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PREFACE

By topological dynamics we mean the study of transformation groups with
respect to those topological properties whose prototype oceurred in classical
dynamics. Thus the word “topological” in the phrase “topological dynamics”
has reference to mathematical content and the word “dynamics” in the phrase
has primary reference to historical origin.

Topological dynamics owes its origin to the classic work of Henri Poincaré
and G. D. Birkhoff. It was Poincaré who first formulated and solved problems
of dynamics as problems in topology. Birkhoff contributed fundamental concepts
to topological dynamics and was the first to undertake its systematic develop-
ment.

In the classic sense, a dynamical system is a system of ordinary differential
equations with at least sufficient conditions imposed to insure continuity and
uniqueness of the solutions. As such, a dynamical system defines a (one-param-
eter or continuous) flow in a space. A large body of results for flows which are
of interest for classical dynamics has been developed, since the time of Poincaré,
without reference to the fact that the flows arise from differential equations.
The extension of these results from flows to transformation groups has been the
work of recent years. These extensions and the concomitant developments are
set forth in this book.

Part One contains the general theory. Part Two contains notable examples
of flows which have contributed to the general theory of topological dynamics
and which in turn have been illuminated by the general theory of topological
dynamics.

In addition to the present Colloquium volume, the only books which contain
extensive related developments are G. D. Birkhoff [2, Chapter 7], Niemytzki
and Stepanoff [1, Chapter 4 of the 1st edition, Chapter 5 of the 2nd edition]
and G. T. Whyburn [1, Chapter 12]. The contents of this volume meet but
do not significantly overlap a forthcoming book by Montgomery and Zippin.

The authors wish to express their appreciation to the American Mathematical
Society for the opportunity to publish this work. They also extend thanks to
Yale University and the Institute for Advanced Study for financial aid in the
preparation of the manuscript. The second named author extends to the Ameri-
can Mathematical Society his thanks for the invitation to give the Colloquium
Lectures in which some aspects of the subject were discussed. Some of his work
has been supported by the United States Air Force through the Office of Scientific

‘Research of the Air Research and Development Command.
PaILADELPHIA, PENNSYLVANIA

New Haven, ConNECTICUT
July, 1954



CONVENTIONS AND NOTATIONS

Each of the two parts of the book is divided into sections and each section
into paragraphs. Cross references are to paragraphs. 4.6 is the sixth paragraph
of section 4. In general, & paragraph is either a definition, lemma, theorem or
remark. A “remark” is a statement, the proof of which is left to the reader.
These proofs are not always trivial, however.

References to the literature are, in general, given in the last paragraph of
each section. Numbers in brackets following an author’s name refer to the
bibliography at the end of the book. Where there is joint authorship, the number
given refers to the article or book as listed under the first named author.

An elementary knowledge of set theory, topology, uniform spaces and top-
ological groups is assumed. Such can be gained by reading the appropriate
sections of Bourbaki [1, 2, 3]. With a few exceptions to be noted, the notations
used are standard and a separate listing seemed unnecessary.

Unless the contrary is specifically indicated, groups are taken to be multipli-
cative. Topological groups are not assumed to be necessarily separated (Haus-
dorff). The additive group of integers will be denoted by ¢ and the additive
group of reals by ®.

Contrary to customary usage, the function or transformation sign is usually
placed on the right. That is, if X and Y are sets, f denotes a transformation
of X into ¥ and # € X, then zf denotes the unique element of ¥ determined
by z and f.

In connection with uniform spaces, the term index is used to denote an ele-
ment of the filter defining the uniform structure, thus replacing the term
entourage as used by Bourbaki [2]. In keeping with the notation for the value
of a function, if X is a uniform space, « is an index of X and z € X, then za
denotes the set of all y € X such that (z, ) € a. Unless the contrary is stated,
a uniform space is not necessarily separated.
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PART I. THE THEORY

1. TRANSFORMATION GROUPS

1.01. DerFINITION. A topological transformation group, or more briefly, a
transformation group, is defined to be an ordered triple (X, T, 7) consisting of
a topological space X, a topological group T and a mapping r: X X T —- X
such that:

(1) (Identity axiom) (z, )x = z (x € X) where ¢ is the identity element of T'.

(2) (Homomorphism axiom) ((z, O)w, 8)x = (z, ts)x (z € X;t,se D).

(3) (Continuity axiom) = is continuous.

If (X, T, «) is a transformation group, then {X}{T}{x} is called the phase
{space} {group} {projection} of (X, T, =).

1.02. DeriNtTioN. Let X, Y be {topological} {uniform} spaces and let
(X, T, =), (¥, S, p) be transformation groups.

A ({topological} {uniform} isomorphism of (X, T, x) onto (Y, 8, p) is defined
to be a couple (h, ¢) consisting of a {homeomorphism} {unimorphism} k of X
onto ¥ and a homeomorphic group-isomorphism ¢ of T onto S such that
(zh, to)p = (z, )yxh (z € X, t € T).

The transformation groups (X, T, x) and (Y, S, p) are said to be {topologic-
ally} {uniforly} isomorphic (each to or with the other) provided there exists a
{topological} {uniform} isomorphism of (X, T, =) onto v, 8, »).

1.03. DerFiNtTiON. Let X be a {topological} {uniform} space and let (X, T, =)
be a transformation group. An infrinsic {topological}{uniform} property of
(X, T, ) is a property of (X, T, x) definable solely in terms of the {topological}
{uniform} structure of X, the topological structure of T, the group structure
of T, and the mapping .

1.04. REMARK. We propose in this monograph to study certain intrinsic
properties of transformation groups. It is clear that intrinsic {topological}
{uniform} properties of transformation groups are invariant under {topological}
{uniform} isomorphisms.

1.05. Noration. Let (X, T, =) be a transformation group. If z € X and
if £ € T, then (z, t)= is denoted more concisely by z¢ when there is no chance
for ambiguity. Then the identity and homomorphism axioms may be restated
as follows: :

1) ze = z (z € X).

Q) (xt)s = z(ts) @ € X;t, s T).

1.06. TErMINOLOGY. The statement “(X, T, =) is a transformation group”
may be paraphrased as “T {is}{acts as} a transformation group {of}{on} X
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2 TOPOLOGICAL DYNAMICS [1.06]

with respect to «”’. By virtue of 1.05 it often happens that a symbol for the
phase projection does not occur in a discussion of a transformation group.
In such an event we may speak simply of (X, T) as the transformation group
where X is the phase space, T is the phase group and the phase projection is
understood. The statement “(X, T) is a transformation group’” may be para-
phrased as “T {is} {acts as} a transformation group {of}{on} X"'. Thus the
transformation group (X, T', =) may be denoted by (X, T) or even by T provided
no ambiguity can occur.

Generally speaking, the statement that the transformation group (X, T, =)
has a certain property may be paraphrased as either T' has the property on
X or X has the property under T. If z € X, then the statement that (X, T, )
has a certain property at x may be paraphrased as either T has the property
at z or z has the property under T.

1.07. SranpiNg NoTtaTiON. Throughout the remainder of this section
(X, T, =) denotes a transformation group.

1.08. DeFinrrioN. If ¢ € T, then the t-iransition of (X, T, =), denoted
', is the mapping =* : X — X such that zr’ = (z, ) = ¢ (x € X). The tran-
sition group of (X, T, ) is the set G = [x' | ¢ € T). The transition projection of
(X, T, ) is the mapping X : T — G such that ?» = =* (¢ € T).

If x € X, then the z-motion of (X, T, x), denoted =, , is the mapping =, : T — X
such that tx, = (z, )= = 2t (¢ € T). The motion space of (X, T, =) is the set
M = [x, | z € X]. The motion projection of (X, T, =) is the mapping p : X — M
such that zp = 7, (zx € X). ' '

1.09. DeriniTiON. The transformation group (X, 7') is said to be effective
provided that if ¢ € T with ¢ = e, then 2t > x for some z € X.

1.10. ReMark. Let {G}{\}{M}{u} be the {transition group} {transition
projection} {motion space}{motion projection} of (X, T, ). Then

(1) «° is the identity mapping of X.

) Ift,s € T, then ='x* = ='".

(3) If ¢ € T, then = is a one-to-one mapping of X onto X and (x')™" = =°

(4) If t € T, then 7' is a homeomorphism of X onto X.

(5) G is a group of homeomorphisms of X onto X.

(6) A is a group-homomorphism of 7 onto G. This justifies the name ‘“homo-
morphism axiom”’ of 1.01 (2).

(7) X is one-to-one if and only if (X, T, =) is effective.

(8) If x € X, then =, is a continuous mapping of T into X.

(9) u is a one-to-one mapping of X onto M.

1.11. REMARE. Lett & T andlety, : T — T be defined by ro, = t ‘7t (r E T).
Then (=°, ¢,) is a topological isomorphism of (X, T, ) onto (X, T, =).

1.12. DerFiNiTION. Let X be a topological space. A fopological homeomor-
phism group of X is a topologized group & of homeomorphisms of X onto X
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such that ® is a topological group and p: X X ® — X is continuous where p
is defined by (z, 0)p = ¢ (r € X, ¢ € ).

1.13. ReMarRk. The effective topological transformation groups and the
topological homeomorphism groups are essentially identical in the following
sense:

(1) If (X, T, =) is an effective topological transformation group, then the
transition group G of (X, T, =), topologized so that the transition projecticn of
(X, T, =) becomes a group-isomorphic homeomorphism of T onto @, is a top-~
ological homeomorphism group of X.

(2) If ® is a topological homeomorphism group of a topological space X,
then (X, ®, p) is an effective topological transformation group where p : X X
&> X is defined by (z, 0)p = 2¢ (z € X, ¢ € ®).

In particular, a notion defined for topological transformation groups is auto-
matically defined for topological homeomorphism groups.

1.14. DEFINITION. A discrete transformation group is a topological trans-
formation group whose phase group is discrete. A discrete homeomorphism group
is a topological homeomorphism group provided with its discrete topology.
A homeomorphism group is a group of homeomorphisms. The fotal homeomorphism
group of a topological space X is the group of all homeomorphisms of X onto X.

1.15. REmMARk. It is clear from 1.13 that the effective discrete transforma-
tion groups and the discrete homeomorphism groups are to be considered as
identical. Since a homeomorphism group may be considered as a discrete homeo-
morphism group, a notion defined for transformation groups is automatically
defined for homeomorphism groups.

1.16. NoratioN. If A C X and if B C T, then (4 X B)yr = [at | z €
A&t € B] is denoted more concisely by AB when there is no chance for am-
biguity. In particular, we write A¢ in place of A[t] where A C X and ¢ € T
and we write 2B in place of [x]B where z € X and B C T'. By the homomorphism
axiom, zts is unambiguously defined, where z € X and ¢, s € T, likewise ABC
where A C X and B, C C T, ete. .

1.17. Lemma. Let X, Y, Z be topological spaces and let ¢ : X X Y — Z be
continuous. If A, B are compact subsets of X, Y and if W is a neighborhood of
(A X B)e, then there exist neighborhoods U, V of A, B such that (U X V) C W.

Proor. We write (z, y)p =2y @z € X,y € Y).

Let 2 & A. We show there exist open neighborhoods U, V of z, B such that
UV C W. For each y & B there exist open neighborhoods U, , V, of z, y such
that U,V, C W. Choose a finite subset F of B for which B C U,er V. - Define
U= Ner Uyand V = User V., .

For each & A there exist open neighborhoods U, , V, of z, B such that
U.V. C W. Choose a finite subset E of A for which A C U,eg U. . Define
U= U.es U, and V = N.cz V. . Then U, V are neighborhoods of A4, B such
that UV C W.
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1.18. LemMA.  The following statements are valid:

MHACXandiftE T, thn At =48 . . !

@ IfACXandif BC T, then AB C AB and AB = AB = AB.

(3) If A, B are compact subsets of X, T, then AB 18 a compact subset of X.

(4) If A, B are compact subsets of X, T and if W is a neighborhood of AB,
then there exist neighborhoods U, V, of A, B such that UV C W.

(5) If A is a closed subset of X and if B is a compact subset of T, then AB is a
closed subset of X, e i

(6) If A C X and if B is a compact subset of T, then AB = AB.

_P‘Roog._ (1) Since 7 : X — X is a homeomorphism onto, At = Ax’ =
Ax' = At

@) Since r: X X T — X is continuous, AB = (A X B)xr = (4 X B)x C
(A4 X Bjr = AB. The last conclusion follows from AB C AB C AB and
AB C AB C AB.

() AB = (A X B)r is a continuous image of the compact set A X B.

(4) Use 1.17.

(6) Let# € X — AB. Then zB™ M A = §. By (4) there exists a neighbor-
hood U of z such that UB™ N A = @ whence U M AB = fand U C X — AB.

(6) By (2) and (5), AB = AB = AB.

1.19. LemmA. - Let X, Y be uniform spaces, let ¢ : X — Y be continuous and
let A be a compact subset of X. If 8 is an index of Y, then there exists an tndex o
of X such that x € A tmplies zae C z¢B.

Proor. Let v be a symmetric index of ¥ such that v* C B.Foreachz € A
there exists a symmetric index a, of X such that za%p C 2¢y. Choose a finite
subset E of A for which A C U.ex za, . Define o = N.cx @, . Let x €& A. There
exists z & E such that = € 2a, . Since 20 € 202 C 2pv, it follows that zaw C
za,ap C 2a5p C 2py C 2¢y* C 20B. The proof is completed.

1.20. LemmA. Let X be a uniform space, let A, B be compact subsets of X, T
and let o be an index of X. Then: :

(1) There, exists an index 8 of X and a neighborhood V of e such that x € A
and ¢ € B implies 2BtV C zta and z8Vi C zta.

(2) There exists an index 8 of X such thatz € A and t € B implies 2Bt C wxto
and xt C zaof.

(3) There exists an index B of X such that x € A implies x8B C zBa and
2B C zaB.

(4) There exists an index B of X such that ¢t € B implies ABt C Ata and
At C Aat. \

Proor. Since r : X X T — X is continuous and A X B is a compact subset
of X X T, (1) follows from 1.19. The first part of (2) follows immediately from (1).
Since AB and B™' are compact, there exists an index B of X such that = € AB
and ¢ € B~ implies 8¢ C xte. Hence, 2 € A and t € B implies z18t™" C zit 'a
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and z¢8 C zat. This proves the second part of (2). Finally (3) and (4) are easy
consequences of (2).

1.21. LemMA. Let X be a compact uniform space, let o be an index of X and
let K be a compact subset of T. Then there exists an index 8 of X such that:

(1) z € X and k € K implies z8k C zke.

(2) ¢ € X and k& € K implies kB C zak.

() (z,y) € Band k € K implies (xk, yk) € a.

4) (z,y) € o’ and k € K implies (zk, yk) € 8.

Proor. Use 1.20 (2).

1.22. DerFiNiTION. Let A C X and let S C 7. The set A is said to be tnvariant
under S or S-invariant provided that AS C A. When 8 = T, the qualifying
phrase ‘“under T and the prefix “T-" may be omitted.

1.23. REMARK. The following statements are valid:

(1) If A C X, then the following statements are pairwise equivalent: A4 is
T-invariant, that is, AT C A; AT = A;t € T implies At C A;t € T implies
At = A;t € T implies At D A.

(2) X and § are T-invariant. =

(3) If A is a T-invariant subset of X, then A’ = X — A, A, int A are T-in-
variant.

(4) If A and B are T-invariant subsets of X, then A — B is T-invariant.

(5) If @ is a class of T-invariant subsets of X, then @ and U@ are T-in-
variant.

(6) If A C X and if 8 C T, then A is S-invariant if and only if A’ is S~*-in-
variant.

1.24. RemMarRk. Let ¥ C X, let S be a subgroup of T, let ¥ be S-invariant
andlet p = x| Y X 8. Then (¥, 8, p) is a transformation group. In particular,
T acts as a transformation group on every T-invariant subset of X, and every
_ subgroup of T acts as a transformation group on X.

1.25. DerFINITION. Let Y be a T-invariant subset of X, The transformation
group (X, T) is said to have a certain property on Y provided that the trans-
formation group (Y, T') has this property.

X 1.26. DeFINITION. Let £ & X and let S C T. The orbit of x under S or the

S-orbit of x is defined to be the subset xS of X. The orbit-closure of = under S
or the S-orbit-closure of z is defined to be the subset xS of X. An {orbit} {orbit-
closure} under S or an {S-orbit}{S-orbit-closure} is defined to be a subset A
of X such that A is the {S-orbit}{S-orbit-closure} of some point of X. When
S = T, the phrase “under 7"’ and the prefix “7-” may be omitted.

1.27. DerINITION. Let X be a set. A partition of X is defined to be a disjoint
class @ of nonvacuous subsets of X such that X = |Ja@.



6 TOPOLOGICAL DYNAMICS [1.28]

1.28. RemMARK. The following statements are valid:

(1) If z € X, then the orbit of z under T is the least T-invariant subset of
X which contains the point z.

() If z € X and if y € 2T, then yT = zT.

(3) The class of all orbits under T is a partition ef X.

(4) If z € X, then the orbit-closure of = under 7 is the least closed T-invariant
subset of X which contains the point z.

(6) If r € X and if y € 2T, then yT C 2T.

(6) The class of all orbit-closures under 7' is a covering of X.

1.29. Remark. The following definitions describe various methods of
constructing transformation groups.

1.30. DerFiNITION. Let n be a positive integer. An n-parameter {discrete}
{continuous} flow is defined to be a transformation group whose phase group
is {4"}{®"}. The phrase “one-parameter { discrete} {continuous} flow” is short-
ened to ““{discrete} {continuous} flow”.

1.31. Remark. Let n be a positive integer. An n-parameter discrete flow
(X, 9" =) is characterized in an obvious manner by n pairwise commuting
homeomorphisms of X onto X, namely x*%*"*® ... @00 g ore
said to generate (X, 9", =). In particular, a discrete flow (X, 9, 7) is characterized
by a single homeomorphism of X onto X, namely #', which is said to generate
(X, 9, 7). The properties of a discrete flow (X, g4, ) are often attributed to its
generating homeomorphism .

1.32. DeFINITION. Let 8 be a subgroup of 7 and define p = = | X X 8.
The transformation group (X, S, p) is called the S-restriction of (X, T, ) ora
subgroup-restriciion of (X, T, ).

Let Y be a subset of X such that (¥ X T)r = Y and define p = | Y XT.
The transformation group (Y, T, p) is called the Y-restriction of (X, T, ) ora
subspace-restriction of (X, T, =).

Let S be a subgroup of 7, let ¥ be a subset of X such that ¥ X Sz=Y
and define p = v | ¥ X 8. The transformation group (Y, S, p) is called the
(Y, S)-restriction of (X, T, 7) or a transformation subgroup of (X, T, =).

Let S be a topological group, let ¢ : S — 7' be a continuous homomorphism
into and let p : X X S — X be defined by (,8)p = (z,30)7 (x € X, s € 8).
The transformation group (X, S, p) is called the (8, @)-restriction of (X, T, «).

Let S be a topological group, let ¢ : S — 7' be a continuous homomorphism
into, let ¥ be a subset of X such that (¥ X Sg)r = ¥ and let Y XS8>Y
be defined by (y, 8)p. = (y, sp)r (y € Y, s € 8). The transformation group
(Y, 8, p) is called the (¥, S, g)-restriction of (X, T, »).

1.33. REmARK. We consider every partition @ of a topological space X to
be itself a topological space provided with its partition topology, namely, the
greatest topology which makes the projection of X onto & continuous.
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1.34. DEFINITION. Let X be a set, let @ be a partition of X and let £ C X.
The star of E in @ or the G-star of E or the saturation of E in @ or the @-saturation
of E, denoted EG, is the subset U[A | A € @, A N\ E 5 @] of X. The set E is
saturated in G or Q-saturated in case E = EQ.

1.35. DeFiNITION. Let X be a topological space and let @ be a partition of X.
The partition @ is said to be {star-open}{star-closed} provided that the Q-star
of every {open}{closed} subset of X is {open}{closed} in X.

1.36. REMARK. Let X be a topological space and let @ be a partition of X.
Then the following statements are pairwise equivalent

(1) @ is {star-open} {star-closed}.

(2) If z € X and if U is a neighborhood of {z}{r@}, then there exists a
neighborhood V of {z@}{x and therefore G} such that {V C Ua}{Ve C U i

(3) The projection of X onto @ is {open} {closed}.

1.37. DeFINITION. Let X be a topological space. A decomposition of X is a
partition @ of X such that every member of @ is compact.

1.38. REMARK. Let X be a compact metrizable space and let G be a decom-
position of X. Then @ is {star-open}{star-closed} if and ounly if z,,z,,
%y, -+ € X with lim, .. z, = z, implies

{,@ C lim inf 2,@} {lim sup 2.6 C z,@}.

n—s® n—o

1.39. DeriniTION. Let @ be a {star-open partition} {star-closed decom- -
position} of X, let A7 €@ (A € @, t E T)and let p: @ X T — @ be defined
by (A T)p = Ax' (A € @, t € T). The transformation group (@, T, p) is called
the partition transformation group of @ induced by (X, T, «).

1.40. DeFINITION. Let & be a group of homeomorphisms of X onto X such
that ox’ = x'p (p € ®,¢ € T) and let @ = [2® | z € X] whence @ is a star-
open partition of X such that A=' € @ (A € @, ¢t € T). The partition trans-
formation group of @ induced by (X, T, ) is called the ®-orbst partition trans-
Jormation group induced by (X, T, =). ‘

1.41. DerFINITION. Let & be a group of homeomorphisms of X onto X such
that or' = 7'e (p € &, ¢ € T) and let @ = [z® | z € X] be a partition of X
whence @ is a star-open partition of X such that A= € @ (4 € @, ¢t € T).
The partition transformation group of @ induced by (X, T, =) is called the
®-orbit-closure partition transformation group induced by (X, T, ).

1.42. DeriniTioN. {Let ¢ be a continuous-open mapping of X onto X }
{Let X be a compact Ty-space, let ¢ be a continuous mapping of X onto X }
such that x' = x'p ( € T) and let @ = [wo ™" | z € X] whence @ is a {star-
open partition} {star-closed decomposition} of X such that A= € @ (4 € @,

-
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t € T). The partition transformation group of @ induced by (X, T, =) is called
the p-inverse partition transformation group induced by (X, T, ).

1.43. DerintTION. Let S be a topological group, let 7' be a topological
subgroup of S, for + € X and ¢ € S define {A(z, 0) = [(zx", 07) | 7 € T}
{A(z, ¢) = [(:cr 7 '0) | 7 € T}, define the star-open partition @ = [A(z, ) |
zE X,0 € SJof X X Sandlet p:@ X S — @ be defined by {(4(z, ¢), 8)p =
Az, s"cr)} {(A(z, 0), 8)p = A(z, 08)} (z € X; 0, s € S). The transformation
group (@, 8, p) is called the {left} {right} S-extension of (X, T, =).

1.44. REMARK. We adopt the notation of 1.43. Consider the transformation
group (X' X 8, 8, #) where »: (X X 8) X 8 — X X 8 is defined by {((z, 0),
8 = (z, s ')} {((z, 0), 8)n = (2, 08)} (z € X; 0, s € S). The partition trans-
formation group of @ induced by (X X 8, S, ) coincides with the {left} {right}
S-extension of (X, T, ).

1.45. REMARK. Let S be a topological group and let 7' be a discrete topological
subgroup of 8. Then (X, T, =) is isomorphic to a transformation subgroup of
the {left}{right} S-extension of (X, T, «).

1.46. Norarion. The cartesian product of a family (X, | « € I) of sets is
denoted X,c; X, . The direct product of a family (G, | « € I) of groups is denoted
DX(EI Gc .

1.47. ReMARk. We consider the cartesian product of every family of {top-
ological} {uniform} spaces to be itself a {topological} {uniform} space provided
with its product {topology}{uniformity}, namely, the least {topology}{uni-
formity} which makes all the projections onto the factor spaces {continuous}
{uniformly.continuous}.

1.48. DeriNtTION. Let (X, , T., 7.) | ¢ € I) be a family of transformation
groups. The {cartesian} {direct] product of (X, , T. , =) | « € I), denoted
{Xie: X, ,T.,7)} {pXiex (X.,T., )}, is the transformation group (X, T, =)
where X = X‘e, X, ) {T = x.ez T,}{T = px.ef T,} and = : X X T—Xis
defined by (z,)r = @2 | EDN(z= (@ | ENEX,t=(t | . ED ET).

1.49. DeFiniTioN. Let (X, , T, 7.) | « € I) be a family of transformatiop
groups. The space product of (X, , T, x,) | « € I), denoted sX.c; (X, , T, 7.),
is the transformation group (X, 7, ) where X = X,e; X, and 7: X X T—> X
is defined by (z, t)r = @m. | ED (= (. | E EX,tE D).

1.50. REMARK. Both the direct and space products of a family of trans-
formation groups are subgroup-restrictions of the cartesian product of the family.

1.51. DErinrTioN. Let T be a topological group.

The left transformation group of T is defined to be the transformation group
(T, T,)\) where A\: T X T — T is defined by (r, )\ = ¢t '7(r, t € T).

The right transformation group of T is defined to be the transformation group
(T, T, u) where u: T X T — T is defined by (7, t)u = 7t (r, t € T).



[1.59] TRANSFORMATION GROUPS 9

The bilateral transformation group of T is defined to be the transformation
group (T, T X T, §) where £ : T X (T X T) — T is defined by (r, (¢, 8))t = {'rs
(r,t, s €T).

1.52. DEeFINITION. Let X be a uniform space and let 2 & X. The trans-
formation group (X, T, =) is said to be {equicontinuous at x} {equicontinuous}
{uniformly equicontinuous} provided that the transition group [x' | ¢ € T] is
{equicontinuous at z} {equicontinuous} {uniformly equicontinuous}.

1.53. REmMARK. Let X be a uniform space. The following statements are
pairwise equivalent:

(1) (X, T, =) is uniformly equicontinuous.

(2-5) If a is an index of X, then there exists an index 8 of X such that

{x € X and ¢t € T implies 28 C zta}

{x € X and ¢t € T implies 28 C zat}

{(z,y) € Band ¢ € T implies (2, yt) € a}
{(z,y) € o’ and ¢t € T implies (2, yt) € 8'}.

1.54. REMARK. The {left}{right} transformation group of a topological
group is uniformly equicontinuous relative to the {left}{right} uniformity of
the phase space.

1.55. Noration. Let H be a subgroup of a group G. The left quotient space
[zH | z € G] of G by H is denoted G/H. The right quotient space [Hz | z € G]
of G by H is denoted G\H.

1.56. DeFINTTION. Let S be a subgroup of a topological group 7.

The left transformation group of T/S induced by T is defined to be the trans-
formation group (T/8, T, \) where A : T/8 X T — T/8 is defined by (4, )\ =
t'’AAET/Ste D).

The right transformation group of T\S induced by T is defined to be the trans-
formation group (T\S, T, u) where s : T\S X T — T\8 is defined by (4, t)u =
At(A € T\S,te D).

1.57. REMARK. Let S be a subgroup of a topological group T and let (T, T, )
be the {left}{right} transformation group of 7. Then the {left}{right} trans-
formation group of {T/8}{T\S} induced by T coincides with the partition
transformation group of {T'/S}{T\S} induced by (T, T, 9).

1.58. DEFINITION. Let ¢ be a continuous homomorphism of a topological
group 7 into a topological group S and let p : S X T — S be defined by {(s, {)p =
(T e)sl{(s, t)p = 8(tp)} (8 € S, t € T). The transformation group (8, T, p)
is called the {left} {right} transformation group of S induced by T under ¢.

1.59. REMARK. Let ¢ be a continuous homomorphism of the topological
group T into the topological group S. Then the {left}{right} transformatipn
group of S induced by 7 under ¢ coincides with the (7', ¢)-restriction of the
{left} {right} transformation group of S.
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1.60. REMARK. Let ¢ be a continuous homomorphism of a topological
group T' into a topological group S. Then the {left}{right} transformation
group of S induced by T' under ¢ is uniformly equicontinuous relative to the
{left} {right} uniformity of S. '

1.61. Remark. Let ¢ be a homomorphism of 4 into a topological group 7,
let ¢ = lp and let 6 be the {left}{right} translation of 7' induced by {¢7'}{ t}.
Then the {left} {right} transformation group of T induced by ¢ under ¢ coincides
with the discrete flow on 7 generated by 6.

1.62. DreriniTION. Let T be a topological group, let ¥ be a uniform space,
let ® be the class of all {right} {left} uniformly continuous functions on T to ¥,
let ® be provided with its space-index uniformity and let p:® X T — & be
defined by {(¢, )p = (tre | r € T)}{(p, Do = (rt0 | T ET)} (¢ E S, tE T).
The uniformly equicontinuous transformation group (®, T, p) is called the
{left} {right} uniform functional transformation group over T to Y.

1.63. DerFiniTioN. Let T be a locally compact topological group, let ¥
be a uniform space, let ® be the class of all continuous functions on T to Y, let
® be provided with its compact-index uniformity and let p:® X T — & be
defined by {(¢, t)p = (tre | T € T)}{(0, )p = (t ' [+ E T)} (¢ € &,t E T).
The transformation group (®, 7, p) is called the {left}{right} functional trans-
Jormation group over T to Y.

1.64. REMARK. A particular case of 1.63 arises when 7 is discrete. In such
an event a different notation may be used, as indicated by the following state-
ments:

1) @=Y"=Xer Y, where Y, =Y (r € 7).

(2) The point-index (= compact-index) uniformity of ® coincides with the
product uniformity of X,er ¥, .

@) Ify = (. |rET) € Xier Y, andif t € T, then {(y, t)p = (y., | r € T)}
{(, 0o = (.- | r € T)}.

1.65. Lemma. Let T be a locally compact topological group, let Y be a uniform
space, let (®, T, p) be the {left}{right] functional transformation group over T
oY, letp & ®and let ¥ C ®. Then:

(1) The orbit ¢T of ¢ is totally bounded if and only if ¢ is {left} {right} uniformly
continuous and bounded. o

(2) If Y 1is complete, then the orbit-closure ¢T of ¢ is compact if and only if ¢
18 {left} {right} uniformly continuous and bounded.

(3) ¥T is tolally bounded if and only if ¥ is {left} {right} uniformly equicon-
tinuous and bounded. it

(4) If Y s complete, then WT is compact if and only if ¥ is {left} {right} uniformly
equicontinuous and bounded.

Proor. Use 11.31 and 11.32.
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1.66. DerFINITION. Let X be a uniform space, let each transition »‘:X —
X (¢t € T) be uniformly continuous, let the motion space [r, : 7' — X | z € X]
be equicontinuous, let ¥ be a uniform space, let ® be the class of all uniformly
continuous functions on X to Y, let ® be provided with its space-index uni-
formity and let p: ® X T — @ be defined by (¢, t)p = 7 0 (¢ € &, t € T).
The uniformly equicontinuous transformation group (®, 7', p) is ecalled the
uniform functional transformation group over (X, T, =) to Y.

1.67. REMARK. Let T be a topological group, let (7, T, 5) be the {left}
{right} transformation group of 7 and let ¥ be a uniform space. Then the
uniform functional transformation group over (7T, T, n) to Y coincides with
the {left}{right} uniform functional transformation group over 7 to Y.

1.68. DEFINITION. Let 7' be locally compact, let ¥ be a uniform space,
let @ be the class of all continuous functions on X to Y, let ® be provided with
1ts compact—mdex uniformity and let p:® X T — & be defined by (¢, t)p =

¢ (¢ € ®,¢t € T). The transformation group (®, 7, p) is called the functional
transformatzon group over (X, T, =) fo Y.

1.69. RemArk. Let T be a locally compact topological group, let (T, T, )
be the {left}{right} transformation group of 7' and let ¥ be a uniform space.
Then the functional transformation group over (7, T, ) to Y coincides with
the {left} {right} functional transformation group over T to Y.

1.70. NOTES AND REFERENCES.

(1.01) The concept of a transformation group for which the topology of
the group plays a role appears to have originated in the latter part of the nine-
teenth century (cf., e.g., Lie and Engel [1]). A system of n differential equations
of the first order defines, under suitable conditions, a transformation group
(X, T, ) for which X is an n-dimensional manifold and 7' is the additive group
of reals. Thus a classical dynamical system with n degrees of freedom defines a
transformation group for which the phase space is the 2n-dimensional mamfold
customarily associated with the term. See also Zippin [1].

(1.35) For a decomposition of a compact metric space, the equlvalence of
{star-open} {star-closed} with {lower semi-continuous} {upper semi-continuous}
is readily verified (cf. Whyburn [1], Ch. VII).

(1.40) ®-orbit partition transformation groups arise naturally in the
study of geodesic flows on manifolds (cf. §13).



2. ORBIT-CLOSURE PARTITIONS

2.01. STANDING NOTATION. Throughout this section 7' denotes a topological
group.

2.02. DeFINITION. A subset A of T is said to be {left} {right} syndetic in T
provided that {T' = AK}{T = KA} for some compact subset K of T.

2.03. RemMARk. The following statements are valid.

(1) If A C T, then A is {left} {right} syndetic in 7T if and only if there exists
a compact subset K of T' such that every {left} {right} translate of K intersects 4.

(2) If A C B C T andif A is {left} {right} syndetic in 7, then so also is B.

() If A C T, then 4 is {left} {right} syndetic in 7 if and only if A~* is {right}
{left} syndetic in 7.

(4) If A C T and if 4 is symmetric or invariant (in particular, if A is a sub-
group of T or if T is abelian), then A4 is left syndetic in 7 if and only if 4 is right
syndetic in 7. In such an event, the equivalent phrases “left syndetic”, “right
syndetic” are contracted to “syndetic”.

(8) If A is a syndetic subgroup of T, then the left, right quotient spaces
T/A, T\A are compact.

(6) If T is lgeally compact, if A is a subgroup of T and if some one of the
left, right quotient spaces 7//4, T\A is compact, then A is syndetic in T'.

(7) If T is discrete and if 4 is a subgroup of 7, then A4 is syndetic in T if
and only if A is of finite index in 7' -«

(8) If A is a {left} {right} syndetic subset of T and if U is a compact neighbor-
hood of ¢, then {AU}{UA} is {left]{right} syndetic relative to the discrete
topology of 7. >

2.04. ExampLE. Let T be the discrete free group on 2 generators a, b and
let {A}{B} be the set of all words of 7 which in reduced form do not {end}
{begin} with {a'}{b'}. Then:

(1) A is left syndetic in T but A is not right syndetic in 7.

(2) B is right syndetic in T but B is not left syndetic in T.

(3) 4 U B is both left and right syndetic in T but there is no compact
(= finite) subset K of T such that every bilateral translate of K intersects
AU B.

2.05. DEFINITION. Let G be a group. A semigroup in G is defined to be a
subset H of G such that HH C H.

2.06. Lemma. Let S be a left or right syndetic closed semigroup in T. Then
8 is a subgroup of T.

Proor. We assume without loss that S is left syndetic. Let s € S and let
12



