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Decimal Computation



Preface

I had intended to write a book on electronic calculators. Instead I ended
up with a book on decimal—or, more specifically, BCD (binary-coded-
decimal)}—computation. Why?

While searching for material describing how calculator circuits perform the
various arithmetic operations, I found—to my great dismay—that there was
very little information on BCD computation. Some of the classical textbooks
on computing techniques outline the simpler algebraic processes, such as
addition, subtraction, multiplication, division, and, occasionally, square
root. However, in comparison with the available literature on binary computa-
tion, decimal-computation literature is extremely scarce.

The situation is even worse in locating software or hardware information on
implementing transcendental functions, such as sine, cosine, tangent, arc
sine, arc cosine, arc tangent, exponential, and logarithms. Almost no
literature exists that describes decimal algorithms or decimal mechanizations
of these functions. In addition, I studied the operation of binary computing
algorithms and circuits and converted them to BCD format.

Consequently, I collected every bit of available information on BCD
computation, organized it according to function, and then described it in
more detail. In this process, several alternatives of the ‘“known” techniques
became apparent and were also described.

This book is thus a collection, a catalog and a review of BCD computation
techniques. The book describes how each of the most common arithmetic and
transcendental operations can be implemented in a variety of ways. More
specifically, this book covers the following subjects:

e A review of number systems, BCD codes, of early calculating instru-
ments and electronic calculating machines

e A summary of Boolean algebra, ideal logic elements, and MOS logic
circuits

e A discussion of the status and trend in large-scale integration (LSI), its
effect on calculating circuit size and economy

e An outline of BCD computing circuit applications in the automotive,
consumer, education, and entertainment fields, illustrated with some
specific examples
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Mathematical developments of the algorithms and descriptions of how
they operate (flow diagrams) and how they can be implemented in
different ways, for each of these arithmetic operations:

Add/subtract

Multiply/divide

Square root

Log/exponential
Trigonometric/hyperbolic functions
Fixed/floating point operations

Discussions and comparisons of circuit complexity and performance
(accuracy, resolution, and speed of operation) for the different algorithms
and implementations of each arithmetic function.

The most outstanding features of this book are as follows:

The large number of arithmetic and transcendental functions described
The variety of algorithms and hardware implementations discussed for
each function

The detailed software and hardware descriptions of each approach,
starting with a mathematical development of the algorithms and
numerical examples; then proceeding with block, logic, and timing
diagrams; and concluding with a complexity-performance discussion
The illustrative and step-by-step descriptions of the operation of the
common multiplication and division circuits, with some practical ex-
amples

The exclusive treatment of transcendental functions such as logarithms,
exponentials, trigonometric and hyperbolic sine, cosine, tangent
functions, and their inverse relationships

The use of computer programs to simulate the algorithms and circuits
used to implement the various transcendental functions

The unique description and comparison of fixed-decimal-point versus
floating-decimal-point techniques and circuits.

As a result calculator designers should find this book useful as a review and a
catalog of existing techniques. Designers of industrial and consumer instru-
mentation, such as computing counters, frequency analyzers, and multiplying
scales, will find assistance in this book in selecting the proper technique for a
given application. However, the book should be of greatest value to all the
numerous designers in the fields of automotive, consumer, educational, and
entertainment electronics who are faced with the task of adding a moderate
amount of computing capability to an instrument in which the inputs and/or
outputs are in BCD format.
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This book is intended as a reference for all those involved in the design,
manufacture, and testing of BCD computing circuits. Its purpose is to convey
the principles involved in BCD computation. Its scope is limited to descrip-
tions of algorithms, of the operation and the performance of BCD computing
techniques and BCD computing circuits.

Acknowledgment is due many at General Electric’s Avionic Controls and
Electric Systems Department who helped in the preparation of this manu-
script, especially to Les Schowe for his review. I also would like to express
my appreciation to Morris Grossman, editor of Electronic Design, who
summarized the material in this book into an excellent series of articles and
helped enormously to correct both text and diagrams.

HERMANN SCHMID
March, 1974



Decimal Computation



CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

INTRODUCTION

Number Systems

History of Calculating Instruments
Electronic Calculating Machines .
BCD Codes .

Large-Scale Integratlon
Application Examples .

ADDITION AND SUBTRACTION .

Binary Addition.

Binary Subtraction .

BCD Addition

BCD Subtraction .
BCD Adders-Subtracters .

MULTIPLICATION

General Theory .

Standard Multiplier Form

Digit Multiplier .

Repeated-Addition Multlpher
Higher-Speed Techniques .
Bit-Parallel BCD Multipliers . .
Bit-Serial Table-Look-up Multiplier .
Bit-Parallel Table-Look-up Multiplier
Multiplication by Adding Logarithms
Multiplication by Rate Integration

DIVISION

General Theory .
Restoring Technique
Nonrestoring Technique

Contents

21

21
25
27
34
36

53

53
55
58
59
62
68
76
79
79
80

83

83
85
88



CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CONTENTS

Quotient Approximation Technique .
Iterative Techniques

Logarithmic Technique.

Divider Implementations

Division by Pulse-Rate Integratlon

SQUARE ROOT .

General Theory .

Restoring Technique

Nonrestoring Technique

Iterative Technique .

Pulse Integration Technique

Logarithmic Technique.

Linear-Segment Function Generatlon Techmque
Improved Square-Root Technique
Implementation of the Conventional Techmques
Implementation of Improved Technique

Placing the Decimal

LOGARITHM AND EXPONENTIALS .

General Theory .

Pulse-Rate Integration .

Series Expansion

Table-Look-up and Linear Interpolatlon

Log-Function Circuit Using Averaging Interpolatlon :

Sequential Table-Look-up Technique

TRIGONOMETRIC FUNCTIONS

Digital-Integrator Technique .
Rate-Multiplier Technique .

Series-Expansion Technique

Table-Look-up and Interpolation Technlques
The CORDIC Technique .
CORDIC Implementation .

HYPERBOLIC FUNCTIONS .

General Theory . :

Integrating Technique .

Table-Look-up and Interpolatlon Technlque
Series-Expansion Technique

Hyperbolic CORDIC Technlque g
Implementation . ;

88
92
93
94
105

109

109
111
115
118
118
120
120
120
123
123
126

129

129
131
133
134
135
137

151

152
155
157
158
162
172

177

177
179
180
180
181
193



CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CONTENTS
FIXED VERSUS FLOATING-POINT
OPERATION s 5 8 v %

General Theory . .
Fixed-Point Arithmetic.
Adjustable Fixed-Point Arlthmetlc
Floating-Point Arithmetic .

REVIEW OF LOGIC CIRCUITS .

General Comments .

Boolean Algebra

Operation of Ideal Logic E]ements
MOS Logic Circuits
REFERENCES

APPENDICES

INDEX

xi

195

195
197
199
200

215
215
216
219
227
247
251

261



CHAPTER ONE

Introduction

NUMBER SYSTEMS

It started with pebbles, sticks, and beads. Early man used them as tools to
count, account, and compare. Shepherds counted their sheep by transferring
pebbles from one pouch to another. If the number of pebbles matched the
number of sheep, their account was in order.

Then man drew signs in the sand or mud, such as | for one item, || for
two items; and ||| for three items. From these signs or groups of signs, the
symbols of the various number systems developed. It took ages before
symbols were developed that represented a quantity larger than 1. Early
Roman numerals, for example, were written I, II, III, IIII, V, with the V
replacing the group of five. In this system, however, the position of the digits
had no significance. The rules for placing one symbol in front or in back of
another symbol to represent the sum or difference of the two symbol values
came much later. For example, a Roman IV now represents a 4 (5 — 1) and
VI represents 6 (5 + 1). Although the Roman number system was advanced
in its time, it is awkward and clumsy by today’s standards. Just try to write
1873:

MDCCCLXXIII.

The real breakthrough in number systems came with the Arabic system, of
which most people know only the decimal form. In this system there is only a
limited number of symbols, the shapes of which are quite unimportant. What
is important, however, is the positional significance of each of these symbols
in the group. This means that the value of each symbol is determined by its
position in the group with respect to the others. We usually refer to the symbol
on the left as the most significant digit and to the symbol on the right as the
least significant digit. The value of each digit thus increases from right to left
by the power of the number system. The power associated with each digit is
determined by the base, or the radix, which defines how many symbols are
used in the system. In a base 8 system, for example, only the eight symbols
0,1,2,3,4,5,6, 7 are used.

In theory there is no limit as to how high the base can be or how many
symbols are used. Practical systems, nevertheless, are limited to bases of less
than 16.
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The Decimal Number System

The decimal number system is the most popular form of the Arabic number
system. Its origin is probably related to the fact that man has 10 fingers. It uses
the 10 symbols 0,1, 2, 3,4, 5,6, 7, 8,9. The base or the radix is 10. A decimal
number N can thus be expressed as

N =a,10" + g, ;10" 4 - -- 4 q,10' 4 4,10°,

where a; is one of the 10 decimal digits 0 to 9, and 107 is the power of 10 of
each digit a, that defines its positional significance, or simply the power of that
digit. Take, for example, the number

845 =8 x 102 + 4 x 10 + 5 x 10°

This means that the digit on the far right, is multiplied by 1, the middle digit
by 10, and the left digit by 100. More generally, each digit is multiplied by the
power 10¢, where i defines the number of digits to the left of the rightmost, or
least-significant, digit.

The Binary Number System

In the binary number system the base is 2 and there are only two symbols,
0 and 1. A binary number Ny can thus be expressed as

Ng=a,2"+a, 2" + -+ + a;2' + q2°,

where g, is either 0 or 1 and where 27 represents the power of 2 of the digit a,.
Hence, the digits in the binary system also have positional significance.
However, each digit is multiplied by the proper power 2¢, where i again
represents the number of digits from the rightmost digit. Take, for example,
the number

1011 =1 x 20 4+ 1 x 224+ 0 X 2241 x 2 + 1 x 20 = 27,

Note that five digits, or five binary bits, are required to represent the decimal
number 27. Thus, the lower the base the more digits are needed to represent a
certain value.

HISTORY OF CALCULATING INSTRUMENTS

From the very beginning man had a need for counting. As a result, early
man developed techniques for using pebbles, beads, knots on strings, notches
on sticks, and signs in mud or sand.

Counting is the process of repetitively adding a fixed increment to the
previous sum. Addition and subtraction can thus be regarded as extensions of
the counting process. Seven can be added to 9 simply by counting first to 7 and
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then continuing the process of incrementing 9 more times to a count of 16.
Once the techniques for addition and subtraction were understood, the con-
cepts for multiplication, division, and other arithmetic operations were within
easy reach, since all of these operations are based on the repeated use of
addition and subtraction.

The development of the various computing techniques was followed by the
design of computing devices. The pebbles and sticks gave way to more
sophisticated apparatus such as the Chinese abacus, which incorporates
already the concepts of positional significance.

The next era in digital computation® involved the mechanical or rotary
calculating machines, starting with Pascal’s number wheels and ratchet (1642),
Leibnitz’s stepped cylinder (1671), and Babbage’s analytical engine (1812),
and resulted in the various mechanical and electromechanical adding and
calculating machines that are still in use today. All these machines use a
combination of gears and cylinders that were driven at first mechanically by a
crank or a handle and later with an electrical motor. In 1857, Hill developed
the first four-function rotary calculator with keyboard input.

The development of electromechanical computers was also a significant
phase in digital computation. The combination of Hollerith’s punch cards, the
availability of electromechanical relays, and Turing’s sequential machine
theory led in 1944 to the design of Aiken’s Mark I relay calculator.

The major thrust in digital computation came, however, after World War II
with the development of the electronic computers. By that time, the operation
and fabrication of vacuum tubes and of logic circuits such as Eccles and
Jordan’s flip-flop was well understood and Boolean algebra was no longer a
curiosity. The electronic numerical integrator and automatic calculator
(ENIAC) the first electronic digital computer, was born in 1947 under the
direction of Mauchly and Eckert. However, in contrast to present machines,
ENIAC used decimal arithmetic and was more like a programmable calculator.

A significant improvement in digital computers came with the development
of the transistor by Bardeen, Brattain, and Shockley (1948). With it the size
and power dissipation of the electronics could be reduced by a factor of 10 and
reliability was up an order of magnitude. However, it took almost a decade
before the first all-transistor computer appeared on the market.

The latest advance in digital computation is large-scale integration (LSI),
which is now used to implement both calculators and computers. With LSI all
the electronics required to (1) accept, translate, and store keyboard inputs,
(2) execute the various arithmetic operations and store the results, and A3)
drive an appropriate display can now be located on a small chip of silicon,
approximately one-twenty-fifth the size of a postage stamp.

Such a small chip can contain the equivalent of several thousand vacuum
tubes. To comprehend the magnitude of this tremendous reduction, compare
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the parameters of today’s LSI calculator electronics with those of a hypo-
thetical vacuum-tube version:

2000 vacuum Single
tubes LSI chip
Size 2000 in.® 0.1in3
Power dissipation 4000 W 1L.OW
Reliability 2000 F/MH 10 F/MH
Cost (in large quantities) $5000 $5

From this table, it can be seen that if a calculator is built with tubes, it would
probably sell in excess of $5000, have the size of a cabinet 24 x 24 x 72 in.,
require a small power station to drive it, and fail every 50 h. As is well known,
single chip LSI calculators sell for less than $50, come in sizes as small as a
cigarette pack, and require as little as 1 W of power; and failures in the LSI
chip are extremely rare.

The long road from the Chinese abacus to the LSI computer thus went
through several significant development phases, such as the mechanical
(rotary) machines, the electromechanical (relay) machines, the vacuum-tube
machines, and the transistor machines. In this transition, the principles of
implementing the basic arithmetic operations, as used by the various com-
puting devices, have changed relatively little. Multiplication was always X
additions of Y’; division and square root were always implemented with trial
and error subtraction. Therefore, it is of interest to see how some of the older
machines operate, what techniques they use, and what algorithm they
implement.

The Chinese Abacus

This ingenious device provides efficient computation with an absolute
minimum of hardware. It was used centuries before Christ by the Chinese and
the Babylonians and is still in use today in many Far Eastern countries.

A typical Chinese abacus, or souanpan, is divided into two unequal
sections, each being pierced by a number of rods (Figure 1.1). Each rod
represents one digit. A nine-rod abacus is thus a nine-digit calculator using the
biquinary number system. The mantissa of the number(s) is entered with five
beads on each rod in the larger, lower section. The characteristic of the
number is entered with two beads on each rod in the smaller, upper section.
The two sections combined perform as a single multidigit register. The length
(number of digit) of this register is made relatively long. The purpose of this is
not only to hold large numbers but to enable one to enter two numbers side by
side, as will be shown later in the multiplication example.

The processes of addition and subtraction on the abacus are rather obvious.
To add for example, 4321 to 8765, enter the first of the two (Figure 1.1a)
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Figure 1.1  The abacus. Addition is carried out by mentally adding each digit of
the addend to the augend, which is entered into the abacus first.

numbers, 4321, by placing 4, 3, 2, and 1 beads in the lower section on the four
rightmost rods against the dividing bar. Now, mentally add the units digit, 5,
of the addend to the units digit on the frame, changing this to 6. To do this
place one bead from the lower half of the rod and one bead from the upper
half against the dividing bar. The upper bead represents 5, the lower one
represents 1. Then proceed as shown, line by line, carrying a 10 where
necessary, as in the last two lines. The final state of the abacus is shown in
Figure 1.15, which gives the result: 13,086.

Multiplication is done with the help of a table, identical to the digit multi-
plication table (see Table 3.1). As an illustration, consider the process of
multiplying 538 by 2457 (see Table 1.1). The two factors are placed on a
10-digit frame, the multiplicand into the 3 leftmost digits, and the multiplier
into the middle 4 digits, leaving to its right as many free columns as there are
digits in the multiplicand.

Start by considering the units digit of the multiplicand (i.e., 7), and multiply
it in turn by each digit of the multiplier. First enter 8 x 7 (= 56) at the
extreme right of the frame (line 2), and then add 3 x 7 (= 21) to the frame
one place to the left (line 3). At line 4 we meet a slight difficulty. We have to
add 5 x 7 (= 35) to the partial product 266 but find that the units digit, 7, of
the multiplicand is already occupying the column we need. But since we have
finished with this digit, we ignore it and enter the 3 of the partial product in its
place. The 7 is not added to the 3 but replaced by it to form line 4. In the same
way lines 5, 6, and 7 show the tens digit, 5, of the multiplicand multiplying



Table 1.4 Multiplication of 538 by 2457 on a
10-digit abacus.*

NUMBERS ON ABACUS
AFTER EACH OPERATION

OPERATION LINE

PERFORMED  MCD. MLTR. PRODUCT NUMBER

5 3 8|2 4 517|000 €))
8 x7 =256 5 6)

5 3 8|2 4 57|05 6 3}
3 x7=21 QN

5 3 8|2 4 5|{712 6 6 3)
5x7=35 3 9

5 3 8|2 4 5|3 76 6 “)
8 x5 =40 4 0

5 3 8|2 4 5141 6 6 )
3x5=15 a s

5 3 8|2 4|5|5 6 6 6 6)
5x5=25 2 595

53 8|2 4|3 0 6 6 6 @)
8 x4 =32 G 2

5 3 8|2 4(3 3 8 6 6 ®)
3 x4=12 a2

538|2|14(4 5 8 6 6 ©)
5x4=20 2 0

5 3 8|2|2 4 5 8 6 6| (10
8§ x2=16 a 6

5 3 8|2(2 6 1 8 6 6| (11)
3 x2=6 6)

5 3 8123 2 1 8 6 6| (12
5x2=10 a o

5 3 8|1 3 2 1 8 6 6| Result

a13)

% (XX) identifies the partial product to be added; |X]| signifies
that this digit is dropped and not added to the partial product.



