e 1

\
s
_—
\
\
\
\ |

/

“Neural Tl
Network M
PC Tools \\\\\\

Edited by
Russell C. Eberhart \ \ \ \
Roy W. Dobbins

\
\\ F
e —
— ]
\




Neural Network
PC Tools

A Practical Guide

with a Foreword by Bernard Widrow

Edited by

Academic Press, Inc.
Harcourt Brace Jovanovich, Publishers

San Diego New York Boston London Sydney Tokyo Toronto



Many of the designations used by manufacturers and resellers to distinguish their prod-
ucts are registered as trademarks. Wherever those designations appear in this book, and
the authors were aware of a trademark claim, the designations have been printed in initial
caps or all caps. IBM PC, IBM PC AT, and PC-DOS are trademarks and IBM is a registered
trademark of International Business Machines Corporation. UNIX is a registered trade-
mark of AT & T Bell Laboratories. MS-DOS, Windows, Excel and Microsoft C are regis-
tered trademarks of Microsoft Corporation. Turbo C, Turbo Prolog and Turbo Pascal are
registered trademarks of Borland International, Inc. DEC and VAX are registered trade-
marks of Digital Equipment Corporation. Nova is a registered trademark of Data General
Corporation. Sun and Sun Workstation are registered trademarks of Sun Microsystems.
NeuroShell is a registered trademark of Ward Systems Group. NeuralWorks is a registered
trademark of NeuralWare, Inc. Plexi is a registered trademark of Symbolics, Inc. Netset,
Anza Plus and Axon are registered trademarks of Hecht-Nielson Neurocomputers, Inc. N-
Net 210 is a registered trademark of AI Ware, Inc. Anspec and Delta II are registered
trademarks of SAIC. Macintosh and Apple ][ are registered trademarks of Apple Com-
puter, Inc. T800 and IMS B404 are registered trademarks of Inmos-SGS Thomson, Ltd.
COMPAQ is a registered trademark of Compaq Computer Corporation. BrainMaker is a
registered trademark of California Scientific Software. DISCLAIMER: Programs and appli-
cations included in this book are presented for instructional value. They have been re-
viewed and tested carefully, but are not guaranteed for any particular purpose. Neither the
publisher nor the authors offer any warranties or representations, nor do they accept any
liabilities with respect to the programs and applications.

This book is printed on acid-free paper.

Copyright © 1990 by Academic Press, Inc.

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Academic Press, Inc.
San Diego, California 92101

United Kingdom Edition published by
Academic Press Limited
24-28 Oval Road, London NW1 7DX

Library, of Congress Cataloging-in-Publication Data

Neural network PC tools : a practical guide / [edited by] Russell C.
Eberhart and Roy W. Dobbins.
p. cm.
ISBN 0-12-228640-5 (alk. paper)
1. Neural computers. 2. Neural circuitry. 3. Microcomputers.
1. Eberhart, Russell C. II. Dobbins, Roy W.
QA76.5.N42827 1990
006.3--dc20 90-727
CIP

Printed in the United States of America
90 91 92 93 9 8 7 6 5 4 3 2 1



Neural Network PC Tools




To Francie, Mark, and Sean;
to Leonie, Lorien, and Audrey;
and in Renée’s memory.



CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors’ contributions begin.

Maureen Caudhill (189), 11450 Grassy Trail Drive, San Diego, Cali-
fornia 92127

Roy W. Dobbins (9, 35, 59, 81, 111, 161, 215, 295, 393), The Johns
Hopkins University Applied Physics Laboratory, Laurel, Maryland
20723

Russell C. Eberhart (9, 35, 59, 81, 111, 161, 177, 215, 295, 393), The
Johns Hopkins University Applied Physics Laboratory, Laurel, Mary-
land 20723

Gary Entsminger (285), Rocky Mountain Biological Laboratory,
Crested Butte, Colorado 81224

Larrie V. Hutton (161, 235), The Johns Hopkins University Applied
Physics Laboratory, Laurel, Maryland 20723

D. Gilbert Lee, Jr. (137), The Johns Hopkins University Applied
Physics Laboratory, Laurel, Maryland 20723

Vincent G. Sigillito (177, 235), The Johns Hopkins University Ap-
plied Physics Laboratory, Laurel, Maryland 20723

Thomas Zaremba (251), The Johns Hopkins University Applied
Physics Laboratory, Laurel, Maryland 20723

Xiii






FOREWORD

I am pleased to have been asked by Russ Eberhart and Roy Dobbins to
write the foreword to this book. It has been three decades since my
frequently referenced article with Hoff, on adaptive switching circuits,
that discussed the Least Mean Squares algorithm [13]. My first hard-
ware version of Adaline, shown in the accompanying photograph, is
also approaching its 30th birthday. How time flies!

After my original work in the neural network field, I did some devel-
opmental work in the adaptive filter area. I still believe that if an elec-
trical engineer had developed the back-propagation algorithm, we’d be
working with “massively parallel adaptive filters” instead of neural
networks. Oh, well.

A few years ago, about the time of Rumelhart and McClelland’s three-
volume tome on parallel distributed processing [2,4,5], I said to myself,
“What the heck, adaptive filters are in pretty good shape. I think I'll
work on neural networks again.”

In the past few years, there has been an absolute explosion in the
amount of work being done in the neural network field. It seems some-
what analogous to the far-reaching social and political changes sweep-
ing the world as this book goes to press in 1990.

Just as I have to watch the morning news to keep abreast of changes
in governments in Eastern Europe, I have to read my morning mail
(which now includes e-mail) to keep abreast of developments in neural
networks.- With all the fine neural network applications both working
and under development, I feel that neural networks are here to stay!
And I'm sure that the most exciting applications are yet to come.

As president of the International Neural Network Society (INNS) and
fellow of the Institute of Electrical and Electronics Engineers, with a
special interest in its Neural Networks Council, I'm in a position to see
most major publications in the field. In fact, I am asked to review a
significant percentage of the new books.

It is thus from a position of some experience that I say that an expo-
sition on the practical applications of neural networks has been greatly
needed. I believe that this book fulfills that need in an extremely fine
fashion.

Many books have been written that emphasize the theoretical aspects
of neural networks. Some have gone as far as presenting equations for
various network topologies. One or two have even included demonstra-
tion software illustrating different network topologies.

Equations and demonstrations, however, are only a starting point for

XV



XVi Foreword

engineers and computer scientists. What we need, for our real-world
practical applications, is a carefully thought-out methodology that takes
the systems approach. By that I mean an approach is required that starts
with a systems analysis and goes all the way to the computer code nec-
essary to implement the design developed from the analysis.

This book does that. It is a practical and thorough approach to apply-
ing neural network tools to everyday problems. And, as the case studies
illustrate, these applications aren’t limited to the scientific and engi-
neering fields. In this book, you can even learn how to use neural net-
work tools to compose music and analyze the commodities futures
market.

Another issue dealt with, at least implicitly, in this book is that of
terminology. The glossary near the end of the book contains proposed
definitions for a number of terms we use in our everyday neural net-
work efforts. While I personally may not agree with each and every
definition, I wholeheartedly endorse moving toward a commonly ac-
cepted terminology. It’s pretty hard for a person new to the field to sort
through literature that refers to processing elements, processing units,
units, neurons, nodes, neurodes, etc., all of which refer to exactly the
same thing.

Through their participation in the Ad Hoc Standards Committee of
the IEEE Neural Networks Council, chaired by Evangelia Tzanakou of
Rutgers University, Russ Eberhart and Roy Dobbins, with their col-
leagues from academia, industry, and government, will be grappling
with the issue of definitions. I'm sure that their committee is in for
some interesting discussions over the next few years.

Also helpful to folks new to neural nets is the appendix on additional
resources. Of course, as president of the INNS, I feel bound to ask that
you pay special attention to the information on our society!

As Russ and Roy say in the introductory chapter, you really don’t
need a supercomputer, a million dollars, and an interdisciplinary team
of experts to put neural networks to work. All you need is a personal
computer and this book. I'm sure you’ll enjoy it!

Bernard Widrow
Electrical Engineering Department
Stanford University



CONTENTS

Contributors  xiii
Foreword xv
Introduction 1

1.

Baci(ground and History 9
Russell C. Eberhart and Roy W. Dabbins

Introduction 9

Biological Basis for Neural Network Tools 10
Introduction 10
Neurons 10
Differences between Biological Structures and NNTs 11
Where Did Neural Networks Get Their Name? 13

Neural Network Development History 14
Introduction 14
The Age of Camelot 14
The Dark Age 21
The Renaissance 28
The Age of Neoconnectionism 33

Implementations 35
Russell C. Eberhart and Roy W. Dabbins

Introduction 35
The Back-Propagation Model 36
Introduction 36
Topology and Notation 37
Network Input 39
Feedforward Calculations 40
Training by Error Back-Propagation 43
Running the Back-Propagation NNT 48
The Self-Organization Model 49
Introduction 49
Topology and Notation 50
Network Initialization and Input 53
Training Calculations 54
Testing and Running 58
Systems Considerations 59
Russell C. Eberhart and Roy W. Dabbins

Introduction 59
Evaluating Problem Categories 60

Vil



viii

q.

Contents

The Big Picture 62

Developing a System Specification 63
Specifications and Models 63
Informal Specifications 64
Structured Analysis 64
Formal Specifications 67
Applying Specifications to Neural Networks 68
Choosing Effective Roles for Neural Networks 69
Introduction 69
Network Incarnations and Reincarnations 70
Avoiding Preprocessing Pitfalls 70
Neural Networks versus Expert Systems 74
Successful Application Examples 77

Software Tools 81
Roy W. Dabbins and Russell C. Eberhart

Introduction 81
What Is Neural Network Software? 81
The Last of the Programmers? 82

Implementing Neural Networks on the PC 82
Using C and Assembly Language 83
Back-Propagation Networks 83
The ThreeRs ... &4
Iterations . . . Kernel, Brain, or Engine? 84
Forward . . . and Backward 85
Computing Activations 85
Vector and Matrix Operations 87
Storage Allocation 87
Propagating Error Signals 88
Adapting Weights 89
Kohonen Self-Organizing Networks 90
Finding the Winning Unit 91
What Is This Good For? 91
Nondeterministic Response 92
Running Neural Networks 92
Getting Data into and out of the Network 93
Reading Input Patterns 93
Dealing with the Real World 94
Normalizing Data 95
Weights 95
Setting Attributes 97
Average Sum-Squared Error 98
What'’s It Doing? 98

Implementation Issues 101
Interpretation versus Compilation 101
Optimizing the Code . . . How to Make the Network Scream! 102
Memory Limitations 103
Do You Really Need Floating Point? 107
Making the Most of Coprocessors 107
Debugging Networks 108



Contents

Development Environments 111
Roy W. Dabbins and Russell C. Eberhart

Introduction 111

What Is a Neural Network Development Environment?
Desirable Characteristics of Development Environments 113
Why a Development Environment? 115

Introduction to Network Modeling Languages 117
Specification Languages 118
Parallel Processing and Object-Oriented Languages 118
Conventional Programming Languages 119
A Brief Survey of Neural Network Modeling Languages 119
Specifying Neural Network Models 120
Specifying Network Architecture 122
Activation Functions 123
Learning Rules 123
Specifying the Environment 123
Update Rules 123
Neural Network Paradigms 124
A Brief Survey of Neural Network Development
Environments 124
CaseNet: A Neural Network Development Environment
Anatomy of CaseNet 126
CaseNet Components 127
Graphical Network Editor 128
Network Parser 129
Network Analyzer 131
Network Code Generator 133
Network Compiler 135

Hardware Implementations 137
D. Gilbert Lee, Jr.

The Transputer 138
Interprocess Communications 140
Multitasking 141
Programming Languages 142
Optimizing the Matrix—Vector Multiply = 142

Using Transputers in Parallel 147
Processor Farms 147
Pipelining 148

Programming the Transputers 149
Discussion 153

Mini Case Study: Ship Image Recognition 155
Description of Ship Image Preprocessing 155
Neural Network Training Description 156
Results 157

Summary 158
Vendors 158

112

126



7.

10.

Contents

Performance Metrics 161
Russell C. Eberhart, Roy W. Dobbins, and Larrie V. Hutton

Introduction 161

Percent Correct 162

Average Sum-Squared Error 165

Normalized Error 167

Receiver Operating Characteristic Curves 169
Recall and Precision 172

Other ROC-Related Measures 173

Chi-Square Test 174

Network Analysis 177
Vincent G. Sigillito and Russell C. Eberhart

Introduction 177
Network Analysis 178

Introduction 178

The Divide-by-Three Problem 178

Other Considerations 182

The Square-within-a-Square Problem 185
Distributions of Hidden Neurode Activity Levels 186
Analyzing Weights in Trained Networks 187

Relation Factors 187

Expert Networks 189
Maureen Caudill

Rule-Based Expert Systems 190

Expert Networks 197
Fuzzy Mathematics 197
Fuzzy Cognitive Maps 199
An Expert Bond-Rating Network 204
Knowledge in an Expert Network 207

Expert Network Characteristics 209

Hybrid Expert Networks 211
Explanation by Confabulation 212
Rule Extraction 212
True Hybrid Expert 213

Case Study I: The Detection of Electroencephalogram
Spikes 215
Russell C. Eberhart and Roy W. Dobbins

Introduction 215

Goals and Objectives 216
Design Process 217
System Specifications 218



Contents Xi

1.

12.

13.

14.

Background 220
Data Preprocessing and Categorization 220
Test Results 229

Case Study lI: Radar Signal Processing 235
Vincent G. Sigillito and Larrie V. Hutton

Introduction 235

Description of the Radar Facility 236

Operation of the System and Data Collection 236
Goals and Objectives 237

The Design Process 239
Representation 240
Choosing the Number of Hidden Nodes 241
Choosing Training and Test Sets 241

Results and Discussion 242
A Preliminary Analysis 242
The Neural Network Analysis and Results 243

Conclusions 249

Case Study llI: Technology in Search of a Buck 251
Thomas Zaremba

Introduction 251

Markets to Watch and Markets to Trade 252
Futures Market Forecasting 255

Historical Futures Market Data 256

Sources of Market Model Data 260

Futures Market Model Description 261

Why Neural Networks? 270

Why Excel? 271

Current Status, Future Plans, and Money Made 277

Case Study IV: Optical Character Recognition 285
Gary Entsminger

From .PCX to .TXT via a Neural Network 285
Why OCR Is Such a Bear 286

Objects 290

Notes and Conclusions 292

For More Information, Consuls the Following 293

Case Study V: Making Music 295
Russell C. Eberhart and Roy W. Dobbins

Introduction 295
Representing Music for Neural Network Tools 296

\



xii Contents

Network Configurations 298
Stochasticity, Variability, and Surprise 308
Playing Your Music with MIDI 310

Now What? 312

Glossary 313
References 321

Appendix A. Batchnet Back-Propagation Source Code with
Pattern, Weight, and Run Files 329

Appendix B. Self-Organizing Neural Network Tool Code with
Pattern, Run, and Demo Files 345

Appendix C. Turbo Pascal Code for Optical Character Recognition
Shell 367

Appendix D. Source Code for Music Composition Files 375

Appendix E. Additional Resources 393
Russell C. Eberhart and Roy W. Dobbins

Introduction 393

Organizations and Societies 394
Conferences and Symposia 396

Journals, Magazines, and Newsletters 397
Computer Bulletin Boards 401

Computer Databases 402

Summary 403

Appendix F. Transputer Matrix Multiply Code 405

Index 411



Introduction

Russell C. Eberhart
Roy W. Dobbins

In the past few years, neural networks have received a great deal of
attention and are being touted as one of the greatest computational tools
ever developed. Much of the excitement is due to the apparent ability of
neural networks to imitate the brain’s ability to make decisions and
draw conclusions when presented with complex, noisy, irrelevant, and/
or partial information. Furthermore, at some primitive level, neural net-
works appear able to imitate the brain’s “‘creative” processes to generate
new data or patterns.

It is hard, especially for a person unfamiliar with the subject, to sepa-
rate the substance from the hype. Many of the applications being dis-
cussed for neural networks are compiex and relatively hard to under-
stand, and many of the available hardware and software tools are either
too simplistic to be useful or too complicated and expensive to be
affordable and understandable for the average engineer or computer
scientist.

The hardware and software tools we describe in this book, with few
exceptions, are available to most technical people, and we have written
the book to help the typical engineer, computer scientist, or other tech-
nically oriented person who is interested in solving practical problems
with neural networks. You'll need some background in algebra to un-
derstand some of the equations for network training and operation,
but the algebra required isn’t any more invoived than most folks have
had by the time they graduate from high school. The most compli-
cated mathematics we’ll use involves summing a series of subscripted
variables.

It is true that a deep understanding of biologically derived neural
networks requires knowledge in a variety of fields, including biology,

Neural Network PC Tools .
Copyright © 1990 by Academic Press. Inc. Allrights ofsteproduction in any form reserved. 1



2 Introduction

mathematics, and artificial intelligence. But none of this knowledge is
needed to understand the neural network tools presented in this book.
Probably the best background for getting the maximum benefit from
this book is liking to “muck about” with computers. If you're comfort-
able running a variety of software and occasionally (possibly with some
trepidation) fiddling with programming simple stuff in a language such
as BASIC or C, you’ll feel right at home here.

It’s a myth that the only way to achieve results with neural networks
is with a million dollars, a supercomputer, and an interdisciplinary
team of Nobel laureates, though some commercial vendors out there
would like you to believe it.

You don’t need a supercomputer or a parallel processing machine to
do something useful with neural networks. It’s not even necessary to
have a MicroVAX or a Sun workstation. A personal computer such as
an IBM PC/AT or workalike is a perfectly adequate hardware base. A
plain vanilla PC, XT, or workalike is even sufficient; it’s just that the
slower clock speed is going to make things take longer. With simple
hardware and software tools, it is possible to solve problems that are
otherwise impossible or impractical. Neural networks really do offer
solutions to some problems that can’t be solved in any other way known
to the authors. That’s no hype!

What is hype is that neural networks can solve all of your difficult
engineering or computer problems faster and cheaper than anything
.you have ever tried. It is a myth that neural networks can leap tall
buildings in a single bound and that they can solve problems single-
handedly. They are particularly inappropriate for problems requiring
precise calculations: You’ll probably never successfully balance your
checkbook with a neural network. (But then, how many people have
actually used a personal computer for this task?)

Another statement that qualifies as mostly myth is that you don’t
need to do any programming at all to use neural network tools. This is
at best misleading. It’s true that a neural network trains (learns) and
runs on input data and according to a set of rules that update the
weights that connect the processing elements, or nodes, and that the
learning of the network is not, strictly speaking, programmed. It’s also
true that computer-aided software engineering (CASE) tools will be-
come more available in the next few years and that little or no program-
ming expertise will be required to use these tools to generate executable
neural network code. But it’s also true that in the real world of neural
network applications, some programming is required to get from where
you start to a solution.

Furthermore, although it is accurate to say that neural networks can
play a key role in the solution of several classes of problems that are



