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This book has evolved from lecture notes for a full-year undergraduate
course in general relativity which I taught from 1975 to 1980, an
experience which firmly convinced me that general relativity is not
significantly more difficult for undergraduates to learn than the standard
undergraduate-level treatments of electromagnetism and quantum
mechanics. The explosion of research interest in general relativity in the
past 20 years, largely stimulated by astronomy, has not only led to a
deeper and more complete understanding of the theory it has also taught
us simpler, more physical ways of understanding it. Relativity is now in
the mainstream of physics and astronomy, so that nd theoretical physicist
can be regarded as broadly educated without some training in the subject.
The formidable reputation relativity acquired in its early years (Inter-
viewer: ‘Professor Eddington, is it true that only three people in the
world understand Einstein’s theory? Eddington: ‘Who is the third?’) is
today perhaps the chief obstacle that prevents it being more widely taught
to theoretical physicists. The aim of this textbook is to present general
relativity at a level appropriate for undergraduates, so that the student
will understand the basic physical concepts and their experimental impli-
cations, will be able to solve elementary problems, and will be well
prepared for the more advanced texts on the subject.
In pursuing this aim, 1 have tried to satisfy two competing criteria:
first, to assume a minimum of prerequisites; and second, to avoid watering
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xil Preface

downr the subject matter. Unlike most introductory texts, this one does
not assume that the student has already studied electromagnetism in iis
manifestly relativistic formulation, the theory of electromagnetic waves,
or fluid dynamics. The necessary fluid dynamics is developed in the
relevant chapters. The main consequence of not assuming a familiarity
with electromagnetic waves is that gravitational waves have to be intro-
duced slowly: the wave equation is studied from scratch. A full list of
prerequisites appears below.

The second guiding principle, that of not watering down the treatment,
is very subjective and rather more difficult to describe. T have tried to
introduce differential geometry fully, not being content to rely only on
analogies with curved surfaces, but I have left out subjects that are not
essential to general relativity at this level, such as nonmetric manifoid
theory, Lie derivatives, and fiber bundles.' I have introduced the full
nonlinear field equations, not just those of linearized theory, but [ solve
them only in the plane and spherical cases, quoting and examining, in

“addition, the Kerr solution. I study gravitational waves mainly in the
linear approximation, but go slightly beyond it to derive the energy in
the waves and the reaction effects in the wave emitter. I have tried in
each topic-to supply enough foundation for the student to be able to go
to more advanced treatments without having to start over again at the
beginning.

The first part of the book, up to Ch. 8, introduces the theory in a
sequence which is typical of many treatments: a review of special relativity,
development of tensor analysis and continuum physics in special relativ-
ity, study of tensor calculus in curvilinear coordinates in Euclidean and
Minkowski spaces, geometry of curved manifolds, physics in a curved
spacetime, and finally the field equations. The remaining four chapters

study a few topics which I have chosen because of their importance in
- modern astrophysics. The chapter on gravitational radiation is more
detailed than usuai at this level because the observation of gravitational
waves may be one of the most significant developments in astronomy in
the next decade. The chapter on spherical stars inctudes, besides the
usual material, a useful family of exact compressibie solutions due to

Buchdahl. A long chapter on black holes studies in some detail the

physical nature of the horizon, going as far as the Kruskal coordinates,

| The treaiment here is therefore different in spirit from that s my book Geometrical
Methods of Mathematical Physics (Cambridge University Press 1980b), which
may be used to supplement this one.
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then exploring the rotating (Kerr) black hole, and concluding with a
simple discussion of the Hawking effect, the quantum mechanical
emission of radiation by black holes. The concluding chapter on cos-
mology derives the homogeneous and isotropic metrics and briefly studies
the physics of cosmological observation and evolution. There is an
appendix summarizing the linear algebra needed in the text, and anothes
appendix containing hints and solutions for selected exercises. One
subject T have decided not to give as much prominence to as other texts
traditionally have is experimental tests of general relativity and of alterna-
tive theories of gravity. Points of contact with experiment are treated as
ihey arise, but systematic discussions of tests now require whole bogks
{(Will 1981). Physicists today have far more confidence in the validity of
general relativity than they had a decade or two ago, and I believe that
an extensive discussion of alternative theories is therefore almost as ou!
of place in a2 modern elementary text on gravity as it would be in one
on electromagnetism.,

The student is assumed already tc have studied: special relativity,
inciuding the Loreniz transforme ion and relativistic mechanics:
Luclidean vector calculus; ordinary and simple partial differential
equations; thermodynamics and hydrostatics; Newtonian gravity (simple
stellar structure would be useful but not essential); and enough elemen-
tary quanium mechanics to know what a photon is.

The notation and conventions are essentially the same as in Misner et
al., Gravitation (W. H. Freeman 1973), which may be regarded as oue
possible follow-an text after this one. The physical point of view and
development of the subject are aiso inevitably influenced by that booi:,
partly because Thorne was my teacher and partly because Gravitatio:
has become such an influential text. But because | have tried to make
the subject accessible to 2 much wider audience, the style and pedagogical
method of the present book are very different.

Regarding the use of the book, it is designed to be studied sequentiali
as a whole, in a one-year course, but it can be shortened to accommadai=
a half-year course. Half-year courses probably should aim at restricted
goals. For example, it would be reasonable to aim to teach gravitati. nai
waves and black holes in half a year tc students who have already studied
electromagnetic waves, by carefully skipping some of Chs. 1-3 and most
of Chs. 4, 7, and 10. Students with preparation in spacial relativity and
fluid dynamics could learn steliar structure and casimology in haif a year,
provided they could go quickly through the first four chapters and then
skip Chs. 9 and 11. A graduate-ievel course can, of course, go much
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more quickly, and it shouid be possible tc cover the whole text in half
a year. :

Each chapter is followed by a set of exercises, which range from trivial
ones (filling in missing steps in the body of the text, manipulating newly
introduced mathematics) to advanced problems that considerably extend
the discussion in the text. Some problems require programmable calcu-
lators: or computers. 1 cannot overstress the importance of doing a
selection of problems. The easy and medium-hard ones in the early
chapters give essential practice, without which the later chapters will be
much less comprehensible. The medium-hard and hard preblems of the
later chapters are a test of the student’s understanding. It is all too
common in relativity for students to find the conceptual framework so
interesting that they relegate problem solving to second place. Such a
separation is false and dangerous: a student who can't solve problems
of reasonable difficulty doesn’t really understand the concepts of the
theory either. There are generaily more problems than one would expect
a'studeat to solve; several chapters have more than 30. The teacher wiil
have to select them judiciously. Another rich source of problems is the
Problem Book in Relativity and Gravitation, Lightman ei al. (Princeton
University Press 1975).

I am indebted to many people for their help, direct and indirect, with
this book. I would like especially to thank my undergraduates at Uni-
versity College, Cardiff, whose enthusiasm for the subject and whose
patience with the inadequacies of the early lecture notes encouraged me
to turn them into a book. And I am certainly grateful to Suzanne Bali,
Jane Owen, Margaret Vallender, Pranoat Priesmeyer and Shirley Kemp
for their patient typing and retyping of the successive drafts.

BES
1984
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- Special relativity

1.1 ~Fundamental principles of special relativity theory (SR)

The way in which special relativity is taught at an elementary
undergraduate level — the level which the reader is assumed competent
at —is usually close in spirit to the way it was first understood by physicists.
This is an algebraic approach, based on the Lorentz transformation (§ 1.7
below). At this basic level, one learns how to use the Lorentz tra. sforma-
tion to convert between one observer’s measurements and another’s, to
verify and understand such remarkable phenomena as time dilation and
Lorentz contraction, and to make elementary caiculations of the conver-
sion of mass into energy.

This purely algebraic point of view began to change, to widen, less
than four years after Einstein proposed the theory.! Minkowski pointed
out that it is very helpful to regard (¢, x, y, z) as simply four coordinates
in a four-dimensional space which we now. call spacetime. This was the
beginning of the geometrical point of view which led directly to general
relativity in 1914-16. It is this geometrical point of view on special
~ relativity which we must study before all else.

I Einstein’s original paper was published in 1905, while Minkowski’s discussion
of the geometry of spacetime was given in 1908. Einstein’s and Minkowski’s"
papers are reprinted (in English translation) in THe Principle of Relativity by
A. Einstein, H. A. Lorentz, H. Minkowski & H. Weyl (Dover).



2 Special relativity

As we shall sce, special relativity can be deduced from two fundamental
postulates:

(1) Principle of relativity (Galileo): No experiment can measure the
absolute velocity of an observer; the results of any experiment performed
by an observer do not depend on his speed relative to other observers
who are not involved in the experiment.

(2) Universality of the speed of light (Einstein): The speed of light
relative to any unaccelerated observer is c=3x10*ms™', regardless of
the motion of the light’s source relative to the observer. Let us be quite
clear about this postulate’s meaning: two different unaccelerated ob-
servers measuring the speed of the same photon will each find it to be

. moving at 3X10° ms™' relative to themselves, regardless of their state of

motion relative to each other. )

As noted above, the principle of relativity is not at all a modern concept:
it goes back all the way to Galileo’s hypothesis that a body in a state of
uniform motion remains in that state unless acted upon by some external
agency. It is fully embodied in Newton’s second law, which contains
only accelerations, not veiocities themselves. Newton’s laws are, in fact,
all invariant under the replacement

o()»> o' ()= 0v(1) -V,
where V' is any constani velocity. This equation says that a velocity (1)
relative to one observer becomess ©'(f) when measured by a second
observer whose velocity relaijve to the first is V. This is called the Galilean
law of addition of velocitics.

By saying that Newton's iaws are invariant under the Galilean law of
addition of velocities, we are making a statement of a sort which we will
often make in our study of relativity, so it is well to start by making it
very precise. Newton’s first law, that a body moves at a constant velocity
in the absence of external iv:rces, is unaffected by the replacement above,
since if o(r) is really a consiant say v, then the new velocity v, — V is
also a constant. Newton’s second law,

F=ma=mdy/ds,
is also unaffected, since

a'=dv'/dt=d{p - V)/dt=de/ii=a
Therefore the second iaw will be vaiid according to the measurements
of both observers, nrovided that we add to the Galilean transformation
law the statement that F and = are themselves invariant, i.e. the same
regardless of which of the two observers measures ther. Newton’s third
law, that the force exerted by one body on another is equal and opposite



1.1 Fundamental principles of special relativity 3
to that exerted by the second on the first, is clearly unaffected by the
change of observers, again because we assume the forces to be invariant.

So there is no absolute velocity. Is there an absolute acceleration?
Newton argued that there was. Suppose, for example, that I am in a train
on a perfectly smooth track,” eating a bowl of soup in the dining car.
Then if the train moves at constant speed the soup remains level, thereby
offering me no information about what my speed is. But if the train
changes its speed then the soup climbs up one side of the bowl, and I
can tell by looking at it how large and in what direction the acceleration
is. ;

Therefore, it is reasonable and useful to single out a class of preferred
observers: those who are unaccelerated. They are called inertial observers,
and each one has a constant velocity with respect to any other one. These
inertial observers are fundamental in special relativity, and when we use
the term ‘observer’ from now on we will mean an inertial observer.

The postulate of the universality of the speed of light was Einstein’s
great and radical contribution to relativity. It smashes the Galilean law
of addition of velocities because it says that if » has magnitude ¢ then
so does v’, regardless of V. Einstein felt that the postulate was forced
on him by, among other things, the Michelson—Morley experiment. The
counter-intuitive predictions of special relativity all flow from this postu-
late, and they are amply confirmed by experiment. In fact it is probably
fair to say that special relativity has a firmer experimental basis than
any other of our laws of physics, since it is tested every day in all the
giant particle accelerators, which send particles nearly to the speed of
light.

Although the concept of relativity is old, it is customary to refer to
Einstein’s theory simply as ‘relativity’. The adjective ‘special’ is applied
in order to distinguish it from FEinstein’s theory of gravitation, which
acquired the name ‘general relativity’ because it permits one to describe
physics from the point of view of both accelerated and inertial 6bservers
and is in that.respect a more general form of reiativity. But the real
physical distinction between these two theories is that special relativity
{(SR) is capable of describing physics only in the absence of gravitational
fields, while general relativity {GR) extends SR to describe gravitation

2 Physicists frequently bave to make such 1dealizations, which often are fat ;emoved

experience!
5 discussion of this point, <c2 the excerpt irom nit Principia in

Williams (
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-
itself.” One can only wish that an earlier generation of physicists had
chosen more appropriate names for these theories!

1.2 Definition of an inertial observer in SR
It is important to realize that an ‘observer’ is in fact a huge
information-gathering system, not simply one man with binoculars. In
fact, we shall remove the human element entirely from our definition,
and say that an inertial observer is simply a coordinate system for
spacetime, which makes an observation simply by recording the location
(x,y, z) and time (1) of any event. This coordinate system must satisfy
the following three properties to be called inertial;
(1) The distance between point P, (coordinates x,, y,, z;) and point
P, (coordinates x, ), Z») is independent of time.
(2) The clocks that sit at every point ticking off the time coordinate
¢ are synchronized and ali run at the same rate.
(3) The geometry of space at any constant time ¢ is Euclidean.
Notice that this definition does not mention whether the observer
accelerates or not. That will come later. It will turn out that only an
unaccelerated observer can keep his clocks synchronized. But we prefer
to start out with this geometrical definition of an inertial observer. It is
a matter for experiment to decide whether such an observer can exist:
it is not seif-evident that any of these properties must be realizable,
aithough we would probably expect a ‘nice’ universe to permit them!
However, we will see later in the course that a gravitational field does
in fact make it impossible to construct such a coordinate system, and
this is why GR is required. But let us not get ahead of the story. At the
moment we are assuming that we can construct such a coordinate system
(that, if you like, the gravitational fields around us are so weak that they.
do not really matter). One can envision this coordinate system, rather
fancifully, as a lattice of rigid rods.filling space, with a clock at every
intersection of the rods. We shall now define how we use this coordinate
system to make observations.
An observation made by the inertial observer is the act of assigning to
any event the coordinates x, ¥, z of the location' of its occurrence, and
4 It is easy to see that gravitational fields cause problems for SR. If an astronaut
in orbit about Earth holds a bowl of soup, does the soup climb up the side of
the bowl in response to the gravitational ‘force’ which holds the spacecraft in
orbit? Two astronauts in different orbits accelerate relative to one another, but
" neither feels an acceleration. Problems like this make gravity special, and we

 will have to wait until Ch. 5§ to resolve them. Until then, the word ‘force” will
refer to a nongravitational force.
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“w

the time read by the clock at (x, y, z) when the event occurred. It is not
the time ! on the wrist watch worn by a scientist located at (0, 0, 0) when
he first learns of the event. A visual observation is of this second type:
the eye regards as simultaneous all events it sees at the'same time: an
inertiul observer regards as simultaneous all events that occur at the same
time as recorded by the clock nearest them when they occurred. This
distinction is important and must be borne in mind. Sometimes we will
say ‘an observer sees ...’ but this will only be shorthand for ‘measures’.
We will never mean 2 visual observation unless we say so explicitly.

Ar inertial observer is also called an inertial roference frame, which
we will often abbreviate to ‘reference frame’ or simply ‘frame’.

1.3 New units

Since the speed of light ¢ is so fundamental, we shall from now
on adopt a new system of units for measurements in which ¢ simply has
the value 1! It is perfectly okay for slow-moving creatures like engineers
to be content with the SI units: m, s, kg. But it seems silly in SR to use
units in which the fundamental constant ¢ has the ridiculous vaiue 3 % 10°.
The 81 units evolved historically. Meters and seconds are not funda-
riental; they are simply convenient for human use. What we shall now
io is adopt a new unit for time, the meter. One meter of time is the time
+t takes light to travel one meter. (You are probably more familiar with
an alternative approach: a year of distance — called a ‘light year’ - is the
distance light travels in one year.) The speed of light in these units is:

distance gt travels in any given time interval

c= A ; :
the given time interval .

Im

5

the time it takes light to travel one meter

So if we consistently measure time in meters, then ¢ is not merely 1, it
is also dimensionless! In converting from SI units to these ‘natural’ units,
vou can use any of the following relations:

3108 misi sy
1s=3x10"m,

1

i
fme— 5.
3x1p?

The SI units contair any ‘derived’ units, such as joules and newtons,
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which are defined in terms of the basic three: m, s, kg. By converting
from s to m these units simplify considerably: energy and momentum
are measured in kg, acceleration in m™', force in kgm ™', etc. Do the
exercises on this. With practice, these units will seem as natural to you
as they do to most modern theoretical physicists.

1.4 Spacetime diagrams
A very important part of learning the geometrical approach to
SR is mastering the spacetime diagram. In the rest of this chapter we
will derive SR from its postulates by using spacetime diagrams, because
they provide a very powerful guide for threading one’s way among the
many pitfalls SR presents to the beginner. Fig. 1.1 below shows a two-
dimensional slice of spacetime, the 1—x plane, in which are illustrated

world line of light, v = 1

accelerated
world line world line of particle moving at

speed fvl<)

@ an event

Fig. 1.1 A spacetime diagram in natural units.

the basic concepts. A single point in this space’ is a point of fixed x and
fixed ¢, and is cailed an event. A line in the space gives a relation x = x(1),
and so can represent the position of a particle at different times. This is
called the particle’s world line. its slope is related to its velocity,

slope =dt/dx=1/v.

Notice that a light ray (photon) always travels on a 45° line in this diagram.

5 We use the word ‘space’ in 2 more general way than you may be used to. We

* do not mean a Euclidean space in which Euclidean distances are necessarily
physicaily meaningful. Rather, we iacan just that it is a set of points which is
continuous (rather than discrete, as a {attice is). This is the first example of what
we will define in Ch. 5 to be a ‘manifold’.




