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INTRODUCTION

These are the Proceedings of the Symposium "Singularities,
Representation of Algebras, and Vectorbundles" held December
13-17, 1985 at the Pfalzakademie in Lambrecht/Pfalz,

West Germany.

The purpose of the symposium was to discuss and promote
recent developments of the interaction of singularity theory
with representation of algebras and vector bundles. The
colloquium talks given during the conference initiated in-
tensive and stimulating discussions among the participants
of the different areas who usually do not meet at conferen-
ces. These discussions led to new insights as well as to new
questions concerning the relationship between the three
topics of the conference. They partly condensed subsequent-
ly in research articles which are - besides the revised
texts of oral lectures - presented in this volume. It is the
editors' hope that these notes stimulate further development
and interaction.

It is nowadays well known that there are close relations bet-
ween classes of singularities and representation theory by
means of the McKay correspondence and representation theory
and vector bundles on projective space via the Bernstein-
Gelfand-Gelfand construction. On the other hand, these rela-
tions can not be considered to be either completely under-
stood or fully exploited.

It became clear during the conference that at least the
following can be said about the prrincinal relations between
the three areas. The questions and methods of representation
theory (as finite and tame representation type, almost split
sequences, quivers) have applications to singularities and

to vector bundles depending whether one considers modules

over complete Tocal rings or graded modules over graded rings.
These ied in particular to the characterization of the simple
singularities in the sense of Arnold by maximal Cohen-



v

Macaulay modules generalizing the work of Mc Kay, Auslander,
Artin and Verdier. Representation theory on the other hand,
which had primarily developed its methods for Artinian al-
gebras, starts to investigate algebras of higher dimensions
nartly because of these applications. There are not only
interesting examples within the class of singularities or
algebraic varieties, there might be also future research

in representation theory, stimulated by the classification
of singularities and the highly developed theory of moduli
for vector bundles.

Of course, there is the general problem for specialists to
understand well enough topics in fields other than their

own. In order to overcome this difficulty at least partly
during the conference there were three survey talks on the
different topics stressing the relationship to the other

two: H. Kndrrer on "Cohen-Macaulay Modules on Hypersurface
Singularities", M.S. Narasimhan on "Moduli of Vector Bundles
on Curves", and I. Reiten on "Representation of Algebras

and Relations to Singularities". The latter two are presented
in this volume, Knorrer's article has already appeared in

the proceedings "Representation of Algebras", Lond. Math. Soc.,
Lect. Notes, Series 116, 147-164, Cambridge Univ. Press.

His article surveys the recent development of the interaction
of singularity theory and representation theory and is warmly
recommended. We are grateful to F.-0. Schreyer for having
expanded his oral lecture in order to give a partial survey,

together with new results and open problems and conjectures.

Not all the oral lectures are published in these proceedings

because they had already been submitted to other journals.

On the other hand we are pleased to include others which fit

well into the subject of the conference, in particular those
which have been- initiated by the symposium itself.

With the exception of the survey talks all articles contain
original research. The participants served as referees and
we owe them much thanks.
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SURVEY OF VECTOR BUNDLES ON CURVES

M.S. Narasimhan
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road, Bombay 400 005
INDIA

1. Moduli problem for vector bundles on curves.

Let X be a compact Riemann surface, or what is the same, a smooth pro-
jective irreducible algebraic curve over C[. It is well known that the set of iso-
morphism classes of holomorphic (or algebraic) line bundles of degree d has a
natural structure of a smooth projective variety; if d = 0 we obtain an abelian
variety, the Jacobian of X. Moreover any line bundle of degree 0 on X is

associated to a (unitary) character of the fundamental group of X [9].

The corresponding 'moduli problem' for (algebraic) vector bundles of higher
rank on X was first envisaged by A. Weil in 1938 in a famous paper [30]. Naively
formulated, the question is whether there is a natural structure of a variety on the
set of isomorphism classes of vector bundles of a given rank and degree on X. How-
ever it is easy to see that even 'locally' around certain bundles of rank > 2 one can
not have a structure of a variety, for example due to the jump-phenomenon [see 17,
p. 126]. This suggests that one can expect a structure of variety only on a suitable

subset of the isomorphism classes of vector bundles.

In what follows we shall assume that the genus g of X is > 2. It is
well known that any vector bundle on a curve of genus 0 is a direct sum of line
bundles. Vector bundles on curves of genus 1 were investigated in detail by
M.F. Atiyah [1].

2. Flat bundles and a theorem of A. Weil.

We shall consider in this section a class of vector bundles on X, namely
flat bundles, which play an important role in the moduli problem for vector bundles

on curves.

Let X be a universal covering of X and let the fundamental group
T = nl(X) act on X on the right. If p is a homomorphism of 7 into the full
r

linear group GL(r,C), we can construct a holomorphic vector bundle Wp = ; . 14

on X; the bundle Wp is the quotient of X X € under the action of m given by :

(;,V)y = (gy, p(Y)_lv), X e i, vV g Er, YET .

We say that a holomorphic vector bundle V on X arises from a representation

(resp. unitary representation) of 1, if V is isomorphic to Wp where p is a



homomorphism of 1 into GL(r,C) (resp. into to the unitary group U(r)).
Among other results A. Weil proved in [30]

Theorem 2.1. A vector bundle on X arises from a representation of the fundamental

group of X if and only if each of its indecomposable components is of degree zero.

A. Weil also expected that bundles which arise from unitary representations

would play an important role.

3. Stable and semi-stable bundles.

The crucial step in the progress of moduli problem for vector bundles on
curves was the introduction by David Mumford of the all important notion of stable

vector bundles. This concept was motivated by the geometric invariant theory [6].

Definition 3.1. A vector bundle V on X is said to be stable (resp. semi-stable)

if for every proper subbundle W of V we have

deg W 5 deg 'V {res deg W P deg V:
rank W rank V P- Tank W = Tank Vv’ ’

where deg (V) = Cl(V)[X], Cl(V) denoting the first chern class of V.

Observe that a semi-stable bundle is automatically stable, if its rank and

degree are coprime.

D. Mumford proved [7]

Theorem 3.1. The set of isomorphism classes of stable vector bundles on X of rank r
and degree d has a natural structure of a smooth quasi-projective variety of dimens-

ion rz(g—l)+l.

4. Stable bundles and unitary bundles.

The following basic theorem was proved by M.S. Narasimhan and C.S. Seshadri

[15,16].

Theorem 4.1. A vector bundle on X of degree 0 1is stable if and only if it arises

from an irreducible unitary representation of the fundamental group of X.

As a consequence one sees that a vector bundle arises from a unitary
representation of nl(X) if and only if each of its indecomposable components is of
degree 0 and stable. Moreover it is easy to show that two vector bundles arising
from unitary representations are isomorphic if and only if the representations are

equivalent.

In the same paper a characterisation similar to Theorem 4.1 was also given
for stable bundles of arbitrary degree in terms of irreducible unitary representat-
ions of a certain Fuchsian group. This result implies that, if (r,d) = 1, the space

of isomorphism classes of stable bundles of rank r and degree d is compact and is



hence a smooth projective variety.

5. The moduli space of semi-stable bundles.

The results stated in § 4 suggest a natural compactification of the space
of stable bundles of degree 0, namely the space of equivalence classes of unitary
representations (not necessarily irreducible) of a given rank. C.S. Seshadri proved
that this compactification is a projective variety [23]. Before stating his result

precisely we will introduce an equivalence relation among semi-stable bundles.

Let V be a semi-stable vector bundle on X. Then V has a strictly

decreasing filtration by subbundles

V=VDVD ...0V =(0)

such that for 1 < i < k the bundle Wi = Vi/vi-l is stable and satisfies
deg W,

i deg V _
rank W, = Tank V" Moreover the bundle Gr(V) = ;?l(vi/vi_
by V upto isomorphism (Jordan-H@lder theorem). We say that two semi-stable bundles

) is uniquely determined

il

Vl and V2 are S-equivalent if Gr(vl) is isomorphic to Gr(Vz). Observe that two
stable bundles are S-equivalent if and only if they are isomorphic. It is clear,

using Theorem 4.1, that the set of equivalence classes of unitary representations is
in canonical bijective correspondence with the set of S-equivalence classes of semi-

stable vector bundles of degree O.

C.S. Seshadri, using geometric invariant theory, proved [23]

Theorem 5.1. There is a unique structure of a normal projective (irreducible)
variety U(r,d) on the set of S-equivalence classes of semi-stable vector bundles
on X of rank r and degree d such that the following property holds : if {Vt}t -
is an algebraic family of semi-stable bundles on X of rank r and degree d para-
metrised by an algebraic variety T, then the map T — U(r,d), sending t e T to

the S-equivalence class of Vt’ is a morphism.

We shall call the variety given by Theorem 5.1 the moduli space of (semi-

stable) vector bundles of rank r and degree and denote it by U(r,d).

Theorem 5.1 is also valid for a curve X over an algebraically closed

field of arbitrary characteristic [25].

6. Singularities of U(r,d).

The set of singular points of U(r,d) has been determined by M.S.

Narasimhan and S. Ramanan [11].

Theorem 6.1. The set of non-singular points of U(r,d) is precisely the set of
stable points in U(r,d) except when g = 2, r = 2 and d even. In this exceptional

case U(r,d) is smooth.



Explicit desingularisations of U(2,0) have been given by M.S.Narasimhan-
S. Ramanan [14] and by C.S. Seshadri [24].

7. Poincaré bundles.

Let US(r,d) denote the open set of stable points in U(r,d).

Definition 7.1. Let @ be a non-empty open subset of Us(r,d). A Poincaré family of
vector bundles parametrised by @ 1is an algebraic vector bundle P on @ x X such that
for any w e @ the bundle on X obtained by restricting P to w x X 1is in the

isomorphism class w.

It is not hard to see that when (r,d) = 1 there is a Poincaré bundle on
U(r,d) x X [8]. S. Ramanan proved [22]
Theorem 7.1. If r© and d are not coprime there is no Poincaré family on X para-
metrised by any non-empty open subset of US(r,d).

The special case of this theorem where g = 2, r = 2,d even,was proved

earlier in [10].

8. The variety S(r,d).

In order to study the varieties U(r,d) let us fix a line bundle L of
degree d and coniider the subvariety of U(r,d) correspo:ding to semi-stable
bundles V with AV =L. We will denote this variety by Sx(r,d) or simply by
S(r,d). The varieties S(r,d) have been studied intensively by G. Harder, M.S.
Narasimhan, P.E. Newstead, S. Ramanan and A. Tjurin,especially in the case (r,d) = 1.
The results obtained pertain to the computation of numerical invariants like the
Betti numbers, questions concerning the rationality of these varieties, the relation
between the moduli of curves and the moduli of the varieties S(r,d) and the

explicit determination of these varieties in low genus or rank.

9. Betti numbers of S(r,d).

The Betti numbers of S(r,d) were first calculated by P.E. Newstead in
the case r = 2, d = 1, by topological methods using the results of §4 [18]. Based
on these results G. Harder verified the Weil conjecture for S(2,1) in the case of
a curve defined over a finite field [4],at a time when the Weil conjecture was not
proved in general.Harder observed in turn that the Betti numbers of S$(2,1) can be

computed by arithmetical methods on the basis of the Weil conjecture.

Harder's method was generalised by him and M.S. Narasimhan to bundles of
arbitrary rank [5]. It was shown, in the case (r,d) = 1, that the g -function of
S(r,d) can be calculated from the'S -function of X. This result, together with
Weil conjecture proved by P. Deligne, gives a method for computing the Betti numbers
of S(r,d) when (r,d) = 1.



