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FOREWORD

I am pleased to have been asked by Russ Eberhart and Roy Dobbins to
write the foreword to this book. It has been three decades since my
frequently referenced article with Hoff, on adaptive switching circuits,
that discussed the Least Mean Squares algorithm [13]. My first hard-
ware version of Adaline, shown in the accompanying photograph, is
also approaching its 30th birthday. How time flies!

After my original work in the neural network field, I did some devel-
opmental work in the adaptive filter area. I still believe that if an elec-
trical engineer had developed the back-propagation algorithm, we’d be
working with “massively parallel adaptive filters” instead of neural
networks. Oh, well.

A few years ago, about the time of Rumelhart and McClelland’s three-
volume tome on parallel distributed processing [2,4,5], I said to myself,
“What the heck, adaptive filters are in pretty good shape. I think I'll
work on neural networks again.”

In the past few years, there has been an absolute explosion in the
amount of work being done in the neural network field. It seems some-
what analogous to the far-reaching social and political changes sweep-
ing the world as this book goes to press in 1990.

Just as I have to watch the morning news to keep abreast of changes
in governments in Eastern Europe, I have to read my morning mail
(which now includes e-mail) to keep abreast of developments in neural
networks.- With all the fine neural network applications both working
and under development, I feel that neural networks are here to stay!
And I'm sure that the most exciting applications are yet to come.

As president of the International Neural Network Society (INNS) and
fellow of the Institute of Electrical and Electronics Engineers, with a
special interest in its Neural Networks Council, I'm in a position to see
most major publications in the field. In fact, I am asked to review a
significant percentage of the new books.

It is thus from a position of some experience that I say that an expo-
sition on the practical applications of neural networks has been greatly
needed. I believe that this book fulfills that need in an extremely fine
fashion.

Many books have been written that emphasize the theoretical aspects
of neural networks. Some have gone as far as presenting equations for
various network topologies. One or two have even included demonstra-
tion software illustrating different network topologies.

Equations and demonstrations, however, are only a starting point for
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XVi Foreword

engineers and computer scientists. What we need, for our real-world
practical applications, is a carefully thought-out methodology that takes
the systems approach. By that I mean an approach is required that starts
with a systems analysis and goes all the way to the computer code nec-
essary to implement the design developed from the analysis.

This book does that. It is a practical and thorough approach to apply-
ing neural network tools to everyday problems. And, as the case studies
illustrate, these applications aren’t limited to the scientific and engi-
neering fields. In this book, you can even learn how to use neural net-
work tools to compose music and analyze the commodities futures
market.

Another issue dealt with, at least implicitly, in this book is that of
terminology. The glossary near the end of the book contains proposed
definitions for a number of terms we use in our everyday neural net-
work efforts. While I personally may not agree with each and every
definition, I wholeheartedly endorse moving toward a commonly ac-
cepted terminology. It’s pretty hard for a person new to the field to sort
through literature that refers to processing elements, processing units,
units, neurons, nodes, neurodes, etc., all of which refer to exactly the
same thing.

Through their participation in the Ad Hoc Standards Committee of
the IEEE Neural Networks Council, chaired by Evangelia Tzanakou of
Rutgers University, Russ Eberhart and Roy Dobbins, with their col-
leagues from academia, industry, and government, will be grappling
with the issue of definitions. I'm sure that their committee is in for
some interesting discussions over the next few years.

Also helpful to folks new to neural nets is the appendix on additional
resources. Of course, as president of the INNS, I feel bound to ask that
you pay special attention to the information on our society!

As Russ and Roy say in the introductory chapter, you really don’t
need a supercomputer, a million dollars, and an interdisciplinary team
of experts to put neural networks to work. All you need is a personal
computer and this book. I'm sure you’ll enjoy it!

Bernard Widrow
Electrical Engineering Department
Stanford University
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Introduction

Russell C. Eberhart
Roy W. Dobbins

In the past few years, neural networks have received a great deal of
attention and are being touted as one of the greatest computational tools
ever developed. Much of the excitement is due to the apparent ability of
neural networks to imitate the brain’s ability to make decisions and
draw conclusions when presented with complex, noisy, irrelevant, and/
or partial information. Furthermore, at some primitive level, neural net-
works appear able to imitate the brain’s “‘creative” processes to generate
new data or patterns.

It is hard, especially for a person unfamiliar with the subject, to sepa-
rate the substance from the hype. Many of the applications being dis-
cussed for neural networks are compiex and relatively hard to under-
stand, and many of the available hardware and software tools are either
too simplistic to be useful or too complicated and expensive to be
affordable and understandable for the average engineer or computer
scientist.

The hardware and software tools we describe in this book, with few
exceptions, are available to most technical people, and we have written
the book to help the typical engineer, computer scientist, or other tech-
nically oriented person who is interested in solving practical problems
with neural networks. You'll need some background in algebra to un-
derstand some of the equations for network training and operation,
but the algebra required isn’t any more invoived than most folks have
had by the time they graduate from high school. The most compli-
cated mathematics we’ll use involves summing a series of subscripted
variables.

It is true that a deep understanding of biologically derived neural
networks requires knowledge in a variety of fields, including biology,

Neural Network PC Tools .
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2 Introduction

mathematics, and artificial intelligence. But none of this knowledge is
needed to understand the neural network tools presented in this book.
Probably the best background for getting the maximum benefit from
this book is liking to “muck about” with computers. If you're comfort-
able running a variety of software and occasionally (possibly with some
trepidation) fiddling with programming simple stuff in a language such
as BASIC or C, you’ll feel right at home here.

It’s a myth that the only way to achieve results with neural networks
is with a million dollars, a supercomputer, and an interdisciplinary
team of Nobel laureates, though some commercial vendors out there
would like you to believe it.

You don’t need a supercomputer or a parallel processing machine to
do something useful with neural networks. It’s not even necessary to
have a MicroVAX or a Sun workstation. A personal computer such as
an IBM PC/AT or workalike is a perfectly adequate hardware base. A
plain vanilla PC, XT, or workalike is even sufficient; it’s just that the
slower clock speed is going to make things take longer. With simple
hardware and software tools, it is possible to solve problems that are
otherwise impossible or impractical. Neural networks really do offer
solutions to some problems that can’t be solved in any other way known
to the authors. That’s no hype!

What is hype is that neural networks can solve all of your difficult
engineering or computer problems faster and cheaper than anything
.you have ever tried. It is a myth that neural networks can leap tall
buildings in a single bound and that they can solve problems single-
handedly. They are particularly inappropriate for problems requiring
precise calculations: You’ll probably never successfully balance your
checkbook with a neural network. (But then, how many people have
actually used a personal computer for this task?)

Another statement that qualifies as mostly myth is that you don’t
need to do any programming at all to use neural network tools. This is
at best misleading. It’s true that a neural network trains (learns) and
runs on input data and according to a set of rules that update the
weights that connect the processing elements, or nodes, and that the
learning of the network is not, strictly speaking, programmed. It’s also
true that computer-aided software engineering (CASE) tools will be-
come more available in the next few years and that little or no program-
ming expertise will be required to use these tools to generate executable
neural network code. But it’s also true that in the real world of neural
network applications, some programming is required to get from where
you start to a solution.

Furthermore, although it is accurate to say that neural networks can
play a key role in the solution of several classes of problems that are



