSTRAND REINHOLD
| New York

Copyright «© 1991 by Van Nostrand Reinhold

Library of Congress Catalog Number: 90-3884-
ISBN 0-442-00361-7

All rights reserved. No part of this work covered by the copyright hereon may be reproduced
or used in any form by any means — graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems — without written permission
of the Publisher.

Printed in the United States of America

Van Nostrand Reinhold
115 Fifth Avenue
New York, New York 10003

Chapman and Hall
2-6 Boundary Row
London, SE1 S8HN. England

Thomas Nelson Australia
102 Dodds Street

South Melbourne 3205
Victona, Australia

Nelson Canada
1120 Birchmount Road
Scarborough, Ontario M1K 5G4, Canada

161514 131211109876542321

Trademark acknowledgements: Anatool is a trademark of Advanced Logical Software, Inc.;
FullPaint is a trademark of Ann Arbor Softworks, Inc.; Image Grabber is a trademark of
Sabastian Software; ResEdit, Macintosh XL, Macintosh II, LaserWriter, and RMaker are
trademarks of Apple Computer Corp.: MacWrite, MacPaint, and MacDraw are registered
trademarks of Clans Corp.; MicroPlanner + is a trademark of Micro Planning International;
PowerTools is a trademark of ICONIX Software Engineering; Ready, Set, Go! is a trademark
of Letraset USA; SuperPaint is a trademark of Silicon Beach Software, Inc.; THINK Pascal
is a trademark of Symantec, Inc.; ThunderScan is a trademark of Thunderware, Inc.

Library of Congress Cataloging-in-Publication Data

Lewis, T. G. (Theodore Gyle), 1941~
CASE: computer-aided software engineering / T.G. Lewis
p. cm.
Includes index.
ISBN 0-442-00361-7
1. Computer-aided software engineering. I. Title.
QA76.758.L49 1991
005.1-—dc20

Preface

This book is intended mainly for practitioners who manage, design, code, test, and market
modern software products. In addition, this book can serve as the text for a first course
on software engineering in either an undergraduate or graduate program at most American
universities. The material is suitable for a two-quarter sequence or a one-semester course.
Lectures should be accompanied by small programming tasks and a course project —
the Development Project — assigned early in the course so students can work on the
project in parallel with the lectures. The course is highly pragmatic, and informal, and
introduces many software tools to the software development process — hence the CASE
designation.
The goals of this book are:

= To explain software engineering from a practical point of view, with an emphasis
on CASE tools.

= To give a historical perspective of the development of software engineering.

» To cover both technical and human issues of software engineering, because it
is still largely a human-driven activity.

= To relate software development techniques, tools, projects, and team struc-
tures to the kind of group environment in which software engineers must work
and succeed. Specific recommendations for organizing software development
teams are provided to guide developers through a successful project.

» To illustrate the concepts of software engineering through the consistent and
pervasive use of a “real”” example. The example is CoCoPro, a commercially
available cost estimation tool based on the CoCoMo model.

The nature of software development is surveyed in the first chapter. The following
three chapters prepare the reader to develop a successful software product. Chapter
two surveys the field of lifecycle cost estimating and describes CoCoPro, the develop-
ment project used throughout the text as an illustration of the ideas. Chapter three dis-
cusses the organization of teams to clarify the roles of each participant and to show how
typical software development teams are organized. Chapter four covers general design

Preface

issues the good designer must be aware of, and chapter five begins the journey through
the development project. These first five chapters should be mastered before the develop-
ment project is attempted.

The early stages of the software development lifecycle are explained in chapters
six, and seven. The development project is defined in these chapters and the outline
of an application is provided as a high-level design. Here is where front-end CASE tools,
which enter directly into the production of a running program, will be applied.

Chapters eight and nine give details of code production. We introduce the notion
of a cliche in programming and use this concept to introduce details of the Macintosh.
While very specific and detailed, this approach shows what a practicing programmer does
during coding. Chapter nine is devoted exclusively to implementation and includes more
specific examples. Readers are frequently ““protected” from such details in a formal course
on software engineering, but the approach taken here gives readers a glimpse into the
real world of software development, on a real machine.

Chapters ten and eleven cover both the practical and semiformal approaches to soft-
ware verification and validation. Chapter ten shows how to do unit and system integration
testing. Chapter eleven describes more mathematical means of verifying software
components.

Chapter twelve generalizes the information previously supplied by attempting to
quantify ‘“complexity.” While highly controversial, complexity metrics are beginning to
be used in the form of automated CASE tools. Chapter thirteen shows how several com-
plexity metrics can aid in software maintenance.

Chapter fourteen introduces the notion of rapid prototyping and shows how to pro-
duce running applications using certain radically productive CASE tools that are not yet
widely accepted. Rapid prototyping violates the waterfall model of software develop-
ment, and where it applies, improves programmer productivity by a factor of 100!

If this book is used in a classroom setting, development teams should be assigned
by the instructor. Team size should not exceed five or six students each, with three
as the ideal. Team members follow the methodology described in the text and develop
a commercial quality software product, complete with documentation and user manual.
The development project should be limited to 5,000 to 8,000 lines of source code and
should perform some useful function. CoCoPro, an implementation of CoCoMo (Cost
Construction Model), is used as the sample development project.

The text recommends the use of the Apple Macintosh™ computer as both the
design and development machine. The development project is implemented on a
Macintosh, for Macintosh computers, in full compliance with Macintosh user interface
rules and guidelines. Therefore, a considerable amount of time and effort is devoted to
study of this machine and its software.

Why the Macintosh? The Macintosh system is itself an example of good software
design. Its user interface is the result of years of scientific study. Direct manipulation
with the mouse radically alters the programmer’s experience and forces changes in the
principles of both design and coding style. The toolbox is one of the best examples of
reusable software, and the parameterized use of toolbox routines through the “‘resource”
file is innovative, yet consistent with maintainable software design.

Pretace xiii

We use the Macintosh Pascal language as our implementation language because there
are several state-of-the-art implementations of it (including object-oriented versions),
and because it has been-extended to incorporate modularity, one of the most beneficial
features of modern programming languages. Separately compiled modules are called units
in Macintosh Pascal, and are similar to the Modula Il concept of modules, and the Ada™
concept of packages. However, most students of computer science are familiar with Pascal
and should not have to learn a new language to apply the principles described in this book.

We also use a number of commercially available and homegrown CASE tools. These
are the main focus of the book, which makes this text different from many others. The
graphical interface of the Macintosh has stimulated development of a number of innova-
tive and powerful tools for programmers. These tools are described in some detail, but
the best exposure is to use them in one of the labs that accompany each lecture portion
of the course. Classroom software should be made available for check-out from a lab
consultant. Several copies are recommended for each class of twenty students.

The author has made several of these CASE tools available to the reader. To obtain
these tools, contact the author, directly. These programs are intended to be used as
pedagogical devices and are made available as is. The author is not responsible for cor-
rectness or completeness.

To obtain the programs, the author may be contacted by mail at the following address:
Ted Lewis, Department of Computer Science, Oregon State University, Corvallis, OR
97331-3902; or, by Email: lewis(cs.orst.edu.

Acknowledgments

I would like to thank my students for the feedback they provided over the past five years
while I was developing this course. Special thanks go to the exceptional students who
produced high-quality software projects that are used in this book to illustrate many ideas:
MacMan by Abdullah Al-Dhelaan; CoCoPro by Sherry Yang, Kirt Winter, Bob Singh,
Abdennour Moussoui, and Ab Van Etten; OSU by Jim Armstrong, Fred Handloser III,
Sharada Bose, Sherry Yang, Shyang-Wen Chia, Mu Hong Lim, Jagannath Raghu,
Muhammed Al-Mulhem, and Haesung Kim; GrabBag by Jorge Sanchez; Style by Al Lake;
UniTool by Tom Sturtevant, Mu-hong Lim, and Anil Kumar Yadav; and Vigram by
Chia-Chi Hsieh and Kritawan Kruatrachue. Sherry Yang was directly involved in a num-
ber of these tools, and worked diligently to produce many of the figures and examples
used in the pages to follow.

Contents

Preface xi

What is Software Engineering? 1 '

The Age of Software Engineering 2
The Nature of an Application 4

The Nature of Software Engineering 7
The Limits of Software Engineering Productivity 16
Evolving Complex’Systems 21
Discussion Questions 24
References and Further Reading 25

Models of the Software Lifecycle 27

What is the Software Lifecycle? 28
Brooks’ Law of Large Programs 32

‘The Norden-Rayleigh Model 35

Putnam’s SLIM Model 37
The Boehm Constructive Cost Model 42

CoCoPro: A CASE Tool for Development Cost Estimating 47

Function Point Estimating 53
Validity of Cost Estimates 57
Discussion Questions 60
References and Further Reading 61

vi

Contents

The Project 63

The Project Plan 64
Team Structure 72

The Psychology of Development Teams 75

Project Structure 82

Structure and Purpose 93
Discussion Questions 95
References and Further Reading 96

The Elements of Design 97

What the Designer Must Know 98
Design Trade-off Considerations 112

User Interface Design Considerations 118

Form Follows Function 130
Discussion Questions 133
References and Further Reading 134

Software Requirements Specification 135

An Overview 136

The SRS Document 137

The Development Project SRS 146
Data Flow Diagram Specification 154
Requirements Review 162

The Seven Sins 165

Discussion Questions 167
References and Further Reading 168

Principles of Modular Design 169

Modularity 170

Data Structure Design 188
Functional Design 197
Data Flow Design 200
Object-Oriented Design 204

10.

Contents

A Design Guide 211
Discussion Questions 214
References and Further Reading 216

System Architecture 217

Architectural Views 218

Architecture of CoCoPro 225

Design of CoCoPro 232
Object-Oriented Data Flow Design 255
CASE Productivity 258

Projects 261

References and Further Reading 262

Programming Cliches 265

The Macintosii System 266
Programming Cliches 276

GrabBag: A Programmer’s Database 320
Cliche Pregramming 324

Discussion Questions 326

References and Further Reading 326

Iimplementation 327

Programuming Support Environments 328
Coding Standards 338

Structured Programming 350

A CASE Too! for Stvle Analysis 359

A Question of Styvle 367

Discussion Questions 369

References and Further Reading 370

SQA: Testing and Debugging 371
Software Quaity Assurance 372
Debugging 381

Formal Testing 392

viii

1.

12.

13.

14.

Contents

CASE Tools for Testing 405

What Works? 411

Discussion Questions 415
References and Further Reading 417

SQA: Mathematical Verification 419

Mathematical Methods of Verification 420
Algebraic Modeling 422

Proof of Correctness 435

Desk Checking 446

Discussion Questions 450

References and Further Reading 453

Metrics 455

The Search for Reliable Metrics 456

Halstead’s Theory 458

Empirical Metrics 467

Vigram: A CASE Tool for Computing Metrics 475
Metrics That (Sometimes) Work 482

Discussion Questions 484

References and Further Reading 485

Maintenance 487

The Nature of Maintenance 488

A CASE Tool for. Maintenance 492
Software Reliability 505
Maintenance Technology 511
Discussion Questions 513
References and Further Reading 513

Prototyping 515

The Spiral Lifecycle Model 516
Merging CASE and UIMS 520
[lustration: Prototyping CoCoPro 535

Contents

Beyond the Next-Event Horizon 547
Discussion Questions 550
References and Further Reading 551

A ResEdit — A Resource Editor 553
B MacMan — A Toolbox Database 569
C Screen Editing Tools 577

Index 589

What Is Software Engineering?

THE AGE OF SOFTWARE ENGINEERING THE LIMITS OF SOFTWARE ENGINEERING

PRODUCTIVITY

THE NATURE OF AN APPLICATION Prigcanaiag i thi Bl

THE NATURE OF SOFTWARE ENGINEERING Programming-in-the-Large
Effect of Size of Program and Size of Team Programming:at-the-Limits
Effect of High-Level Languages : EVOLVING COMPLEX SYSTEMS

Effect of Early Defect Removal

Terms and Concepts
Importance of Early Defect Removal

DISCUSSION QUESTIONS
REFERENCES AND FURTHER READING

PREVIEW

| 1 |

In this introductory chapter we survey the evolution of software engineering from troubled
practice to emerging discipline. The lessons learned during the 1960s and 1970s were
applied during the 1980s and led to a new approach called Computer-Aided Software
Engineering, or CASE. ‘

CASE tools incorporate what software engineers know about both the artifacts and
the processes of software engineering. The artifacts — the program listings, documen-
tation, data, and resource files — are only the most obvious components of software

- engineering. The process — the procedures, rules-of-thumb, and interaction among team
members — is much more difficult to quantify. Yet both artifact and process are evolving
toward automated means of producing, maintaining, and distributing software products.

We survey what is known about artifacts — application programs, for example —
and what has been discovered about process — design, testing, inspection technology,
and early defect removal, for example — to come up with recommendations for the prac-
ticing programmer. These recommendations will be followed as the book unfolds.

2 What Is Software Engineering?

THE AGE OF SOFTWARE ENGINEERING

If computers are the steam engines of the postindustrial revolution, then computer soft-
ware is the steam. Software is that invisible, almost ethereal quantity that goes into every
industrial control system, business information system, video game, communication net-
work, and transportation system, as well as thousands of other systems that we depend
on daily. Unlike the steam of the industrial revolution, the intellectual steam of software
consists of both artifact and process.

Software as artifact is literature in a tangible form: program listings, diagrams, and
various kinds of documentation. More rigorously, software is the sum total of computer
programs, procedures, rules, and associated documentation and data pertaining to the oper-
ation of a computer system[1]. We will be principally concerned with the manufacture and

GROWTH OF SOFTWARE ENGINEERING(2]

Pre-1969. Software development is out of control because of cost overruns and failures,
especially in operating systems development. The term software engineering was coined as the
theme of the NATO-sponsored meetings in 1968 and 1969.

1969-1971. First principles were established through research into good programming prac-
tices. Advantages of top-down design, stepwise refinement, and modularity were recognized.
New programming languages including Pascal; new group techniques including Chief Program-
mer Teams introduced.

1972-1973. Structured programming and notions of programming style emerge. GOTO con-
troversy subsides. Awareness of total software lifecycle grows and management and develop-
ment aids are proposed.

1974-1975. Reliability and quality assurance concerns give rise to systematic testing proce-
dures, notions of formal program correctness, models of fault tolerance and total system reli-
ability. Early analysis of actual allocation of software development effort and expense
appears.

1976-1977. Requirements, specification, and design. Renewed attention on early development
phases prior to coding. Abstraction and modular decomposition as design techniques; structure
charts, metacode as design representations. Increasing efforts to integrate and validate suc-
cessive development phases of the software lifecycle.

1978-1980. Dispersion, assimilation. Increased use of automated software development
tools; development of software engineering courses. First principles of 1969-1971 era begin
to find widespread use in software industry.

1980-1989. Rise of CASE and the software engineering workstation. Automated tools cor-
responding to each phase of the software lifecycle begin to appear on stand-alone
workstations.

1990-beyond. Application of expert systems techniques to software engineering. Combina-
tion of software engineering workstation, expert systems, and automated techniques for soft-
ware development to find widespread use in the software engineering industry.

THE AGE OF SOFTWARE ENGINEERING 3

delivery of both programs and documentation to a user of the system in the form of a
software product: a product designated for delivery to a user(1]. We will also call the
software product an application, which consists of the deliverables of a software prod-
uct, but does not include test cases, internal documentation, and miscellaneous software
tools used to develop an application.

Software as process is difficult to define in rigorous terms because contemporary
software developers build software systems without a complete understanding of the
“physics” of software development. This has not discouraged the practicing software
developer any more than the lack of a theoretical understanding of Newtonian mechanics
discouraged the builders of ancient civilizations. Rather than wait for a theory to explain
the dynamic nature of software development, practitioners have collected a group of tech-
niques that seem to work, and have adopted a systematic approach to the development,
operation, maintenance, and retirement of software(1] called software engineering.

Software engineering, more than anything else, is the practical side of software as
process. It is deeply concerned with the software development process — the process
by which user needs are translated into software requirements, soflware requirements are
transformed into design, the design is implemented in code, and the code is tested,
documented, and certified for operational use[1].

The gradual growth of software engineering is evidence of the struggle to under-
stand software as both artifact and process involving machines, humans, and ideas. Growth
has been slow because of the intellectual difficulty of formulating “laws’ of software
development and because of the extreme high degree of craftsmanship required to build

SOCIETY AND SOFTWARE

The software industry plays a major role in the computer industry and in the competitiveness
of nations. As a vivid example of the concern over software, FORTUNE Magazine (How To
Break The Software Logjam, September 25, 1989, pp. 100-112) published an alarming article
on the “software crisis” in America. Here are some statistics on cost and complexity of
popular software systems:

Lines Effort Cost
Product of Code (man-yr) ($million)
Lotus 1-2-3 version 3.0 400K 263 22
Space Shuttle 25.6M 22,096 1,200
1989 Lincoln Continental 83.5K 35 18
CitiBank Teller Machine 780K 150 13.2
IBM Checkout Scanner 90K 58 3

What is the solution to the high cost of software? Both technical and social complexi-
ties govern the production of software.

4 What Is Software Engineering?

tools for software developers. It is clear, however, that such laws and tools are begin-
ning to emerge in the form of theories and automated tools — software tools that aid
in the synthesis, analysis, modeling, or documentation of software[1]. In the early 1980s
these programs became known as CASE (Computer-Aided Software Engineering) tools.
Hence the theme of this book: CASE tools in the form of simulators, analytic aids, design
representations, documentation aids, and program generators provide the {ramework
for the systematic study of software development.

We approach the study of software engineering through an understanding of artifact
and process. First we examine the artifacts of software development, and then we look
at the process itself. What is the nature of an application, and what are the factors that
influence the process of software development?

THE NATURE OF AN APPLICATION

Applications differ from one another, but a typical application consists of source state-
ments for doing the following:

« Model Calculations: Perform the calculations or operations intended by the
application, e.g. payroll, stress, simnulation, graphical, or database calcuiations.

User Inpuis: Interact with the user in order to capture the user's inputs. This
may involve simple or complex interactions such as checking the input data for
errors (bounds checking), and inserting the data into the program’s data
structures.

User Outputs: Format and print or display the results of calculations, e.g.
report writing.

» Control: Exert control in the form of comparisons, looping, and branching to
carry out the logic of the program.

Help-Message Processing: If the user requests help, display the appropriate help
message and respond to user inquiry.

« Error Processing: In the event of an error during input, output, calculations,
communications, etc. respond by displaying an error message, and then
recover from the error.

Moving Data: Move data from one data structure to another or from a data-
base to the program's internal data structures. Sorting, searching, and format-
ting are data moving operations used to prepare the data for further processing.

« Data Declaration: Declare all data structures used by the application. For
example, in Pascal, const, type, and var statements are used to declare all
¢ata structures.

» Comments: Provide clear, precise, and informative comments.

THE NATURE OF AN APPLICATION 5

B
40

]
2,2 3 , prea——
g3z 2 s £ 5

g [-] = e N -
T T T e -
I L] b =5 g e z et ey
a®20| 35 &8 2 & g_ -° |=] |=

a, [(=] Ll (4]
N o= [*] - = B = Wi (5] -
- @ = (=) ™ o = -] @ =
° .= S - 2 s = g
o

E3 5 g Ls 2| 1= e
@ 90 -] = - -1 T - e
©a -} b & [E]
S - b 8 @ (=]
a ° II =

Whet source lines in a typical application do

A typical application contains a very small percentage of statements devated to the
model calculations — a surprising chservation given that this is the main purpose of the appli-
cation. Notice that most of the program source statements involve data handling such as
input/output, moving, and declaring data objects.

A glance at the list above might suggest an approach to developing an application:
design and implement each of the parts, and then put them together into a single pro-
gram. Unfortunately, because of the complexity implied in the terms of ‘‘design,”
“implement,” and “put together” as we have used them here, software development
is not so simple. Complexity — the degree of complication of a system or system
component[1] — is determined by such factors as the number and intricacy of interfaces,
the number and intricacy of branches, the degree of statement nesting, the types of
data structures, and many other poorly understood characteristics of an application. These
features of an application are missing from our list and are difficult to quantify. Hence,
building an application is more than piecing together parts as the list above might suggest.

The complexity of software as artifact is responsible for “‘pregrammer productivity”’
difficulties. To understand the human side of programmer productivity, we need to under-
stand what a programmer does when building an application. The activities of typical
programmers in a typical project consist of the following: ;

» Reading about the system they are building and the tools and techniques they
are going to use.

What Is Software Engineering?

|
40

o
- O
5= 4
s 330 §] *®
.= N -
Ea s |& =
o % E -
"'—20 B =2 > ®
53 = Ml < 2 2
- B o a n b~
£ = ° 0 s o >

= @

82 : & = &
@ 10 o
U =

Software Development Activity

A typical software development project uses a programmer's talents in a variety of
ways. Note, however, that actual programming takes up less than 20% of a typical program-
mer’s effort. Documentation and fixing defects consume much more time than actual
programming.

Designing is the process of defining the overall structure of the application, its
components, modules, interfaces, and data structures, and then documenting the
design[1]. Design is not the same as programming, nor is it the same as pro-
gram design. The design of an application involves the selection of data struc-
tures, algorithms, specification of information flows, as well as detailed program
design.

Planning is describing an approach to be taken, the lasks to be performed, and
the time schedules to be met. Typically, a WBS (Work Breakdown Structure) is
included in a plan that tells what is to be done, who is to do it, and when it is
to be completed.

Programming includes implementation of appropriate algorithms and data
structures, commenting, and desk checking routines for correctness.

Producing documentation — any written or pictorial information describing,
defining, specifying, reporting, or certifying activities, requirements, procedures, or
results associated with programs, user manuals, and design, test, and modifica-
tion documents.

Testing 1s the process of exercising or evaluating a system component by manual
or automated means to venify that it satisfies requirements or to identify differ-
ences between expected and actual results[1]. Testing is not to be confused with
debugging or defect removal. See Fixing for a description of uefect removal.

