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__PREFACE __

This book is intended for junior and senior engineering students who are interested
in learning some fundamental aspects of fluid mechanics. This area of mechanics is
mature, and a complete coverage of all aspects of it obvivusly cannot be accomplished
in a single volume. We developed this text to be used as a first course. The principles
considered are classical and have been well established for many years. However.
fluid mechanics education has improved with experience in the classroom. and we
have brought to bear in this book our own ideas about the teaching of this interesting
and important subject.

One of our aims is to represent fluid mechanics as it really is—an exciting and
useful discipline. To this end. we include analyses of numerous everyday examples
of fluid flow phenomena to which students and faculty can easily relate. More than
160 examples are presented that provide detailed solutions to a variety of problems.
Also, a generous set of homework problems in each chapter stresses the practical
application of principles. Those problems that can be best worked with a program-
mable calculator or a computer. about 10% of the problems. are so identified. The
examples and homework problems illustrate the considerable versatility of fluid me-
chanical analyses.

Our message to students is that fluid motion is consistent with well-established
physical laws. The mathematical statements. or equations that represent these laws
and thus describe fluid behavior, form the basis for problem solving. In some instances.
the solution of these fundamental equations results in the answers sought. Often.
however. experimental data-based correlations and dimensional analysis are required
in addition to basic equations for solution closure.

Since this is an introductory text. we have designed the presentation of material
to allow for the gradual development of student conﬁc}cncc in fluid mechanics problem
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solving. Each important concept or notion is considered in terms of simple and easy-
to-understand circumstances before more complicated features are introduced.

Two systems of units are used throughout the text: the British Gravitational System
(pounds, slugs, feet, and seconds), and the International System of Units (newtons,
kilograms, meters, and seconds). Both systems are widely used, and we believe that
students need to be knowledgeable and comfortable with both systems. Approximately
one half of the examples and homework problems use the British System; the other

In the first four chapters, the student is made aware of some fundamental aspects
of fluid motion, including important fluid properties, regimes of flow, pressure vari-
ations in fluids at rest and in motion, fluid kinematics, and methods of flow description
and analysis. The Beriioulli equation is introduced in Chapter 3 to draw attention,
early on, to some of the interesting effects of fluid motion on the distribution ofs
pressure in a flow field. We believe that this timely consideration of elementary fluid
dynamics will increase student enthusiasm for the moré complicated material that
follows. In Chapter 4, we convey the essential elements of kinematics, including
Eulerian and Lagrangian mathematical descriptions of flow phenomena, and indicate
the vital relationship between the two views. For teachgrs who wish to consider
kinematics in detail before the material on elementary fluid mechanics, Chapters 3
and 4 can be interchanged without loss of continuity. #

Chapters S, 6, and 7 expand on the basic analysis methods generally used to solve
or to begin solving fluid mechanics problems. Empbhasis is placed on understanding
how flow phenomena are described mathematically and on when and how to use
infinitesimal and finite control volumes. The effects of fluid friction on pressure and
velocity distributions are also considered in some detail, A formal course in ther-
modynamics is not required to understand the various portions of the text that consider
some elementary aspects of the thermodynamics of fluid flow. Experiments or tests
must be relied on when mathematical analysis alone is inadequate to solve a problem.
The advantages of using dimensional analysis and similitude for organizing test data
and for planning experiments and the basic techniques involved are featured in Chap-
ter 7.

“Chapters 8 to 11 offer students opportunities for the further application of the
principles learned earlier in the text. Also, where appropriate, additional important
notions such as boundary layers, transition from laminar to turbulent flow, and flow
separation are introduced. Practical concerns such as pipe flow, open-channel flow,
flow measurement, drag and lift, and the effects of compressibility are discussed.’

Students who study this text and who solve a representative set of the exercises
provided should acquire a useful knowledge of the fundamentals of fluid mechanics.
Faculty who use this text are provided with numerous topics to select from to meet
the objectives of their own courses. More material than can be reasonably covered
in one term is included. All are reminded of the fine collection of supplementary
material. Where appropriate, we have cited throughout the text the articles and books
that are available for enrichment.

We wish to express our thanks to the many colleagues who have helped in the
development of this text. We are indebted to the following reviewers for their com-
ments and suggestions: Willem F. Brutsaert, University of Maine; Robert R. Faddick.
Colorado School of Mines; James A. Liburdy, Clemson University; Robert A. Med-
row, University of Missouri-Rolla; Charles L. Merkle, Pennsylvania State University;
Edgar A. O’Rear, University of Oklahoma; and Laura L. Pauley, Pennsylvania State
University. We also appreciate the help provided by Dennis Cronin, Nickolaos Ster-

"
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giopulos, and Mark Kroneman relative to the homework problems and solutions
manual. We wish to express our gratitude to the many persons who supplied the
photographs used throughout the text and to Milton Van Dyke for his help in this
effort. We acknowledge the superb typing of the manuscript by Carolyn Taylor.
Finally, we thank our families for their continued encouragement during the writing
of this text. ;

Working with students over the years has taught us much about fluid mechanics
education. We have tried in earnest to draw from this experience for the benefit of
users of this book. Obviously we are still learning, and we thus welcome any sug-
gestions and comments from you.

Bruce R. Munson
Donald F. Young
Theodore H. Okiishi

Publisher’s Note. There are two important supplements that are available to professors
who adopt this book for classroom use. The first is an Instructor’s Manual containing
complete solutions to all of the problems in the text and more than 90 transparency
masters. The second is IBM-PC compatible software which consists of programs that
allow students to solve the computer problems in the book. Both supplements may
be obtained directly from the publisher.
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Liquid jet breakup: A jet of liquid breaks up into a series of drops because of surface tension
effects. The number, size, and spacing of the drops is a function of various fluid properties
including surface tension. density, and viscosity. (Water in air.) (Photograph courtesy of

°

G..J. Jamefon.)




ONE ¥

INTRODUCTION

Fluid mechanics is that discipline within the broad field of applied mechanics concerned
with the behavior of liquids and gases at rest or in motion. This field of mechanics
obviously encompasses a vast array of problems that may vary from the study.of blood
flow in the capillaries (which are only a few microns in diameter) to the flow of crude
oil across Alaska through an 800-mile-long 4-ft-diameter pipe. Fluid mechanics prin-
ciples are needed to explain why airplanes are made streamlined with smooth surfaces
for the most efficient flight, whereas golf balls are made with rough surfaces (dimpled)
to increase their efficiency. Numerous interesting questions can be answered by usmg
relatively simple fluid mechanics ideas. For example:  »

"o How can a rocket generate thrust without having any air to push against in outer
space?

e Why can’t you hear a supersonic airplane until it has gone past you?

e How can a river flow downstream with a significant velocity even though the slope
of the surface is so small that it could not be detected with an ordinary level?

e How can information obtained from model airplanes be used to design the real
thing?

e Why does a stream of water from a faucet sometimes appear to lmw a smooth
surface, but sometimes a rough surface?

e How much greater gas mileage can be obtained by improved aerodynamic design
of cars and trucks?

The list of applications and questions goes on and on—but you get the point: fluid
mechanics is a very important, practical subject. It is very likely that during your
career as an engineer you will be involved in the analysis and design of systems that
require a good understanding of fluid mechanics. It is hoped that this introductory
text will provide a sound foundation in the fundamental aspects of fluid mechanics.



