Lecture Notes in

Computer Science

Utpal Baherjee David Gelernter
Alex Nicolau David Padua (Eds.)

Languages and Compilers
for Parallel Computing

5th International Workshop
New Haven, Connecticut, USA, August 1992
Proceedings

| Springer-Verlag

Tp3! -33
1287
1992 94625654
Utpal Banerjee David Gelernter
Alex Nicolau David Padua (Eds.)

Languages and Compilers
for Parallel Computing

5th International Workshop
New Haven, Connecticut, USA
August 3-5, 1992

Proceedings

HIIIIII\M

E9462554

llill\lll

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos Juris Hartmanis

Universitit Karlsruhe Cornell University

Postfach 69 80 Department of Computer Science
Vincenz-Priessnitz-StraBe 1 4130 Upson Hall

D-76131 Karlsruhe, Germany Ithaca, NY 14853, USA

Volume Editors

Utpal Banerjee

Intel Corporation

2200 Mission College Blvd., P. O. Box 58119, RN6-18
Santa Clara, CA 95052, USA

David Gelernter
Dept. of Computer Science, Yale University
51 Prospect St., New Haven, CT 06520, USA

Alex Nicolau
Dept. of Information & Computer Science, University of California
444 Computer Science Bldg., Irvine, CA 92717, USA

David Padua :
Center for Supercomputing Research and Development
465 Computer and Systems Research Laboratory

1308 West Main St., Urbana, IL 61801, USA

CR Subject Classification (1991): F.1.2, D13 D.3.1,B.2.1,1.3.1

ISBN 3-540-57502-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57502-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

Lecture Notes in Computer Science 757
Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D. Gries J. Stoer

Foreword

The articles in this volume are revised versions of some of the papers pre-
sented at the Fifth Workshop on Languages and Compilers for Parallel Com-
puting that took place in Augus?ﬁ%‘m—iﬁ"ﬁ?‘fémity in New Haven.
Fhe-previous workshops in this series were held in Santa Clara (1991), Irvine
(1990), Urbana (1989) and Ithaca (1988). We strove as in previous years

for a reasonable cross-section of some of the best work in the field, and the
papers in this volume show that we succeeded fairly well.

Thanks are due to many people for making the workshop and this volume
a success: above all to Chris Hatchell, who provided the organizational and
administrative glue that held the whole enterprise together. It’s striking
how little computers can achieve when all is said and done, and how much
everything comes down (as it always has) to the right people working hard.

Utpal Banerjee
David Gelernter
Alex Nicolau
David Padua

Lecture Notes in Computer Science

For information about Vols. 1-690

please contact your bookseller or Springer-Verlag

Vol. 691: M. Ajmone Marsan (Ed.), Application and Theory
of Petri Nets 1993. Proceedings, 1993. IX, 591 pages. 1993.

Vol. 692: D. Abel, B.C. Ooi (Eds.), Advances in Spatial
Databases. Proceedings, 1993. XIII, 529 pages. 1993.

Vol. 693: P. E. Lauer (Ed.), Functional Programming,
Concurrency, Simulation and Automated Reasoning. Pro-
ceedings, 1991/1992. XI, 398 pages. 1993.

Vol. 694: A. Bode, M. Reeve, G. Wolf (Eds.), PARLE '93.
Parallel Architectures and Languages Europe. Proceedings,
1993. XVII, 770 pages. 1993.

Vol. 695: E. P. Klement, W. Slany (Eds.), Fuzzy Logic in
Artificial Intelligence. Proceedings, 1993. VIII, 192 pages.
1993. (Subseries LNAI).

Vol. 696: M. Worboys, A. F. Grundy (Eds.), Advances in
Databases. Proceedings, 1993. X, 276 pages. 1993.

Vol. 697: C. Courcoubetis (Ed.), Computer Aided Verifi-
cation. Proceedings, 1993. IX, 504 pages. 1993.

Vol. 698: A. Voronkov (Ed.), Logic Programming and
Automated Reasoning. Proceedings, 1993. XIII, 386 pages.
1993. (Subseries LNAI).

Vol. 699: G. W. Mineau, B. Moulin, J. F. Sowa (Eds.),
Conceptual Graphs for Knowledge Representation. Pro-
ceedings, 1993. IX, 451 pages. 1993. (Subseries LNAI).

Vol. 700: A. Lingas, R. Karlsson, S. Carlsson (Eds.), Au-
tomata, Languages and Programming. Proceedings, 1993.
XII, 697 pages. 1993.

Vol. 701: P. Atzeni (Ed.), LOGIDATA+: Deductive
Databases with Complex Objects. VIII, 273 pages. 1993.

Vol. 702: E. Bérger, G. Jiger, H. Kleine Biining, S. Mar-
tini, M. M. Richter (Eds.), Computer Science Logic. Pro-
ceedings, 1992. VIII, 439 pages. 1993.

Vol. 703: M. de Berg, Ray Shooting, Depth Orders and
Hidden Surface Removal. X, 201 pages. 1993.

Vol. 704: F. N. Paulisch, The Design of an Extendible
Graph Editor. XV, 184 pages. 1993.

Vol. 705: H. Griinbacher, R. W. Hartenstein (Eds.), Field-
Programmable Gate Arrays. Proceedings, 1992. VIII, 218
pages. 1993.

Vol. 706: H. D. Rombach, V. R. Basili, R. W. Selby (Eds.),
Experimental Software Engineering Issues. Proceedings,
1992. XVIII, 261 pages. 1993.

Vol. 707: O. M. Nierstrasz (Ed.), ECOOP '93 - Object-
Oriented Programming. Proceedings, 1993. XI, 531 pages.
1993.

Vol. 708: C. Laugier (Ed.), Geometric Reasoning for Per-
ception and Action. Proceedings, 1991. VIII, 281 pages.
1993.

Vol. 709: F. Dehne, J.-R. Sack, N. Santoro, S. Whitesides
(Eds.), Algorithms and Data Structures. Proceedings, 1993.
XII, 634 pages. 1993.

Vol. 710: Z. Esik (Ed.), Fundamentals of Computation
Theory. Proceedings, 1993. IX, 471 pages. 1993.

Vol. 711: A. M. Borzyszkowski, S. Sokotowski (Eds.),
Mathematical Foundations of Computer Science 1993. Pro-
ceedings, 1993. XIII, 782 pages. 1993.

Vol.712: P. V. Rangan (Ed.), Network and Operating Sys-
tem Support for Digital Audio and Video. Proceedings,
1992. X, 416 pages. 1993.

Vol. 713: G. Gottlob, A. Leitsch, D. Mundici (Eds.), Com-
putational Logic and Proof Theory. Proceedings, 1993. XI,
348 pages. 1993.

Vol. 714: M. Bruynooghe, J. Penjam (Eds.), Programming
Language Implementation and Logic Programming. Pro-
ceedings, 1993. XI, 421 pages. 1993.

Vol. 715: E. Best (Ed.), CONCUR’93. Proceedings, 1993.
IX, 541 pages. 1993.

Vol. 716: A. U. Frank, I. Campari (Eds.), Spatial Informa-
tion Theory. Proceedings, 1993. X1, 478 pages. 1993.

Vol. 717: . Sommerville, M. Paul (Eds.), Software Engi-
neering — ESEC ’93. Proceedings, 1993. XII, 516 pages.
1993.

Vol. 718: J. Seberry, Y. Zheng (Eds.), Advances in
Cryptology — AUSCRYPT ’92. Proceedings, 1992. XIII,
543 pages. 1993.

Vol. 719: D. Chetverikov, W.G. Kropatsch (Eds.), Compu-
ter Analysis of Images and Patterns. Proceedings, 1993.
XVI, 857 pages. 1993.

Vol. 720: V Maftik, J. LaZansky, RR. Wagner (Eds.), Data-
base and Expert Systems Applications. Proceedings, 1993.
XV, 768 pages. 1993.

Vol. 721: J. Fitch (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1992. VIII,
215 pages. 1993.

Vol. 722: A. Miola (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1993. XII,
384 pages. 1993.

Vol. 723: N. Aussenac, G. Boy, B. Gaines, M. Linster, J.-
G. Ganascia, Y. Kodratoff (Eds.), Knowledge Acquisition
for Knowledge-Based Systems. Proceedings, 1993. XIII,
446 pages. 1993. (Subseries LNAI).

Vol. 724: P. Cousot, M. Falaschi, G. Fil¢, A. Rauzy (Eds.),
Static Analysis. Proceedings, 1993. IX, 283 pages. 1993.

Vol. 725: A. Schiper (Ed.), Distributed Algorithms. Pro-
ceedings, 1993, VIII, 325 pages. 1993.

Vol. 726: T. Lengauer (Ed.), Algorithms — ESA ’93. Pro-
ceedings, 1993. IX, 419 pages. 1993

Vol. 727: M. Filgueiras, L. Damas (Eds.), Progress in Ar-
tificial Intelligence. Proceedings, 1993. X, 362 pages. 1993.
(Subseries LNAI).

Vol. 728: P. Torasso (Ed.), Advances in Artificial Intelli-
gence. Proceedings, 1993. XI, 336 pages. 1993. (Subseries
LNAD).

Vol. 729: L. Donatiello, R. Nelson (Eds.), Performance
Evaluation of Computer and Communication Systems. Pro-
ceedings, 1993. VIII, 675 pages. 1993.

Vol. 730: D. B. Lomet (Ed.), Foundations of Data Organi-
zation and Algorithms. Proceedings, 1993. XII, 412 pages.
1993.

Vol. 731: A. Schill (Ed.), DCE - The OSF Distributed
Computing Environment. Proceedings, 1993. VIII, 285
pages. 1993.

Vol. 732: A. Bode, M. Dal Cin (Eds.), Parallel Computer
Architectures. IX, 311 pages. 1993.

Vol. 733: Th. Grechenig, M. Tscheligi (Eds.), Human Com-
puter Interaction. Proceedings, 1993. XIV, 450 pages. 1993.
Vol. 734: J. Volkert (Ed.), Parallel Computation. Proceed-
ings, 1993. VIII, 248 pages. 1993.

Vol. 735: D. Bjgrner, M. Broy, 1. V. Pottosin (Eds.), For-
mal Methods in Programming and Their Applications. Pro-
ceedings, 1993. IX, 434 pages. 1993.

Vol. 736: R. L. Grossman, A. Nerode, A. P. Ravn, H.
Rischel (Eds.), Hybrid Systems. VIII, 474 pages. 1993.
Vol. 737:J. Calmet, J. A. Campbell (Eds.), Artificial Intel-
ligence and Symbolic Mathematical Computing. Proceed-
ings, 1992. VIII, 305 pages. 1993.

Vol. 738: M. Weber, M. Simons, Ch. Lafontaine, The Ge-
neric Development Language Deva. XI, 246 pages. 1993.
Vol. 739: H. Imai, R. L. Rivest, T. Matsumoto (Eds.), Ad-
vances in Cryptology — ASIACRYPT ’91. X, 499 pages.
1993.

Vol. 740: E. F. Brickell (Ed.), Advances in Cryptology —
CRYPTO ‘92. Proceedings, 1992. X, 593 pages. 1993.
Vol. 741: B. Preneel, R. Govaerts, J. Vandewalle (Eds.),
Computer Security and Industrial Cryptography. Proceed-
ings, 1991. VIIL, 275 pages. 1993.

Vol. 742: S. Nishio, A. Yonezawa (Eds.), Object Tech-
nologies for Advanced Software. Proceedings, 1993. X, 543
pages. 1993.

Vol. 743: S. Doshita, K. Furukawa, K. P. Jantke, T. Nishida
(Eds.), Algorithmic Learning Theory. Proceedings, 1992.
X, 260 pages. 1993. (Subseries LNAI)

Vol. 744: K. P. Jantke, T. Yokomori, S. Kobayashi, E.
Tomita (Eds.), Algorithmic Learning Theory. Proceedings,
1993. XI, 423 pages. 1993. (Subseries LNAI)

Vol. 745: V. Roberto (Ed.), Intelligent Perceptual Systems.
VIII, 378 pages. 1993. (Subseries LNAI)

Vol. 746: A. S. Tanguiane, Artificial Perception and Mu-
sic Recognition. XV, 210 pages. 1993. (Subseries LNAI).
Vol. 747: M. Clarke, R. Kruse, S. Moral (Eds.), Symbolic
and Quantitative Approaches to Reasoning and Uncertainty.
Proceedings, 1993. X, 390 pages. 1993.

Vol. 748: R. H. Halstead Jr., T. Ito (Eds.), Parallel Sym-
bolic Computing: Languages, Systems, and Applications.
Proceedings, 1992. X, 419 pages. 1993.

Vol. 749: P. A. Fritzson (Ed.), Automated and Algorith-
mic Debugging. Proceedings, 1993. VIII, 369 pages. 1993.

Vol. 750: J. L. Diaz-Herrera (Ed.), Software Engineering
Education. Proceedings, 1994. XII, 601 pages. 1994.

Vol. 751: B. Jdhne, Spatio-Temporal Image Processing.
XII, 208 pages. 1993.

Vol. 752: T. W. Finin, C. K. Nicholas, Y. Yesha (Eds.),
Information and Knowledge Management. Proceedings,
1992. VII, 142 pages. 1993.

Vol. 753: L. J. Bass, J. Gornostaev, C. Unger (Eds.), Hu-
man-Computer Interaction. Proceedingsy 1993. X, 388
pages. 1993.

Vol. 754: H. D. Pfeiffer, T. E. Nagle (Eds.), Conceptual
Structures: Theory and Implementation. Proceedings, 1992.
IX, 327 pages. 1993. (Subseries LNAI).

Vol. 755: B. Méller, H. Partsch, S. Schuman (Eds.), For-
mal Program Development. Proceedings. VII, 371 pages.
1993.

Vol. 756: J. Pieprzyk, B. Sadeghiyan, Design of Hashing
Algorithms. XV, 194 pages. 1993.

Vol. 757: U. Banerjee, D. Gelernter, A. Nicolau, D. Padua
(Eds.), Languages and Compilers for Parallel Computing.
Proceedings, 1992. X, 576 pages. 1993.

Vol. 758: M. Teillaud, Towards Dynamic Randomized
Algorithms in Computational Geometry. IX, 157 pages.
1993.

Vol. 759: N. R. Adam, B. K. Bhargava (Eds.), Advanced
Database Systems. XV, 451 pages. 1993.

Vol. 760: S. Ceri, K. Tanaka, S. Tsur (Eds.), Deductive
and Object-Oriented Databases. Proceedings, 1993. XII,
488 pages. 1993.

Vol. 761: R. K. Shyamasundar (Ed.), Foundations of Soft-
ware Technology and Theoretical Computer Science. Pro-
ceedings, 1993. X1V, 456 pages. 1993,

Vol. 762: K. W. Ng, P. Raghavan, N. V. Balasubramanian,
F. Y. L. Chin (Eds.), Algorithms and Computation. Pro-
ceedings, 1993. XIII, 542 pages. 1993.

Vol. 763: F. Pichler, R. Moreno Dfaz (Eds.), Computer
Aided Systems Theory — EUROCAST '93. Proceedings,
1993. IX, 451 pages. 1994.

Vol. 764: G. Wagner, Vivid Logic. XII, 148 pages. 1994.
(Subseries LNAI). ’
Vol. 765: T. Helleseth (Ed.), Advances in Cryptology —
EUROCRYPT ’93. Proceedings, 1993. X, 467 pages. 1994.
Vol. 766: P. R. Van Loocke, The Dynamics of Concepts.
X1, 340 pages. 1994. (Subseries LNAI).

Vol. 767: M. Gogolla, An Extended Entity-Relationship
Model. X, 136 pages. 1994.

Vol. 768: U. Banerjee, D. Gelernter, A. Nicolau, D. Padua
(Eds.), Languages and Compilers for Parallel Computing.
Proceedings, 1993. XI, 655 pages. 1994.

Contents

Compilation of a Highly Parallel Actor-Based Language 1
W. Kim and G. Agha, University of Illinois at Urbana-Champaign

A Concurrent Execution Semantics for Parallel Program Graphs 16
and Program Dependence Graphs
V. Sarkar, IBM Palo Alto Scientific Center, Palo Alto, California

Using Profile Information to Assist Advanced Compiler 31
Optimization and Scheduling
W. Chen, R. Bringmann, S. Mahlke, S. Anik, T. Kiyohara, N. Warter,

D. Lavery, W.-M. Hwu, R. Hank and J. Gyllenhaal
University of Illinois at Urbana-Champaign

A Hierarchical Parallelizing Compiler for VLIW/MIMD Machines...... 49
C. Brownhill and A. Nicolau, University of California at Irvine

Dynamic Dependence Analysis: A Novel Method for Data.............. 64
Dependence Evaluation
P. Peterson and D. Padua, University of Illinois at Urbana-Champaign

On the Feasibility of Dynamic Partitioning of Pointer Structures 82
J. Solworth, University of Illinois at Chicago

Compiler Analysis for Irregular Problems in Fortran D 97
R. von Hanxleden, K. Kennedy, and C. Koelbel
Rice University, Houston, Teras
R. Das and J. Saltz
University of Maryland, College Park, Maryland

Data Ensembles in Orca Cooiiiiiiii i, 112
C. Lin and L. Snyder, University of Washington at Seattle

Compositional C++: Compositional Parallel Programming 124
K. Mani Chandy and C. Kesselman
California Institute of Technology at Pasadena

Vil

Data Parallelism and Lindaoovunnsrrnee oo 145
N. Carriero and D. Gelernter
Yale University, New Haven, Connecticut

Techniques for Efficient Execution of Fine-Grained Concurrent 160
Programs

A. Chien, W. Feng, V. Karamcheti,and J. Plevyak
University of Illinois at Urbana-Champaign

Computing Per-Process Summary Side-Effect Information 175
T. Jeremiassen and S. Eggers, University of Washington at Seattle

Supporting SPMD Execution for Dynamic Data Structures 192
A. Rogers, Princeton University, Princeton, New Jersey
J. Reppy, ATET Bell Labs
L. Hendren, McGill University, Montréal, Québec, Canada

Determining Transformation Sequences for Loop Parallelization 208
W. Appelbe, Georgia Institute of Technology, Atlanta, Georgia
K. Smith, Emory University, Atlanta, Georgia

Compiler Optimizations for Massively Parallel Machines: 223
Transformations on Iterative Spatial Loops
M. Chen and Y. Hu, Yale University, New Haven, Connecticut

Handling Distributed Data in Vienna Fortran Procedures 248
B. Chapman and H. Zima, University of Vienna, Vienna, Austria
P. Mehrotra, ICASE, Hampton, Virginia

On the Synthesis of Parallel Programs from Tensor Product 264
Formulas for Block Recursive Algorithms

S. Gupta, C.-H. Huang, and P. Sadayappan

The Ohio State University, Columbus, Ohio

R. Johnson, St. Cloud State University, St. Cloud, Minnesota

Collective Loop Fusion for Array Contraction 281
G. Gao and R. Olsen, McGill University, Montréal, Québec, Canada
V. Sarkar, IBM Palo Alto Scientific Center, Palo Alto, California
R. Thekkath University of Washington at Seattle

IX

Parallel Hybrid Data Flow Algorithms: A Case Study 296
Y.-F. Lee and B. Ryder

Rutgers University, New Brunswick, New Jersey

A Control-Parallel Programming Model Implemented on SIMD........ 311
Hardware
H. Dietz and W. Cohen, Purdue University, West Lafayette, Indiana

C**: A Large-Grain, Object-Oriented, Data-Parallel Programming ... 326
Language
J. Larus, University of Wisconsin at Madison

A Calculus of Gamma Programscooviiiiiiiiiiiiniiiiann, 342
C. Hankin and D. LeMétayer
Imperial College of Science, Technology and Medicine, London, UK
D. Sands, University of Copenhagen, Copenhagen, Denmark

A Linda-Based Runtime System for a Distributed Logic Language. 356
P. Ciancarini, University of Bologna, Bologna, Italy

Parallelizing a C Dialect for Distributed Memory MIMD Machines 369
O. Lempel, S. Pinter,and E. Turiel
Technion — Israel Institute of Technology, Haifa, Israel

A Singular Loop Transformation Framework Based on Non-Singular .. 391

Matrices
W. Li and K. Pingali, Cornell University, Ithaca, New York

Designing the McCAT Compiler Based on a Family of Structured 406
Intermediate Representations
L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridharan
McGill University, Montréal, Québec, Canada

Doany: Not Just Another Parallel Loopc..coiiiiiiii. 421
M. Wolfe
Oregon Graduate Institute of Science & Technology
Beaverton, Oregon

Data Dependence and Data-Flow Analysis of Arrays 434
D. Maydan, S. Amarsinghe,and M. Lam
Stanford University, Stanford, California

Experience with Techniques for Refining Data Race Detection 449
R. Netzer, Brown University, Providence, Rhode Island
B. Miller, University of Wisconsin at Madison

Extending the Banerjee-Wolfe Test to Handle Execution Conditions .. 464
D. Klappholz, Stevens Institute of Technology, Hoboken, New Jersey
X. Kong, Sun Microsystems, Inc., Mountain View, California

A FORTRAN Compiling Method for Dataflow Machines and Its 482
Prototype Compiler for the Parallel Processing System -Harray-

T. Yasue, H. Yamana,and Y. Muraoka

Waseda University, Tokyo, Japan

Distributed Slicing and Partial Re-execution for Distributed 497
Programs

E. Duesterwald, R. Gupta and M. Soffa

University of Pittsburgh, Pittsburgh, Pennsylvania

A Program’s Eye View of Mipracouvuinineuninnnini... 512
W. Harrison III and Z. Ammarguellat
University of Illinois at Urbana-Champaign

Symbolic Program Analysis and Optimization for Parallelizing 538
Compilers

M. Haghighat and C. Polychronopoulos

University of Illinois at Urbana-Champaign

Utilizing New Communication Features in Compilation for 563
Private-Memory Machines

S. Hinrichs and T. Gross

Carnegie Mellon University, Pittsburgh, Pennsylvania

1 Compilation of a Highly
Parallel Actor-Based
Language

W. Kim and G. Agha
University of Illinois at Urbana-Champaign

Abstract
HAL is a High-level Actor-based Language. HAL supports a number
of communication mechanisms, local synchronization constraints, inheri-
- tance, and restricted forms of reflection. This paper discusses some issues
in compiling HAL. Specifically, we describe three source-level transfor-
mations used by the compiler for HAL. Two of the transformations
translate RPC-style message sending into asynchronous message send-
ing. The third transformation performs code motion to optimize the
implementation of replacement behavior. This optimization results in
the reduction of object code size as well as execution time.

Keywords: Actor, concurrency, synchronization constraint, in-
heritance, optimization

1 Introduction

As multicomputer architectures have become more prevalent, an increasing number of
research efforts have focused on designing languages or building compilers to efficiently
use multicomputers. These efforts are inspired by different programming models. For
example, one kind of effort, based on the SPMD model, has focused on extracting
data parallelism out of programs written in sequential programming languages such as
FORTRAN and C. These efforts focus on compiler techniques such as data dependence

analysis, loop transformation and/or data distribution [8].

Although compilers built on the SPMD model have been quite successful in utiliz-
ing data parallelism inherent in many programs, they fail to benefit from the control
parallelism inherent in algorithms and programs: some nodes may not be able to do
useful work although they could execute tasks different from other nodes.

Another approach to implicit parallel programming is based on using new program-
ming languages rather than developing compiling techniques for existing sequential
languages. Functional programming is an example of this approach. Unfortunately,
functional languages are not capable of modelling concurrency in a state-based, non-
deterministic world.

We use the Actor model which unifies the functional approach with object-based
concurrency (1, 2]. Actors support both control and data parallelism inherent in algo-
rithms themselves and may be used to naturally model a state-based non-deterministic
world. We have developed a high-level actor-based language called HAL [9]. In partic-
ular, HAL supports concurrent object-oriented programming.

Actors are self contained, independent computational agents that communicate by
asynchronous message sending. Each actor consists of its mail queue and behavior and
is associated with a unique mail address. The mail queue of an actor buffers incoming
communications (i.e. messages). The behavior of an actor specifies an action performed
by the actor in response to each communication and comprises a persistent state and
a set of method definitions. An actor’s state is defined by its acquaintances (actors
whose mail addresses are known to the actor).

All computation in an actor system is carried out in response to communications
sent to actors in the system. Specifically, an actor may perform three kinds of actions

when it accepts a message:

e It may change its behavior.
e It may send communications to its acquaintance actors asynchronously.

e It may create new actors.

The replacement behavior of an actor is the behavior with which the actor responds
to the next message it processes. It is specified by using the become primitive. When-
ever there is no executable become primitive in the thread of an actor computation, an
identically behaving actor is assumed to be its replacement behavior (by default). Note

that communications may contain mail addresses of actors; thus the interconnection

topology of an actor system is dynamic. Delivery of a message is guaranteed after an
arbitrary, but finite, delay (a fairness condition [5]).

This paper describes ongoing work on HAL and its compiler. In the following sec-
tion, we describe some linguistic constructs of HAL with their semantics, emphasizing
their implementation issues. Section 3 discusses the transformations of RPC style
message sending and the transformation for code motion to optimize the implementa-
tion of replacement behavior. The last section provides future research directions and
concluding remarks.

2 HAL: A High-level Actor Language

We briefly describe some constructs provided in HAL. First, we discuss how local syn-
chronization constraints are specified in HAL. We then discuss inheritance, replacement

behavior and some other programming constructs.

2.1 Specification of Synchronization Constraints

Consider a system in which a producer actor and a consumer actor collaborate through
a bounded buffer actor that has get and put methods. The producer invokes the put
method to store in the buffer a value it has generated. The consumer retrieves the next
available value by sending a get message to the buffer actor. Sending a put message
to a full buffer may result in loss of a generated value. Processing an invocation of get
method by an empty buffer actor may not be desirable.

Synchronization constraints are programming constructs that specify the subset of
possible states of an object under which that object’s services may be invoked. By
making explicit the enabling or disabling conditions for each method, the constraints
can guarantee data consistency on a per object basis in a concurrent system. To be
smoothly unified with inheritance, synchronization constraints need to be specified on
per class basis and as a part of class description which is separated from its method

definitions. Synchronization constraints can be specified using the following syntax:

(restrict <msg-expr> < bool-expr>)
(extend < msg-expr> < bool-expr>)
(overvrite <msg-expr> < bool-expr>)
(only <msg-expr> < bool-expr>)

where msg-expr evaluates to a method name and <bool-expr> defines the con-
dition under which the method may be invoked. In an actor not defined using a
superclass, only the operators restrict and only may be used. In the first case,
the set of enabling states in which the specified method may be invoked is restricted
to those satisfying the given condition. only specifies that only the method specified
in <msg-expr> can be processed as long as <bool-expr> evaluates true. These
operators interact with inheritance to support the incremental modification of synchro-
nization constraints. The restrict operator in a subclass specializes the constraint
in the superclass — the method may be invoked only in those enabling states of the
superclass which also satisfy the condition given in the subclass. On the other hand,
extend adds states (generalizes) the set of enabling states of a method; the method
may be invoked if either the synchronization condition in superclass actor or the sub-
class are satisfied. Finally, the operator overwrite is used to entirely redefine the set

of enabling conditions for an inherited method.

2.2 Inheritance

As in Smalltalk [12], any method of the superclass of an actor may be redefined in the
definition of the actor. As discussed above, the synchronization constraints of methods
may be incrementally modified separately from the method definition.

Figure 1 illustrates the possible usage of inheritance and synchronization constraints.
The most basic actor class is Stack which has the methods to push and pop one
element to and from the stack, respectively. This definition has a constraint (> count
0) on pop which must hold in order for a pop message to be processed.

The Bounded-stack class is a subclass of Stack. Bounded stacks satisfy a con-
straint on the size of the stack; a bounded stack cannot contain more than max elements
at any time. Because we have separated the specification of synchronization constraints
from the code for a method, we only need to state the new constraint without redefin-
ing the push method. Note that more restrictions are imposed on the push method
in the Bounded-stack class than in the Stack class.

Finally, we define the Pop2-stack class as a subclass of the Bounded-stack class.
Pop2-stack atomically pops two elements out of the stack when the pop method is
invoked. The constraint associated with pop method is redefined using overwrite in
the Pop2-stack class. By using this constraint specification scheme, the definition of
both pop and push methods can be inherited from the Stack class by its descen-
dent classes without causing the so-called “inheritance anomaly” [14]. Our scheme is

(defActor Stack (stack count)

(restrict (pop) (> count 0))

(method (push x)
(update stack (cons x stack))
(update count (+ count 1)))

(method (pop entrypoint continuation)
(send entrypoint continuation (car stack))
(update stack (cdr stack))
(update count (- count 1))))

(defActor Bounded-stack (max)
(superclass Stack)
(restrict (push) (<= count max)))

(defActor Pop2-stack
(superclass Bounded-stack)
(overwrite (pop) (> count 1))
(method (pop entrypoint continuation)
(send entrypoint continuation (car stack) (car (cdr stack)))
(update stack (cdr (cdr stack)))
(update count (- count 2))))

Figure 1: A hierarchy of stack actor classes.

flexible; incremental specialization, generalization and redefinition of synchronization
constraints can be naturally expressed. Others have argued that inheritance of syn-

chronization constraints should only support specialization [7] or generalization [15].

2.3 State Change

Local state change is specified by the become primitive in the Actor model. An actor
may become an entirely different actor. In this case a new behavior definition and
acquaintances need to be specified. However, in many cases, replacement behavior
only involves change of one or two acquaintance(s) of an actor. The update primitive
is a primitive used to specify that the replacement behavior is identical to the original
behavior except for the change in the acquaintance specified in the statement. The
syntax of update is as follows:

(update <acquaintance-name> < expr>)

Note that update conforms to a single-assignment semantics; the same acquaintance
cannot appear in more than one update statement in any control flow of a method.

However, a method can have more than one update operation provided that the oper-
ations are applied to different acquaintances. Since the effect of replacement behavior
is invisible to the current computation of an actor, multiple updates are semantically

equivalent to a become with multiple acquaintance changes.

2.4 Message-passing Mechanisms

Besides the asynchronous message sending provided as a primitive by the Actor model,
HAL provides two more message send constructs: ssend and bsend. The former is
the message order preserving send primitive, or sequenced send. The latter is the RPC
style message send primitive akin to Acore’s ask primitive [13]. Although the two
constructs provide some of the functionalities of synchronous message passing, they do
not require synchronous communication — i.e., a sender does not need to wait until a
receiver is ready to accept its message.

A sequenced send gives a sender the ability to ensure that messages to a given sender
are received in the same order in which they are sent. Sequenced sends are implemented
by tagging and, when necessary, reordering the messages at the recipient’s end. The
operator bsend is similar to a remote procedure call; the remainder of the sending
computation proceeds once a reply is received. The implementation issues related to

bsend are given in detail in Section 3.2.

2.5 Suicide

When executing a large actor program, many actors are typically created. Some of
these actors will never be used again once they have accepted certain communications
— they become garbage actors which waste space (and possibly other) resources until
they are reclaimed by garbage collector. The operator, suicide, allows an actor to
deallocate all resources it is using. Note that suicide is unsafe and is meant for use

only by the compiler or in meta-programming.

2.6 Reflection

Reflection is a system’s ability to reason and manipulate a causally connected de-
scription of itself [16]. A description is said to be causally connected to the object it
describes if changes to the description have an immediate effect on the object. Cur-
rently, HAL provides the minimal support for reflection that is necessary to allow a
system to be customized with respect to fault tolerance [3]. An actor can reify its dis-

